Two Fundamentally Different Types of Submarine Canyons Along the Continental Margin of Equatorial Guinea

  1. Donald R Lowe
  2. Steven J Uchytil

Date created: | Last Updated:


Creating DOI. Please wait...

Create DOI

Category: Project

Description: Most submarine canyons are erosive conduits cut deeply into the world’s continental shelves through which sediment is transported from areas of high coastal sediment supply onto large submarine fans. However, many submarine canyons in areas of low sediment supply do not have associated submarine fans and show significantly different morphologies and depositional processes from those of ‘classic’ canyons. Using three-dimensional seismic reflection and core data, this study contrasts these two types of submarine canyons and proposes a bipartite classification scheme. The continental margin of Equatorial Guinea, West Africa during the late Cretaceous was dominated by a classic, erosional, sand-rich, submarine canyon system. This system was abandoned during the Paleogene, but the relict topography was re- activated in the Miocene during tectonic uplift. A subsequent decrease in sediment supply resulted in a drastic transformation in canyon morphology and activity, initiating the ‘Benito’ canyon system. This non-typical canyon system is aggradational rather than erosional, does not indent the shelf edge and has no downslope sediment apron. Smooth, draping seismic reflections indicate that hemipelagic deposition is the chief depositional process aggrading the canyons. Intra-canyon lateral accretion deposits indicate that canyon concavity is maintained by thick (> 150 m), dilute, turbidity currents. There is little evidence for erosion, mass wasting, or sand-rich deposition in the Benito canyon system. When a canyon loses flow access, usually due to piracy, it is abandoned and eventually filled. During canyon abandonment, fluid escape causes the successive formation of ‘cross-canyon ridges’ and pockmark trains along buried canyon axes. Based on comparison of canyons in the study area, we recognize two main types of submarine canyons: ‘Type I’ canyons indent the shelf edge and are linked to areas of high coarse-grained sediment supply, generating erosive canyon morphologies, sand- rich fill, and large downslope submarine fans/aprons. ‘Type II’ canyons do not indent the shelf edge and exhibit smooth, aggradational morphologies, mud-rich fill, and a lack of downslope fans/aprons. Type I canyons are dominated by erosive, sandy turbidity currents and mass wasting, whereas hemipelagic deposition and dilute, sluggish turbidity currents are the main depositional processes sculpting Type II canyons. This morphology-based classification scheme can be used to help predict depositional processes, grain size distributions, and petroleum prospectivity of any submarine canyon.

License: Academic Free License (AFL) 3.0


Loading files...



Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.