[pedagogical] Diamond Open Access

Building a Solutions Manual as a Pedagogical Tool

Open Collaboration*†

December 4, 2019

Abstract

This is a theoretical proposal built upon some teaching and learning methodologies and written as an Idea Report.

keywords: solutions manual, mathematics, physics, teaching, learning, peer instruction, problem-based learning, flipped classroom

Introduction

- 1. This is a theoretical Idea Report written to promote and foster collaborative learning through some blended teaching strategies.
- 2. Students can help each other by **Peer Instruction** [1–3], and jointly build a **Solutions Manual** in *Mathematics* and *Physics* disciplines.
- 3. The purposes are two-fold: to create a Solutions Manual to problems within a technical book, and to engage students in collaborative learning.

^{*}All authors with their affiliations appear at the end of this paper.

[†]Corresponding author: mplobo@uft.edu.br | Join the Open Collaboration

The Methodologies

- 4. For this proposal, the following methodologies turn out to be very convenient to use, namely **Problem Based Learning** [4–7], **Flipped Classroom** [8–12], and **Peer Instruction** [1–3].
- 5. This strategy is expected to work both in *online* and *on-campus* classes.

Building a Solutions Manual

- 6. In the beginning of a class (mathematics or physics, for example), Teacher A defines the set of technical books (that will be considered in the discipline), $B = \{B_i : i \in \mathbb{N}\}$, for $\mathbb{N} = \{1, 2, 3, ...\}$.
- 7. Each student is assigned to answer different questions from the *i*-th book (B_i) .
- 8. The set B is sufficiently large enough to contain a number of exercises. Statistically speaking, there will be room for all levels of difficulty, i.e., easy, medium, and difficult questions.

Final Remarks

- 9. One clear benefit of our proposal is that, at the end, a (partial) Solutions Manual is built.
- 10. Subsequently (9), other students can access a number of *Solutions Manuals* from a variety of disciplines, thereafter.
- 11. (9) can be accomplished as an evaluated activity.
- 12. In addition to (9), there are more benefits, that is, students can collaborate while trying to answer their own assigned questions.
- 13. It is worthwhile to mention that there are healthy ways of using a Solutions Manual.

Open Invitation

Please review, add content, and **co-author** this article. Join the **Open Collaboration**. Send your contribution to mplobo@uft.edu.br.

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [13], please cite it accordingly [14]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

References

- [1] Mazur, Eric. Peer instruction: A user's manual. Addison-Wesley, 1999.
- [2] Crouch, Catherine H., and Eric Mazur. "Peer instruction: Ten years of experience and results." *American journal of physics* 69.9 (2001): 970-977.
- [3] Fagen, Adam P., Catherine H. Crouch, and Eric Mazur. "Peer instruction: Results from a range of classrooms." *The physics teacher* 40.4 (2002): 206-209.
- [4] Barrett, Terry, and Sarah Moore. New approaches to problem-based learning: Revitalising your practice in higher education. Routledge, 2010.
- [5] Boud, David, and Grahame Feletti. The challenge of problem-based learning. Routledge, 2013.
- [6] Wood, Diana F. "Problem based learning." *BMJ* 326.7384 (2003): 328-330.

- [7] Savery, John R., and Thomas M. Duffy. "Problem based learning: An instructional model and its constructivist framework." *Educational Technology* 35.5 (1995): 31-38.
- [8] Bergmann, Jonathan, and Aaron Sams. Flip your classroom: Reach every student in every class every day. International society for technology in education, 2012.
- [9] Tucker, Bill. "The flipped classroom." Education Next 12.1 (2012): 82-83.
- [10] Bergmann, Jonathan, and Aaron Sams. Flipped learning: Gateway to student engagement. International Society for Technology in Education, 2014.
- [11] Bergmann, Jonathan, and Aaron Sams. Flipped learning for science instruction. Vol. 1. International Society for Technology in Education, 2014.
- [12] Bergmann, Jonathan, and Aaron Sams. Flipped learning for math instruction. Vol. 2. International Society for Technology in Education, 2015.
- [13] COS. Open Science Framework. https://osf.io
- Matheus Р. "Building 114 Lobo. a Solutions Manual as Tool." OSFPedagogical Preprints. Nov. 2019. 18 https://doi.org/10.31219/osf.io/7jzgx

The Open Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br)^{1,2}

¹Federal University of Tocantins (Brazil); ²Universidade Aberta (UAb, Portugal)