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To move beyond the limitations of null-hypothesis tests, statistical approaches have been
developed where the observed data are compared against a range of values that are equivalent to
the absence of a meaningful effect. Specifying a range of values around zero allows researchers
to statistically reject the presence of effects large enough to matter, and prevents practically
insignificant effects from being interpreted as a statistically significant difference. We compare
the behavior of the recently proposed second generation p-value (Blume, D’Agostino McGowan,
Dupont, & Greevy, 2018) with the more established Two One-Sided Tests (TOST) equivalence
testing procedure (Schuirmann, 1987). We show that the two approaches yield almost identical
results under optimal conditions. Under suboptimal conditions (e.g., when the confidence inter-
val is wider than the equivalence range, or when confidence intervals are asymmetric) the second
generation p-value becomes difficult to interpret. The second generation p-value is interpretable
in a dichotomous manner (i.e., when the SGPV equals 0 or 1 because the confidence intervals
lies completely within or outside of the equivalence range), but this dichotomous interpretation
does not require calculations. We conclude that equivalence tests yield more consistent p-values,
distinguish between datasets that yield the same second generation p-value, and allow for easier
control of Type I and Type II error rates.

Keywords: equivalence testing, second generation p-values, hypothesis testing, TOST, statistical
inference

To test predictions researchers predominantly rely on null-
hypothesis tests. This statistical approach can be used to
examine whether observed data are sufficiently surprising
under the null hypothesis to reject an effect that equals exactly
zero. Null-hypothesis tests have an important limitation, in
that this procedure can only reject the hypothesis that there is
no effect, while scientists should also be able to provide sta-
tistical support for equivalence. When testing for equivalence
researchers aim to examine whether an observed effect is too
small to be considered meaningful, and therefore is practi-
cally equivalent to zero. By specifying a range around the null
hypothesis of values that are deemed practically equivalent to
the absence of an effect (i.e., 0 ± 0.3) the observed data can
be compared against an equivalence range and researchers
can test if a meaningful effect is absent (Hauck & Anderson,
1984; Kruschke, 2018; Rogers, Howard, & Vessey, 1993;
Serlin & Lapsley, 1985; Spiegelhalter, Freedman, & Parmar,

All code associated with this article, including the reproducible
manuscript, is available from https://github.com/Lakens/TOST_
vs_SGPV and https://osf.io/8crkg/. The preprint can be found at
https://psyarxiv.com/7k6ay/. This work was supported by the Nether-
lands Organization for Scientific Research (NWO) VIDI grant 452-
17-013.

Correspondence concerning this article should be addressed to
Daniël Lakens, Den Dolech 1, IPO 1.33, 5600 MB, Eindhoven, The
Netherlands. E-mail: D.Lakens@tue.nl

1994; Wellek, 2010; Westlake, 1972).

Second generation p-values (SGPV) were recently proposed
as a statistic that represents “the proportion of data-supported
hypotheses that are also null hypotheses” (Blume et al., 2018).
The researcher specifies an equivalence range around a null hy-
pothesis of values that are considered practically equivalent to
the null hypothesis. The SGPV measures the degree to which
a set of data-supported parameter values falls within the inter-
val null hypothesis. If the estimation interval falls completely
within the equivalence range, the SGPV is 1. If the confidence
interval falls completely outside of the equivalence range, the
SGPV is 0. Otherwise the SGPV is a value between 0 and 1
that expresses the overlap of data-supported hypotheses and
the equivalence range. When calculating the SGPV the set of
data-supported parameter values can be represented by a con-
fidence interval (CI), although one could also choose to use
credible intervals or Likelihood support intervals (SI). When
a confidence interval is used, the SGPV and equivalence tests
such as the Two One-Sided Tests (TOST) procedure (Lakens,
2017; Meyners, 2012; Quertemont, 2011; Schuirmann, 1987)
appear to have close ties, because both tests compare a confi-
dence interval against an equivalence range. Here, we aim to
examine the similarities and differences between the TOST
procedure and the SGPV. We limit our analysis to continuous
data sampled from a bivariate normal distribution.

The TOST procedure also relies on the confidence interval
around the effect. In the TOST procedure the data are tested
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against the lower equivalence bound in the first one-sided test,
and against the upper equivalence bound in the second one-
sided test (Lakens, Scheel, & Isager, 2018). For an excellent
discussion of the strengths and weaknesses of different fre-
quentist equivalence tests, including alternatives to the TOST
procedure, see Meyners (2012). If both tests statistically reject
an effect as extreme or more extreme than the equivalence
bound, you can conclude the observed effect is practically
equivalent to zero from a Neyman-Pearson approach to statis-
tical inferences. Because one-sided tests are performed, one
can also conclude equivalence by checking whether the 1-2×α
confidence interval (e.g., when the alpha level is 0.05, a 90%
CI) falls completely within the equivalence bounds. Because
both equivalence tests as the SGPV are based on whether and
how much a confidence interval overlaps with equivalence
bounds, it seems worthwhile to compare the behavior of the
newly proposed SGPV to equivalence tests to examine the
unique contribution of the SGPV to the statistical toolbox.

The relationship between p-values from TOST and
SGPV when confidence intervals are symmetrical

The second generation p-value (SGPV) is calculated as:

pδ =
|I ∩ H0|

|I|
×max

{
|I|

2 |H0|
, 1
}

where I is the interval based on the data (e.g., a 95% con-
fidence interval) and H0 is the equivalence range. The first
term of this formula implies that the second generation p-
value is the width of the confidence interval that overlaps
with the equivalence range, divided by the total width of the
confidence interval. The second term is a “small sample cor-
rection” (which will be discussed later) that comes into play
whenever the confidence interval is more than twice as wide
as the equivalence range. To examine the relation between the
TOST p-value and the SGPV we can calculate both statistics
across a range of observed effect sizes. Building on the exam-
ple by Blume et al. (2018), in Figure 1 p-values are plotted for
the TOST procedure and the SGPV. The statistics are calcu-
lated for hypothetical one-sample t-tests for observed means
ranging from 140 to 150 (on the x-axis). The equivalence
range is set to 145 ± 2 (i.e., an equivalence range from 143 to
147), the observed standard deviation is assumed to be 2, and
the sample size is 30. For example, for the left-most point in
Figure 1 the SGPV and the TOST p-value is calculated for
a hypothetical study with a sample size of 30, an observed
standard deviation of 2, and an observed mean of 140, where
the p-value for the equivalence test is 1, and the SGPV is 0.

Our conclusions about the relationship between TOST p-
values and SGPV hold for second generation p-values calcu-
lated from confidence intervals, and assuming data is sampled
from a bivariate normal distribution. Readers can explore
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Figure 1. Comparison of p-values from TOST (black line) and
SGPV (grey line) across a range of observed sample means (x-
axis) tested against a mean of 145 in a one-sample t-test with
a sample size of 30 and a standard deviation of 2, illustrating
that when the TOST p-value = 0.5, the SGPV = 0.5, when
the TOST p-value is 0.975, 1-SGPV = 1, and when the TOST
p-value = 0.025, 1-SGPV = 0.

the relationship between TOST p-values and SGPV for them-
selves in an online Shiny app: http://shiny.ieis.tue.nl/TOST_
vs_SGPV/.

The SGPV treats the equivalence range as the null-hypothesis,
while the TOST procedure treats the values outside of the
equivalence range as the null-hypothesis. For ease of compar-
ison we can plot 1-SGPV (see Figure 2) to make the values
more easily comparable. We see that the p-value from the
TOST procedure and the SGPV follow each other closely.
When we discuss the relationship between the p-values from
TOST and the SGPV, we focus on their correspondence at
three values, namely where the TOST p = 0.025 and SGPV
is 1, where the TOST p = 0.5 and SGPV = 0.5, and where
the TOST p = 0.975 and SGPV = 1. These three values are
important for the SGPV because they indicate the values at
which the SGPV indicates the data should be interpreted as
compatible with the null hypothesis (SGPV = 1), or with
the alternative hypothesis (SGPV = 0), or when the data are
strictly inconclusive (SGPV = 0.5). These three points of
overlap are indicated by the horizontal dotted lines in Figure
2 at TOST p-values of 0.975, 0.5, and 0.025.

When the observed sample mean is 145, the sample size is
30, and the standard deviation is 2, and we are testing against
equivalence bounds of 143 and 147 using the TOST procedure
for a one-sample t-test, the equivalence test is significant, t(29)
= 5.48, p < .001. Because the 95% CI falls completely within
the equivalence bounds, the SGPV is 1 (see Figure 1). On the
other hand, when the observed mean is 140, the equivalence
test is not significant (the observed mean is far outside the
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Figure 2. Comparison of p-values from TOST (black line)
and 1-SGPV (grey line) across a range of observed sample
means (x-axis) tested against a mean of 145 in a one-sample
t-test with a sample size of 30 and a standard deviation of 2.

equivalence range of 143 to 147), t(29) = -8.22, p = 1 (or
more accurately, p > .999 as p-values are bounded between
0 and 1). Because the 95% CI falls completely outside the
equivalence bounds, the SGPV is 0 (see Figure 1).

SGPV as a uniform measure of overlap

It is clear the SGPV and the p-value from TOST are closely
related. When confidence intervals are symmetric we can
think of the SGPV as a straight line that is directly related to
the p-value from an equivalence test for three values. When
the TOST p-value is 0.5, the SGPV is also 0.5 (note that the
reverse is not true). The SGPV is 50% when the observed
mean falls exactly on the lower or upper equivalence bound,
because 50% of the symmetrical confidence interval overlaps
with the equivalence range. When the observed mean equals
the equivalence bound, the difference between the mean in
the data and the equivalence bound is 0, the t-value for the
equivalence test is also 0, and thus the p-value is 0.5 (situation
A, Figure 3).

Two other points always have to overlap. When the 95%
CI falls completely inside the equivalence region, and one
endpoint of the confidence interval is exactly equal to one
of the equivalence bounds (see situation B in Figure 3) the
TOST p-value (which relies on a one-sided test) is always
0.025, and the SGPV is 1. Note that when sample sizes are
small or equivalence bounds are narrow, small p-values for
the TOST or a SGPV = 1 might not be observed in practice
if too few observations are collected. The third point where
the SGPV and the p-value from the TOST procedure should
overlap is where the 95% CI falls completely outside of the
equivalence range, but one endpoint of the confidence interval
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Figure 3. Means, normal distribution, and 95% CI for three
example datasets that illustrate the relationship between p-
values from TOST and SGPV.
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Figure 4. Means, normal distribution, and 95% CI for samples
where the observed population mean is 1.5, 1.4, 1.3, and 1.2.

is equal to the equivalence bound (see situation C in Figure
3), when the p-value will always be 0.975, and the SGPV is
0. Note that this situation is in essence a minimum-effect test
(Murphy, Myors, & Wolach, 2014). The goal of a minimum-
effect is not just to reject a difference of zero, but to reject the
smallest effect size of interest (i.e., the equivalence bounds).
An equivalence test and minimum effect test against the same
equivalence bound are complementary, and when a TOST
p-value is larger than 0.975, the p-value for the minimum
effect test is smaller than 0.05 (and therefore the minimum
effect test provides no additional information that can not
be derived from the p-value from the equivalence test). The
SGPV summarizes the information from an equivalence test
(and the complementary minimum-effect test). These can be
two relevant questions to ask, although it often makes sense to
combine an equivalence test and a null-hypothesis test instead
(Lakens et al., 2018).
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For example, in Figure 4 we have plotted four SGPV’s. From
A to D the SGPV is 0.76, 0.81, 0.86, and 0.91. The difference
in the percentage of overlap between A and B (-0.05) is iden-
tical to the difference in the percentage of overlap between
C and D as the mean gets 0.1 closer to the test value (-0.05).
As the observed mean in a one-sample t-test lies closer to the
test value, from situation A to D, the difference in the overlap
changes uniformly. As we move the observed mean closer
to the test value in steps of 0.1 across A to D the p-value
calculated for normally distributed data are not uniformly
distributed. The probability of observing data more extreme
than the upper bound of 2 is (from A to D) 0.16, 0.12, 0.08,
and 0.05. As we can see, the difference between A and B
(0.04) is not the same as the difference between C and D
(0.03). Indeed, the difference in p-values is the largest as you
start at p = 0.5 (when the observed mean falls on the test
value), which is why the line in Figure 1 is the steepest at p
= 0.5. Note that where the SGPV reaches 1 or 0, p-values
closely approximate 0 and 1, but never reach these values.

When different p-values for equivalence tests yield the
same SGPV

There are three situations where p-values for TOST differ-
entiate between observed results, while the SGPV does not
differentiate. The first two situations were discussed before
and can be seen in Figure 1. When the SGPV is either 0 or 1,
p-values from the equivalence test fall between 0.975 and 1
or between 0 and 0.025. Where the SGPV is 1 as long as the
confidence interval falls completely within the equivalence
bounds, the p-value for the TOST continues to differentiate be-
tween results as a function of how far the confidence interval
lies within the equivalence bounds (the further the confidence
interval is from both bounds, the lower the p-value). The
easiest way to see this is by plotting the SGPV against the
p-value from the TOST procedure. The situations where the
p-values from the TOST procedure continue to differentiate
based on how extreme the results are, but the SGPV is a fixed
value are indicated by the parts of the curve where there are
vertical straight lines at second generation p-values of 0 and
1.

A third situation in which the SGPV remains stable across a
range of observed effects, while the TOST p-value continues
to differentiate, is whenever the CI is wider than the equiv-
alence range, and the CI overlaps with the upper and lower
equivalence bound. When the confidence interval is more than
twice as wide as the equivalence range the SGPV is set to 0.5.
Blume et al. (2018) call this the “small sample correction fac-
tor”. However, it is not a correction in the typical sense of the
word, since the SGPV is not adjusted to any “correct” value.
When the normal calculation would be “misleading” (i.e., the
SGPV would be small, which normally would suggest support
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Figure 5. The relationship between p-values from the TOST
procedure and the SGPV for the same scenario as in Figure 1.
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Figure 6. Comparison of p-values from TOST (black line) and
SGPV (grey line) across a range of observed sample means
(x-axis). Because the sample size is small (n = 10) and with
a standard deviation of 2 the CI is more than twice as wide
as the equivalence range (set to -0.4 to 0.4), the SGPV is set
to 0.5 (horizontal lightgrey line) across a range of observed
means.

for the alternative hypothesis, but at the same time all values
in the equivalence range are supported), the SGPV is set to
0.5 which according to Blume and colleagues signals that the
SGPV is “uninformative”. Note that the CI can be twice as
wide as the equivalence range whenever the sample size is
small (and the confidence interval width is large) or when
then equivalence range is narrow. It is therefore not so much
a “small sample correction” as it is an exception to the typical
calculation of the SGPV whenever the ratio of the confidence
interval width to the equivalence range exceeds 2:1 and the
CI overlaps with the upper and lower bounds.

We can examine this situation by calculating the SGPV and
performing the TOST for a situation where sample sizes are
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Figure 7. The relationship between p-values from the TOST
procedure and the SGPV for the same scenario as in Figure 6.

small and the equivalence range is narrow, such that the CI is
more than twice as large as the equivalence range (see Figure
6). When the two statistics are plotted against each other
we can see where the SGPV is the same while the TOST
p-value still differentiates different observed means (indicated
by straight lines in the curve, see Figure 7). We see the SGPV
is 0.5 for a range of observed means where the p-value from
the equivalence test still varies. It should be noted that in
these calculations the p-values for the TOST procedure are
never smaller than 0.05 (i.e., they do not get below 0.05 on
the y-axis). In other words, we cannot conclude equivalence
based on any of the observed means. This happens because
we are examining a scenario where the 90% CI is so wide that
it never falls completely within the two equivalence bounds.

As Lakens (2017) notes: “in small samples (where CIs are
wide), a study might have no statistical power (i.e., the CI
will always be so wide that it is necessarily wider than the
equivalence bounds).” None of the p-values based on the
TOST procedure are below 0.05, and thus, in the long run we
have 0% power.

The p-value from the TOST procedure still differentiates ob-
served means, while the SGPV does not, when the CI is
wider than the equivalence range (so the precision is low)
and overlaps with the upper and lower equivalence bound,
but the CI is not twice as wide as the equivalence range. In
the example below, we see that the CI is only 1.79 times as
wide as the equivalence bounds, but the CI overlaps with the
lower and upper equivalence bounds (Figure 8). This means
the SGPV is not set to 0.5, but it is constant across a range
of observed means, while the TOST p-value is not constant
across this range.

If the observed mean would be somewhat closer to 0, or
further away from 0, the SGPV remains constant (the CI
width does not change, and it completely overlaps with the
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Figure 8. Example of a 95% CI that overlaps with the lower
and upper equivalence bound (indicated by the vertical dotted
lines).
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Figure 9. Comparison of p-values from TOST (black line) and
SGPV (grey line) across a range of observed sample means
(x-axis). The sample size is small (n = 10), but because the
sd is half as big as in Figure 7 (1 instead of 2) the CI is less
than twice as wide as the equivalence range (set to -0.4 to
0.4). The SGPV is not set to 0.5 (horizontal light grey line)
but reaches a maximum slightly above 0.5 across a range of
observed means.

equivalence range) while the p-value for the TOST procedure
does vary. We can see this in Figure 9 below. The SGPV is
not set to 0.5, but is slightly higher than 0.5 across a range of
means. How high the SGPV will be for a CI that is not twice
as wide as the equivalence range, but overlaps with the lower
and upper equivalence bounds, depends on the width of the
CI and the equivalence range.

If we once more plot the two statistics against each other we
see the SGPV is 0.56 for a range of observed means where
the p-value from the equivalence test still varies, as indicated
by the straight section of the line (Figure 10).
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Figure 10. The relationship between p-values from the TOST
procedure and the SGPV for the same scenario as in Figure 9.

To conclude this section, there are situations where the p-value
from the TOST procedure continues to differentiate, while
the SGPV does not. Therefore, interpreted as a continuous
statistic, the SGPV is more limited than the p-value from the
TOST procedure.

The relation between equivalence tests and SGPV for
asymmetrical confidence intervals around correlations

So far we have only looked at the relation between equivalence
tests and the SGPV when confidence intervals are symmetric
(e.g., for confidence intervals around mean differences). For
correlations, which are bound between -1 and 1, confidence
intervals are only symmetric for a correlation of exactly 0.
The confidence interval for a correlation becomes increasingly
asymmetric as the observed correlation nears -1 or 1. For ex-
ample, with ten observations, an observed correlation of 0 has
a symmetric 95% confidence interval ranging from -0.63 to
0.63, while and observed correlation of 0.7 has an asymmetric
95% confidence interval ranging from 0.13 to 0.92. Note
that calculating confidence intervals for a correlation involves
a Fisher’s z-transformation, which transforms values such
that they are approximately normally z-distributed, which
allows one to compute symmetric confidence intervals. These
confidence intervals are then retransformed into a correla-
tion, where the confidence intervals are asymmetric if the
correlation is not exactly zero.

The effect of asymmetric confidence intervals around corre-
lations is most noticeable at smaller sample sizes. In Figure
11 we plot the p-values from equivalence tests and the SGPV
(again plotted as 1-SGPV for ease of comparison) for cor-
relations. The sample size is 30 pairs of observations, and
the lower and upper equivalence bounds are set to -0.45 and
0.45, with an alpha of 0.05. As the observed correlation in
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Figure 11. Comparison of p-values from TOST (black line)
and 1-SGPV (grey curve) across a range of observed sample
correlations (x-axis) tested against equivalence bounds of r =

-0.45 and r = 0.45 with n = 30 and an alpha of 0.05.

the sample moves from -.99 to 0 the p-value from the equiva-
lence test becomes smaller, as does 1-SGPV. The pattern is
quite similar to that in Figure 2. The p-value for the TOST
procedure and 1-SGPV are still related as discussed above,
with TOST p-values of 0.975 and 0.025 corresponding to a
1-SGPV of 1 and 0, respectively. There are two important
differences, however. First of all, the SGPV is no longer a
straight line, but a curve, due to the asymmetry in the 95% CI.
Second, and most importantly, the p-value for the equivalence
test and the SGPV do no longer overlap at p = 0.5.

The reason that the equivalence test and SGPV no longer
overlap is due to asymmetric confidence intervals. If the
observed correlation falls exactly on the equivalence bound
the p-value for the equivalence test is 0.5. In the equivalence
test for correlations the p-value is computed based on a z-
transformation which better controls error rates (Goertzen &
Cribbie, 2010). This transformation is computed as follows,
where r is the observed correlation and ρ is the theoretical
correlation under the null:

z =

log( 1+r
1−r )

2 −
log( 1+ρ

1−ρ )
2√

1
n−3

Because the z-distribution is symmetric, the probability of
observing the observed or more extreme z-score, assuming the
equivalence bound is the true effect size, is 50%. However,
because the r distribution is not symmetric, this does not
mean that there is always a 50% probability of observing
a correlation smaller or larger than the true correlation. As
can be seen in Figure 12, the proportion of the confidence
interval that overlaps with the equivalence range is larger than



TOST VS. SGPV 7

−1.0 −0.5 0.0 0.5 1.0

Correlation

Figure 12. Three 95% confidence intervals for observed effect
sizes of r = -0.45, r = 0, and r = 0.45 for n = 30. Only the
confidence interval for r = 0 is symmetric.

50% when the observed correlations are r = -.45 and r = .45,
meaning that the two second generation p-values associated
with these correlations are larger than 50%. Because the con-
fidence intervals are asymmetric around the observed effect
size of 0.45 (ranging from 0.11 to 0.70) according to Blume
et al. (2018) 58.11% of the data-supported hypotheses are
null hypotheses, and therefore 58.11% of the data-supported
hypotheses are compatible with the null premise.

The further away from 0, the larger the SGPV when the ob-
served mean falls on the equivalence bound. The SGPV is
the proportion of values in a 95% confidence interval that
overlap with the equivalence range, but not the probability
that these values will be observed. In the most extreme case
(i.e., a sample size of 4, and equivalence bounds set to r =

-0.99 and 0.99, with a true correlation of 0.99) 97.60% of the
confidence interval overlaps with the equivalence range, even
though in the long run only 36% of the correlations observed
in the future will fall in this range.

It should be noted that in larger sample sizes the SGPV is
closer to 0.5 whenever the observed correlation falls on the
equivalence bound, but this extreme example nevertheless
clearly illustrates the difference between question the SGPV
answers, and the question a p-value answers. The conclusion
of this section on asymmetric confidence intervals is that a
SGPV of 1 or 0 can still be interpreted as a p < 0.025 or p >

0.975 in an equivalence test, since the SGPV and p-value for
the TOST procedure are always directly related at the values
p = 0.025 and p = 0.975. Although Blume et al. (2018) state
that “the degree of overlap conveys how compatible the data
are with the null premise” this definition of what the SGPV
provides does not hold for asymmetric confidence intervals.
Although a SGPV of 1 or 0 can be directly interpreted, a
SGPV between 0 and 1 is not interpretable as “compatibility

with the null hypothesis” under the assumption of a bivariate
normal distribution, and the generalizability of this statement
needs to be examined beyond normal bivariate distributions.
Indeed, Blume and colleagues write in the supplemental mate-
rial that “The magnitude of an inconclusive second-generation
p-value can vary slightly when the effect size scale is trans-
formed. However definitive findings, i.e. a p-value of 0 or 1
are not affected by the scale changes.”

What are the Relative Strengths and Weaknesses of
Equivalence Testing and the SGPV?

When introducing a new statistical method, it is important
to compare it to existing approaches and specify its relative
strengths and weaknesses. Here, we aimed to compare the
SGPV against equivalence tests based on the TOST procedure.
First of all, even though a SGPV of 1 or 0 has a clear interpre-
tation (we can reject effects outside or inside the equivalence
range), intermediate values are not as easy to interpret (espe-
cially for effects that have asymmetric confidence intervals).
In one sense, they are what they are (the proportion of over-
lap), but it can be unclear what this number tells us about the
data we have collected. This is not too problematic, since
the main use of the SGPV (e.g., in all examples provided
by Blume and colleagues) seems to be to examine whether
the SGPV is 0, 1, or inconclusive. As already mentioned,
this interpretation of a SGPV is very similar to the Neyman-
Pearson interpretation of an equivalence test and a minimum
effect tests (which are complementary). The difference is that
where a SGPV of 1 can be interpreted as p < .025, equivalence
tests provide exact p-values, and they continue to differentiate
between for example p = 0.024 and p = 0.002. Whether this
is desirable depends on the perspective that is used. From
a Neyman-Pearson perspective on statistical inferences the
main conclusion is based on whether or not p < α, and thus an
equivalence test and SGPV can be performed by simply check-
ing whether the confidence interval falls within the equiva-
lence range, just as a null-hypothesis test can be performed by
checking whether the confidence interval contains zero or not.
At the same time, it is recommended to report exact p-values
(American Psychological Association, 2010), and exact p-
values might provide information of interest to readers about
how precisely how surprising the data, or more extreme data,
is under the null model. Some researchers might be interested
in combining an equivalence test with a null-hypothesis sig-
nificance test. This allows a researcher to ask whether there is
an effect that is statistically different from zero, and whether
effect sizes that are considered meaningful can be rejected.
Equivalence tests combined with null-hypothesis tests classify
results into four possible categories, and for example allow
researchers to conclude an effect is significant and equivalent
(i.e., statistically different from zero, but also too small to be
considered meaningful; see Lakens et al., 2018).
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Figure 13. Comparison of p-values from TOST (black line)
and 1-SGPV (grey curve) across a range of observed sample
correlations (x-axis) tested against equivalence bounds of r =

0.4 and r = 0.8 with n = 10 and an alpha of 0.05.

An important issue when calculating the SGPV is its reliance
on the “small sample correction”, where the SGPV is set to
0.5 whenever the ratio of the confidence interval width to the
equivalence range exceeds 2:1 and the CI overlaps with the
upper and lower bounds. This exception to the normal calcu-
lation of the SGPV is introduced to prevent misleading values.
Without this correction it is possible that a confidence interval
is extremely wide, and an equivalence range is extremely
narrow, which without the correction would lead to a very low
value for the SGPV. Blume et al. (2018) suggest that under
such a scenario “the data favor alternative hypotheses”, even
when a better interpretation would be that there is not enough
data to accurately estimate the true effect compared to the
width of the equivalence range. Although it is necessary to set
the SGPV to 0.5 whenever the ratio of the confidence interval
width to the equivalence range exceeds 2:1, it leads to a range
of situations where the SGPV is set to 0.5, while the p-value
from the TOST procedure continues to differentiate (see for
example Figure 6). An important benefit of equivalence tests
is that it does not need such a correction to prevent misleading
results.

As a more extreme example of the peculiar behavior of the
“small sample correction” as currently implemented in the
calculation of the SGPV, see Figure 13. In this figure observed
correlations (from a sample size of 10) from -.99 to .99 are
tested against an equivalence range from r = 0.4 to r = 0.8.
We can see the SGPV has a peculiar shape because it is set
to 0.5 for certain observed correlations, even though there is
no risk of a “misleading” SGPV in this range. This example
suggests that the current implementation of the “small sample
correction” could be improved. If, on the other hand, the
SGPV is mainly meant to be interpreted when it is 0 or 1, it
might be preferable to simply never apply the “small sample

correction”.

Blume et al. (2018) claim that when using the SGPV “Adjust-
ments for multiple comparisons are obviated” (p. 15). How-
ever, this is not correct. Given the direct relationship between
TOST and SGPV highlighted in this manuscript (where a
TOST p = 0.025 equals SGPV = 1, as long as the SGPV is
calculated based on confidence intervals, and assuming data
are sampled from a continuous bivariate normal distribution),
not correcting for multiple comparisons will inflate the proba-
bility of concluding the absence of a meaningful effect based
on the SGPV in exactly the same way as it will for equivalence
tests. Whenever statistical tests are interpreted as support for
a hypothesis (e.g., SPGV = 0 or SGPV = 1), it is possible
to do so erroneously, and if researchers want to control error
rates, they need to correct for multiple comparisons.

Conclusion

We believe that our explanation of the similarities between the
TOST procedure and the SGPV provides context to interpret
the contribution of second generation p-values to the statisti-
cal toolbox. The novelty of the SGPV can be limited when
confidence intervals are asymmetrical or wider than the equiv-
alence range. There are strong similarities with p-values from
the TOST procedure, and in all situations where the statistics
yield different results, the behavior of the p-value from the
TOST procedure is more consistent. We hope this overview of
the relationship between the SGPV and equivalence tests will
help researchers to make an informed decision about which
statistical approach provides the best answer to their question.
Our comparisons show that when proposing alternatives to
null-hypothesis tests, it is important to compare new propos-
als to already existing procedures. We believe equivalence
tests achieve the goals of the second generation p-value while
allowing users to easily control error rates, and while yielding
more consistent statistical outcomes.
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