Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: This paper explores the application of deep learning in automated es-say scoring (AES). It uses the essay dataset #8 from the Automated Student As-sessment Prize competition, hosted by the Kaggle platform, and a state-of-the-art Suite of Automatic Linguistic Analysis Tools (SALAT) to extract 1,463 writing features. A non-linear regressor deep neural network is trained to predict holistic scores on a scale of 10-60. This study shows that deep learning holds the promise to improve significantly the accuracy of AES systems, but that the current dataset and most essay datasets fall short of providing them with enough expertise (hand-graded essays) to exploit that potential. After the tuning of different sets of hy-perparameters, the results show that the levels of agreement, as measured by the quadratic weighted kappa metric, obtained on the training, validation, and testing sets are 0.84, 0.63, and 0.58, respectively, while an ensemble (bagging) produced a kappa value of 0.80 on the testing set. Finally, this paper upholds that more than 1,000 hand-graded essays per writing construct would be necessary to adequately train the predictive student models on automated essay scoring, provided that all score categories are equally or fairly represented in the sample dataset.

Wiki

Add important information, links, or images here to describe your project.

Files

Loading files...

Mendeley

Loading citations...

Citation

Components

ASAP-AES Original Datasets


Recent Activity

Loading logs...

SALAT

Suite of Advanced Linguistic Analysis Tools

Recent Activity

Loading logs...

ASAP-D8


Recent Activity

Loading logs...

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.