Main content

  1. Perry Y. Li
  2. Arthur G. Erdman
Affiliated institutions: University of Wisconsin - Stout

Date created: | Last Updated:


Creating DOI. Please wait...

Create DOI

Category: Project

Description: Artificial muscle actuators have become a popular choice as actuation units for robotic applications, particularly in the growing area of soft robotics. The precise specification of an artificial muscle actuator for a particular application requires the consideration of several parameters that work together to achieve the performance characteristics of the actuator. This paper explores the specification of artificial muscle actuator parameters by presenting and applying the analytical description of the actuator, simulation by finite element method for investigating material stresses under a wide variety of configurations, and a specific parameter selection process. This is followed by an experimental validation using an example actuator to compare against the predicted actuator performance. Some discussion of appropriateness of this type of actuator as a candidate solution for use in the example application of a dexterous continuum manipulator is included. This work has been submitted to the IEEE for possible publication.

License: CC-By Attribution 4.0 International


Loading files...



Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.