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Abstract
A range of computational approaches have been used to model
the discovery of word forms from continuous speech by infants.
Typically, these algorithms are evaluated with respect to the
ideal ’gold standard’ word segmentation and lexicon. These
metrics assess how well an algorithm matches the adult state,
but may not reflect the intermediate states of the child’s lex-
ical development. We set up a new evaluation method based
on the correlation between word frequency counts derived from
the application of an algorithm onto a corpus of child-directed
speech, and the proportion of infants knowing the words ac-
cording to parental reports. We evaluate a representative set
of 4 algorithms, applied to transcriptions of the Brent corpus,
which have been phonologized using either phonemes or syl-
lables as basic units. Results show remarkable variation in the
extent to which these 8 algorithm-unit combinations predicted
infant vocabulary, with some of these predictions surpassing
those derived from the adult gold standard segmentation. We
argue that infant vocabulary prediction provides a useful com-
plement to traditional evaluation; for example, the best predictor
model was also one of the worst in terms of segmentation score,
and there was no clear relationship between token or boundary
F-score and vocabulary prediction.
Index Terms: language acquisition, word segmentation, infant
vocabulary, speech units, computational modeling.

1. Introduction
Segmenting – identifying words in fluent speech – is a key step
in language acquisition and especially in lexical development.
However, the absence of systematic silences between words in
continuous speech makes this task a particularly difficult one,
especially early in development where other key components
of language (phonology, morphology, syntax, etc.) are not yet
fully known to infants. Thus, a key research question becomes:
how do infants get word segmentation off the ground? Two
strands of research have addressed this issue: one using labo-
ratory experiments in infants, [1, 2, 3, 4, 5], and another one
using computational modeling [6]. Here, we focus on the latter
approach with a view to comparing the adequacy of computa-
tional systems as models of infant word segmentation.

Most of the computational work on word segmentation have
taken the view that a good model, when fed with enough data,
will reach the optimal performance of a human adult. This is
usually quantified by defining as ’gold standard’ the segmen-
tation corresponding to the blank spaces between words in the
orthographic transcription of the input data. Provided this ideal
segmentation, objective metrics can be defined, typically, type,
token and boundary precision, recall and f-scores (see below).
While this gold standard can be argued to represent the adult
state, it most certainly does not capture intermediate states of
knowledge in infants. Indeed, there is now clear evidence that

infants make segmentation errors, in that they extract from con-
tinuous speech a ”proto-lexicon” containing many items that
adults would view as non-words [4, 7].

A number of alternatives to gold standard metrics have been
discussed. One is that the proposed model should be cognitively
plausible given what is known about infant cognition (e.g., [8]).
Another is that models should reproduce documented patterns
of successes and errors found in development (e.g., [9, 10]).
One limitation of such proposals is that it is difficult to rank the
relative merit of algorithms on these dimensions because there
is no agreed upon list of criteria or patterns of results that could
be turned into an objective metric. For instance, [8] argues
that infants focus on segmenting rather than on storing potential
words, whereas [11] argues that it is more cognitively plausi-
ble that infants try to learn word-like units rather than learning
segmentation strategies.

We propose to use one source of evidence that has not yet
been exploited for this purpose, and which may provide a way to
determine the relative merit of algorithmic proposals in a quan-
tifiable way: parental reports of word comprehension. These
reports are typically collected using the MacArthur Commu-
nicative Development Inventory (CDI for short [12]), a stan-
dardized questionnaire containing more than 400 items. The
CDI has been translated in several language and has been col-
lected in a large quantity of families in the WordBank reposi-
tory [13]. Recently, CDI comprehension data have been used
to look at the earliest words that infants acquire and age of ac-
quisition for each of these words has been estimated across sev-
eral languages. Input-related factors – frequency, mean length
utterance – and conceptual factors – concreteness, babiness :
measure of association with infancy – have been found to pre-
dict vocabulary age of acquisition [14]. Of course, parental re-
port may not reflect the true state of the infant’s comprehension
lexicon. The ideal source of data would use experiments that
bypass the parent and measure lexical knowledge in the child,
like word-to-meaning paradigms [15, 16] or segmentation ex-
periments [1, 17]. Yet, these studies are limited to a small num-
ber of preselected test items and are difficult to deploy across
a large number of infants. This is why, despite its many draw-
backs, parental reports remain a good proxy of word knowledge
in infants.

In this paper, we introduce a new measure derived from the
correlation between the frequency of occurrence of a word form
in the output of an algorithm (applied onto a large corpus of
transcribed child-directed speech), on the one hand and the pro-
portion of infant’s reported comprehending that word form on
the other. We evaluate 8 algorithm-unit combinations, as fol-
lows. The corpus was represented using either the phoneme
or the syllable as basic unit. The algorithms were drawn from
two main classes of algorithms: one class tracks local statisti-
cal cues at a sub-lexical level in order to find where to segment
speech, the other builds a word form lexicon to represent or cap-



ture the corpus. Both classes make the assumption that phrases
boundaries are known, and contain distributional information
useful for segmenting words [18]. We use two algorithms from
each class, introduced in more detail in Section 2.

2. Methods
2.1. Data

We used as input to the word segmentation algorithms the
Brent-Siskind corpus [19]. This corpus is the longest one in the
CHILDES repository [20], containing orthographic transcrip-
tions for more than 100 hours of recordings from 16 Ameri-
can English-speaking mother-infant pairs. Table 1 gives some
details about the corpus. For evaluating word segmentation al-

Table 1: Descriptive statistics of the Brent-Siskind corpus —
NU: number of utterances, AUL: average utterance length,
TTR: token-type ratio, AWL-ph: average word length in num-
ber of phonemes, AWL-syl: average word length in number of
syllables, infants’ age range in months

NU AUL TTR AWL-ph AWL-syl age

113363 3.59 60,4 3.06 1.23 9-15

gorithms on infant reported lexicon, we used American English
language data available on the WordBank repository [13], corre-
sponding to the ”Words and Gestures” form of the CDI. Most of
these items are nouns (e.g., ball) but there are also other classes,
such as verbs (watch), function words (you), adjectives (big)
and even onomatopeia (baa). There were different numbers of
parental reports at different ages, ranging from 66 to 761. In or-
der to maximize our chances of having sufficient sensitivity, we
focus on the 761 parental reports for infants aged 13 months.

2.2. Word segmentation algorithms

The first model using local statistical cues is the Diphone-
Based Segmentation (DiBS) algorithm [8], previously studied
by [21, 22], based on phonotactics properties, which keeps in
memory the frequency of two phones occurring together and de-
cides to place a boundary between them by computing Bayes’
Theorem. To do that, the model has several assumptions: the
learner knows the phonetics categories, is able to detect ut-
terance boundaries, assumes phonological independence across
word boundaries, tracks context-free distribution of diphones
and knows the relative frequency of word forms already learned.
All these assumptions are discussed in [8] from a psycholinguis-
tic point of view indicating why it is plausible that infants might
act as a DiBS learner when starting segmenting speech. The
only free parameter of the model is the context-free probability
of a word boundary and is determined by average word length
and number of words per utterance. This setting is quite contro-
versial since the model is partly supervised – word boundaries
are given for a subset of the corpus to fix the context-free prob-
ability of a word boundary– whereas the infant segmentation is
not. DiBS was trained on the first 200 utterances estimating the
context-free probability of a word boundary.

Another local statistical model is based on tracking transi-
tional probabilities (TPs) over syllables which posits a bound-
ary between two syllables if its co-occurrence probability is lo-
cally lowest [1] (relative threshold) or is lower than an abso-
lute threshold usually computed by taking the averaged value

of syllables pairs. As it is highly improbable that infants com-
pute this absolute threshold, we chose the relative one , which
also implies that monosyllabic words can only be found at the
utterance edge [23]. We chose the forward dependency measure
over the backward and the mutual information ones since it has
been shown that it performs better on English. A possible ex-
planation would be that forward TP gives more information in
Subject-Verb-Object languages [24]. Compared to DiBS, TPs
demands a larger memory as the number of all possible sylla-
bles encountered are much greater than the number of all pos-
sible phones. In that sense, TPs seem less cognitively plausi-
ble. However, a number of experimental studies using artificial
languages suggested that infants can assemble high statistical
sequences of syllables and bound them with lower statistical se-
quences [1] and therefore can rely on TPs over syllables [2].
The lexicon-based strategy needs learners to have larger mem-
ory and wider knowledge on its language than local statistical
strategies. The PUDDLE (Phonotactics from Utterances Deter-
mine Distributional Lexical Elements) algorithm developed by
[9] and based on the PARSER model [25], builds incrementally
a lexicon by using information on utterance boundaries and by
deducing phonotactics constraints. More precisely, each time a
sequence of phonemes is encountered, if a match with a word
in the proto-lexicon is found and if phonotactics constraints are
respected, then the chunk of phonemes is added to the proto-
lexicon, the beginning and ending phonemes pairs are added
respectively to a list made of previously encountered beginning
and ending phonemes pairs. Hence, the phonotactics constraints
are the following: when a match is found, the previous pair
of phonemes must belong to the list of ending phonemes pairs
and the following pair of phonemes must belong to the list of
beginning pair. These constraints avoid over-segmentation to
the level of phonemes and make the proto-lexicon closer to the
real lexicon of the corpus. Moreover, the model promotes fre-
quent words by counting the occurrences of words added in the
proto-lexicon and then by sorting the list of these words by fre-
quency. For PUDDLE, since time (number of mathematics op-
erations) and space (memory needed) requirements were heavy
in the original awk script, we made a version in python using
the collection modules, resulting in a 120-fold decrease in com-
putation time and optimized space use.

The last algorithm used is the unigram Adaptor Gram-
mar (AGu) [26], [27] which models an optimal learner, i.e a
learner having an infinite memory and a batch process, looking
at the whole corpus before segmenting. The framework consists
of two modules: a lexicon generator and an adaptor. The first
one generates a lexicon of items that are likely to be found in the
corpus and the second assigns items frequencies. Importantly,
the unigram AG assumes that lexicon items are generated in-
dependently from each others and that the stochastic process is
chosen so that items’ frequencies follow a power-law distribu-
tion as it has been found in natural language.

2.3. Data processing and algorithm evaluation

The scripts used for all processing steps are available
on the second author’s github: https://github.com/
alecristia/CDSwordSeg. The corpus processing steps
consisted of cleaning up annotations and converting orthogra-
phy into surface phonological forms. The latter was achieved
with the American English voice of the Festival Text-to-Speech
system [28], which provides syllable boundaries.

A few changes were necessary when changing the unit of
input representation from the original one. For AGu – sylla-
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ble, we created an unigram grammar whose terminals are all
the syllables found in the corpus. For PUDDLE – syllable, we
modified the boundary constraints, keeping a constraint span-
ning one syllable. Notice that applying a condition on bisylla-
bles would effectively prevent segmentation when this results in
monosyllabic chunks. Therefore, the boundary constraints per-
tained only to the previous and following syllable rather than
the previous and following pair of syllables. No special modi-
fication were necessary for the TPs and DiBS algorithms.

Evaluation of the final output of each algorithm for each
input representation was assessed by using the traditional to-
ken F-score, i.e., the harmonic mean of precision (ratio of true
positives to the number of segmented items by the algorithm)
and recall (ratio of true positives to the number of segmented
items by the reference). Type and boundary F-scores were also
used for comparison purposes. Since PUDDLE is incremental,
we assessed its performance by a 5-fold cross-validation with
the hope of measuring performance at asymptote. Finally, for
AGu, 8 parses of 2000 iterations – of which the first 100 were
removed before parse reduction, were used. Because this al-
gorithm is not deterministic (unlike all other algorithms), the
process was repeated five times and averaged.

3. Relating segmentation output to infant
vocabulary

For each algorithm-unit combination as well as the gold cor-
pus, we used the scikit-learn library in python [29] to look at
the potential relationship between (a) the number of times each
word form was found in the segmented corpus, and (b) the num-
ber of infants reported to understand that word. In preliminary
analyses, we used both a simple linear regression and a logis-
tic regression. Since results were similar, we focus here on the
linear regression; interested readers can find the results for the
logistic models in Open Science Framework site.

In our linear regression, the predictor was the logarithm of
the number of times a word was correctly segmented; the out-
come was the proportion of infants reported to understand that
word. We checked that the residuals were normally distributed
and had homogeneous variance.

4. Results
Figure 1 shows the proportion of infants reported to know a
word in the CDI as a function of the number of times a word
occurs the Brent-Siskind corpus, for every word belonging both
in CDI reports and the CDS corpus. This correlation gives us
an insight into how well a perfect segmentation output could
correlate with infant reported lexicon. Thus, it serves as a base-
line for comparison of different word segmentation algorithm
correlations in Table 2. This table indicates that only AGu with
syllable and phoneme and TPs with syllable have correlation
above the baseline. This result suggests that their segmentation
gives a lexicon closer to the infant’s one compared to the adult
lexicon.

Table 2 also gives the detail segmentation F- scores – lexi-
con, token and boundary F-scores – for each algorithm. At first
glance, the best performances are: AGu with phoneme when
evaluated with Type F-score, PUDDLE with syllable when eval-
uated on Token F-score and Boundary F-score, and TPs with
syllable when evaluated on its correlation with the infant re-
ported vocabulary. This is quite surprising and this leads us to
think that the traditional F-scores metrics are not correlated with
the coefficient of determination R2 of the regression predicting

infant reported vocabulary. The values of the Pearson correla-
tion coefficient between the different F-scores and R2 support
this assumption. Token and Boundary F-scores have no cor-
relation with R2: ρToken−R2 = −0.083, ρBoundary−R2 =

0.04. However, Type F-score and R2 are slightly correlated:
ρType−R2 = 0.35.

With regard to the effect of the unit of representation, TPs,
DiBS and PUDDLE show surprisingly better segmentation per-
formance with their non-initial input: phoneme for TPs, syllable
for DiBS and for PUDDLE. AGu, on the contrary, is clearly bet-
ter with phonemes, but it might be due to the low complexity of
the grammar itself: taking into account one or two level of col-
location – groups of words that tend to appear together – might
favor the syllabic unit over the phoneme. In fact, conclusions
must be drawn carefully as the unit presented introduces some
bias in the segmentation. Indeed, since phonemes are thrice as
common as syllables in the corpus (see Table 1), the number of
possibles boundaries are much bigger with phonemes than with
syllables, hence the boundary precision must be lower for algo-
rithms using phonemes than syllables, which is actually found
in Table 2. Nonetheless, Figure 2 first confirms that R2 and
the token F-score don’t have a linear relationship and second,
indicates that sub-lexical algorithms (DiBS and TPs) are more
affected by the change of unit than lexical-based algorithms.

Figure 1: Linear regression between the infant lexicon at 13
months old and the frequency of each word in the Brent corpus
and in the CDI

5. Discussion and conclusion
In this paper, we identified a new way to evaluate computational
models of word segmentation on the basis of standardized word
comprehension reports. Three main conclusions can be drawn
from the results obtained. First, some word segmentation algo-
rithms predict reported word comprehension much better than
others, and some do so better than the gold lexicon. In other
words, there is variation in performance that appears useful for
evaluating the relative merit of algorithms. Second, it is not the
word segmentation algorithms that perform best when evaluated
on adult segmentation that best predict reported word compre-
hension. In fact, the algorithm that predicts word comprehen-
sion best has very poor segmentation performances: TPs with
syllables is ranked 7 over 8 algorithms tested when inspecting
token and boundary F-scores. TPs with syllables predicts even
better than AGu which is considered as a reference for adult
word segmentation. Finally, for the first time, a comparison of

https://osf.io/wa6tq/


Table 2: F-score, Precision and Recall for Type, Token and Boundary statistics of four word segmentation algorithms on the Brent-
Siskind corpus as a function of input units, R2 prediction score of 13 month-old-infants’ vocabulary and standard error SE . Boldface
indicates the best statistics on each column.

Algorithm Unit Input Type Token Boundary Regression

F-score (rank) Prec. Rec. F-score (rank) Prec. Rec. F-score (rank) Prec. Rec. R2 (rank) SE

TPs Syllable 0.188 (6) 0.111 0.607 0.361 (7) 0.476 0.291 0.602 (7) 0.947 0.441 0.186 (1) 0.0076
Phoneme 0.166 (7) 0.124 0.253 0.468 (5) 0.432 0.512 0.657 (5) 0.590 0.742 0.034 (7) 0.0066

DiBS Syllable 0.417 (2) 0.523 0.347 0.602 (4) 0.570 0.638 0.801 (4) 0.745 0.866 0.093 (4) 0.0084
Phoneme 0.057 (8) 0.035 0.159 0.236 (8) 0.234 0.240 0.467 (8) 0.459 0.475 0.029 (8) 0.0119

PUDDLE Syllable 0.315 (5) 0.234 0.479 0.811 (1) 0.821 0.802 0.903 (1) 0.918 0.889 0.046 (6) 0.0066
Phoneme 0.380 (3) 0.306 0.501 0.706 (3) 0.682 0.733 0.820 (3) 0.782 0.862 0.067 (5) 0.0065

AGu Syllable 0.340 (4) 0.232 0.634 0.408 (6) 0.532 0.331 0.637 (6) 0.985 0.471 0.148 (2) 0.0084
Phoneme 0.517 (1) 0.585 0.464 0.782 (2) 0.787 0.777 0.889 (2) 0.897 0.881 0.135 (3) 0.0070

Adult gold standard – – – – – – – – – 0.118 0.0065

Figure 2: Token F-score plotted against the coefficient of linear
regression predicting infant lexicon from word segmentation al-
gorithms’ true positives. Error bars are twice the standard er-
ror, estimate of the standard deviation.

the unit of input representation has been achieved and indicates
that there is no predominance of a unit over another on every
F-score and on correlation with the infant reported vocabulary.
This comparison also exhibits the fact that some algorithms,
DiBS and TPs, are more sensitive to a change of unit than oth-
ers and it appears that those ones are based on local statistical
regularities.

It is noteworthy that the algorithm with the highest predic-
tive value regarding infants’ vocabulary is also the algorithm
which received the most support in an experimental setup us-
ing artificial languages made up of strings of syllables [1, 7].
It is also noteworthy that this algorithm completely fails when
its input is specified in terms of phonemes, not syllables [30].
However, before jumping to conclusions and claiming that our
analysis provides proof that TPs on syllables is the algorithm
used by infants, two caveats are in order. First, it would be
important to replicate this study with other corpora and other
languages in order to assess the robustness and generality of
our finding. Second and more importantly, our analysis only
provides evidence for half of the predictions of the algorithm.
Indeed, with the CDI, we can only test the predicted correct
segmentations, not the errors. All of the 8 algorithms make
systematic segmentation errors which can be considered as pre-
dictions regarding the content of the early infant lexicon. In
order to prove that an algorithm is truly used by infants, one

would therefore also need to check that infants also make the
erroneous segmentations predicted by the algorithm, using, for
instance, the paradigm provided in [7].

Conducting large scale experimental work in infants is
costly. Fortunately, our approach could still be used to as a first
pass to quickly test a large set of algorithms on their correct
predictions before it becomes worth setting up the experiments
on their incorrect ones. Here, we only scratched the surface in
that many other segmentation algorithms have been proposed,
some sublexical [31], some lexical [32, 33] and others using a
combination of both strategies [34, 35]. It would be interesting
to add to the mix algorithms that work from raw speech instead
of phonetic transcriptions [36, 37, 38].

Finally, our findings provide a new angle to understand the
strategy that infants may be using to kick-start their lexical seg-
mentation: The fact that a very rudimentary algorithm like TP
outperforms the gold segmentation in predicting infant’s vocab-
ulary indicates that infants may not use, at least initially, an op-
timal segmentation strategy, but rather a simple heuristics that
gives them a first proto-lexicon, to be cleaned up at a later stage.
One could therefore get a hint at such a heuristics by studying
the way in which the initial vocabulary as assessed by parental
reports systematically deviates from what could be expected
based on the gold segmentation.

To conclude, we presented evidence that word segmentation
algorithms can be distinguished through their correlation with
reported infant word comprehension, providing a novel way of
integrating cognitive considerations in modeling approaches of
early language acquisition.
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