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Abstract

Across the social sciences, researchers have overwhelmingly used the classical
statistical paradigm to draw conclusions from data, often focusing heavily on
a single number: p. Recent years, however, have witnessed a surge of interest
in an alternative statistical paradigm: Bayesian inference, in which probabil-
ities are attached to parameters and models. We feel it is informative to pro-
vide statistical conclusions that go beyond a single number, and —regardless
of one’s statistical preference— it can be prudent to report the results from
both the classical and the Bayesian paradigm. In order to promote a more in-
clusive and insightful approach to statistical inference we show how the open-
source software program JASP (https://jasp-stats.org) provides a set of
comprehensive Bayesian reanalyses from just a few commonly-reported sum-
mary statistics such as t and N. These Bayesian reanalyses allow researchers
—and also editors, reviewers, readers, and reporters— to quantify evidence on
a continuous scale, assess the robustness of that evidence to changes in the
prior distribution, and gauge which posterior parameter ranges are more
credible than others by examining the posterior distribution of the effect
size. The procedure is illustrated using the seminal |[Festinger and Carlsmith
(1959)) study on cognitive dissonance.


https://jasp-stats.org
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Classical null hypothesis significance testing (NHST) allows researchers to evaluate
scientific propositions in a seemingly straightforward manner: whenever the p-value falls
below a threshold « (usually set to .05) researchers feel licensed to reject the null hy-
pothesis that the effect is absent and embrace the alternative hypothesis that the effect is
present. For example, in the results section one may encounter conclusions such as “overall
classification accuracy was greater than chance”, “the analysis revealed a main effect of
the manipulation”, and “the correlation was significant”; in the discussion section, these
statements are abstracted from the standard NHST framework even further, conveying the
impression that whenever p < .05, the data strongly favor the alternative hypothesis over
the null hypothesis of no effect.

The field’s mechanistic use of p-values appears to be at odds with the recent warn-
ing issued by the The American Statistical Association (ASA; Wasserstein & Lazar) 2016,
p. 131): “The widespread use of ‘statistical significance’ (generally interpreted as ‘p < 0.05)
as a license for making a claim of a scientific finding (or implied truth) leads to consider-
able distortion of the scientific process.” Indeed, p-values have been critiqued on numerous
grounds (e.g., |Greenland et al., [2016; Nickerson) 2000; Rouder, Morey, Verhagen, Province,
& Wagenmakers, 2016; Wagenmakers, Marsman, et al., [2018]). One widely appreciated con-
cern is that p-values do not convey information about the size of the effect or the precision
with which that effect is estimated (e.g., Cumming), [2014)).

As one prominent alternative to p-value NHST, there is a growing trend for psy-
chologists to employ Bayesian statistics (e.g., [Vandekerckhove, Rouder, & Kruschkel 2017}
van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2017; [Wagenmakers,
Morey, & Lee, 2016). Within the Bayesian framework, prior uncertainties about param-
eters and models are updated by means of observed data to yield posterior uncertainties
(Etz, Gronau, Dablander, Edelsbrunner, & Baribault, [2018]). For instance, the posterior
distribution quantifies our knowledge about a non-zero effect size, which is useful for pa-
rameter estimation; on the other hand, the Bayes factor contrasts the predictive adequacy
of two competing models, which is useful for hypothesis testing (Etz & Vandekerckhove)
2018]). Specifically, the Bayes factor quantifies the degree to which the data are more likely
under one model versus another (e.g., |Etz & Wagenmakers, 2017 Jeffreys, 1961; [Kass &
Raftery, 1995; Myung & Pitt, 1997)). For example, the Bayes factor can be used to compare
a null hypothesis Hg (i.e., there is no effect) to an alternative hypothesis H; (i.e., there is
an effect). The Bayes factor BF g for H; over Hy has an intuitive interpretation; BF1g =7
indicates that the observed data are 7 times more likely under the alternative hypothesis
‘H1 than under the null hypothesis Hg, whereas BF1y = 0.2 indicates that the observed data
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are 5 times more likely under Hy than under #H;. In general, the Bayes factor returns a
non-negative number, and the higher (lower) the value of BFj(, the more (less) evidence the
data provide for H; over Hg. When the two hypotheses Hi and Hg are equally plausible
a priori, then a Bayes factor of BF1g = 6 indicates that the posterior plausibility for the
alternative hypothesis H; is 86% (i.e., 6/7), leaving 14% (i.e., 1/7) posterior probability for
the null hypothesis H.

A discussion on the merits and demerits of the different statistical paradigms is be-
yond the scope of this paper. We agree with the ASA’s recommendation to go beyond p,
and that it is prudent to adopt an inclusive statistical approach. For when the results of
different statistical paradigms point in the same direction, this bolsters one’s confidence
in the conclusions, but when the results are in blatant contradiction, this weakens one’s
confidence.

In the spirit of promoting a more inclusive statistical approach, our primary goal is to
demonstrate the ease with which published classical results can be subjected to a Bayesian
reanalysis using the recently developed “Summary Stats” module in JASP (JASP Team)
2018)). Depending on the analysis at hand, this module takes as input commonly-reported
statistics such as t, r, and R? together with sample size N, and returns a comprehensive
Bayesian assessmentE] Importantly, this Bayesian assessment can be executed in the absence
of the raw data. This is essential when the data are no longer available or when they
cannot be shared; but even when the raw data are publicly available, the reanalysis with
the “Summary Stats” module is much more efficient — reviewers, readers, and reporters
can obtain a comprehensive Bayesian assessment almost instantaneously. We believe that
the richness of a Bayesian report contrasts favorably with a report of just the summary
statistics themselves. We illustrate this claim using a seminal study published more than
half a century ago.

The Festinger & Carlsmith (1959) Cognitive Dissonance Study

In a landmark publicationE] Festinger and Carlsmith| (1959, hereafter FC) outlined a
theory to account for cognitive dissonance, a phenomenon they described as follows: “If a
person is induced to do or say something which is contrary to his private opinion, there will
be a tendency for him to change his opinion so as to bring it into correspondence with what
he has done or said” (p. 209). Earlier experiments on cognitive dissonance (e.g., Kelman),
1953) induced participants to make a statement contrary to their personal opinion for a
chance to gain a reward. It was hypothesized that for greater rewards there would be a
greater change to the opinion, but the data showed the reverse: the smaller the reward,
the greater change in opinion. FC proposed a theory that could account for this behavioral
pattern, which they subsequently put to the test in an ingenious experiment.

FC’s experiment included control, high reward, and low reward conditions, each with
twenty participants. All participants performed a boring task for one hour, after which
they were asked to take a survey and answer questions about, among other things, their
enjoyment of the study. Where the conditions differ is what happens after completing the

'The website https://web.archive.org/web/20170212075534/http://pcl.missouri.edu/
bayesfactor, designed and maintained by Jeff Rouder, exploits the same idea, but focuses exclusively on
the Bayes factor.

2Cited over 3,540 times according to Google Scholar, February 2, 2018.


https://web.archive.org/web/20170212075534/http://pcl.missouri.edu/bayesfactor
https://web.archive.org/web/20170212075534/http://pcl.missouri.edu/bayesfactor
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Figure 1. A comprehensive Bayesian reanalysis of the seminal study by |[Festinger and

Carlsmith| (1959), obtained by entering ¢ = 2.22 and N; = Ny = 20 into the JASP Summary
Stats module, see text for details. Figures from JASP.

boring task, but before completing the survey. In the reward conditions, participants were
asked to interact with a confederate by telling them that the experiment was interesting and
fun; for this they received either twenty dollars (high reward) or one dollar (low reward). In
the control condition participants went straight to the post-interview and did not interact
with the confederate. According to FC, the crucial test of their theory lies in comparing
the post-interview enjoyment ratings from the low versus high reward conditions, where
the low reward condition is predicted to have higher enjoyment ratings. In line with their
theory’s prediction, FC found a higher (sample) mean enjoyment rating in the low reward
group than in the high reward group, ¢(38) = 2.22, p = .032, and this was taken as support
for their theoretical position. No effect size estimate is reported in the original paper, but
this can be easily computed from the ¢-value and the group sizes, giving a Cohen’s d of
d = 0.702.

Bayesian Reanalysis

We wish to conduct a Bayesian reanalysis of the FC result, but the raw data from
this study are no longer available. However, the Summary Stats module in JASP affords
a comprehensive Bayesian reanalysis using only the test statistic reported in the original
paperﬁ Inputting the reported t-value and sample sizes for the two groups yields the results
shown in Fig.

In the left panel, the dotted line represents the default prior distribution for the
population effect size 6 under H;: a zero-centered Cauchy distribution (i.e., a t-distribution
with one degree of freedom; [Jeffreys, |1948; Ly, Verhagen, & Wagenmakers|, [2016a, [2016b)),
here with a default scale of v = 0.707 (e.g., Morey & Rouder} |2015). Thus, under H; —that
is, presuming the effect is present— the expectation is that the effect is most likely to be
small, although the possibility that it is large is not ruled out.

In the left panel, the solid line is the posterior distribution for effect size, that is,

3The Summary Stats module is activated via the + icon next to the “Common” tab at the top of the
JASP window.



RICH BAYESIAN REANALYSIS 5

the knowledge about effect size obtained after updating the prior distribution using the
observed data, and assuming that 71 holds. This posterior distribution has a median of
0.571f] and a relatively wide 95% credible interval that ranges from —0.032 to 1.197. In
other words, 95% of the posterior mass lies in the interval from —0.032 to 1.197; clearly, the
effect has not been estimated with much precision. More generally, by computing the area
under the posterior distribution between 0 = a and & = b, one can assess how plausible it
is that the population effect size § falls in the interval from a to b after the data have been
observed (e.g., Wagenmakers, Love, et al., [2018; |Wagenmakers et al., 2016). For instance,
by comparing the area under the posterior distribution to the right of zero against that to
the left of zero, we quantify how much more likely it is that the effect is positive rather than
negative, under H; — that is, under the presumption that the effect is present.

In general, the posterior distribution quantifies all that we know about the population
effect size 4, given that H; holds and the effect exists. The latter point is worth emphasizing
since it has been argued that one may perform a Bayesian null hypothesis test by judging
whether the 95% credible interval overlaps with zero. Despite its beguiling simplicity, such
a procedure is incorrect (Berger, 2006; Jeffreys| |1961; [Wagenmakers et al., 2017), because it
begs the question — the extent to which a null hypothesis is plausible cannot be assessed when
this hypothesis has been ruled out in advance (i.e., under the continuous prior distribution
(i.e., the Cauchy prior) under H1, the probability of any single point such as p(§ = 0) equals
7€ero).

In order to perform a Bayesian hypothesis test, one needs to compare the predictive
performance of the null hypothesis Hy against that of the alternative hypothesis ;. The
result of this comparison is known as the Bayes factor, and the left panel of Fig. [1] reveals
that it equals 2.056 — that is, the observed FC data are only about twice as likely under
‘H1 than under Hy. Bayesian statistician Harold Jeffreys deemed this level of evidence “not
worth more than a bare mention” (Jeffreys, 1961, p. 432). The proportion wheel on top
visualizes the strength of the evidenceE] The Bayes factor quantifies relative predictive
performance, and the predictive performance from #; is determined in part by the prior
distribution. Under a default prior specification, it is natural to wonder how robust the
conclusions are to plausible changes in the prior distribution. To address this issue, the
Summary Stats module allows one to select the option “Bayes factor robustness check”.
The right panel of Fig. [I] shows the result and the depicts the value of the Bayes factor
BF19 on the y-axis as a function of the scale v of the Cauchy prior distribution on the
x-axis. The values on the z-axis range from v = 0 (when H; reduces to H and the Bayes
factor is 1 regardless of the data) to v = 1.5. Across this entire range, the Bayes factor
in favor of Hi over Hg never exceeds 3; in fact, the maximum Bayes factor in favor of H;
equals 2.159, obtained when the width ~ is set to 0.459.

So far, we assumed that the prior for effect size is always centered at zero. However,
the Bayesian framework can be extended to include informed prior distributions that incor-
porate context-specific expectations and need not be centered around zero (Gronau, Ly, &
Wagenmakers, [2017). As in the reanalysis with default priors, the reanalysis with informed
priors is a function solely of the summary statistics. To illustrate the use of an informed
prior, we once again reanalyze the result of FC study, but this time with two different priors

“Note that the prior distribution of § has shrunk the sample value of d = 0.702 toward zero.
®See also https://osf.io/3acm7/.


https://osf.io/3acm7/.
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Figure 2. A Bayesian reanalysis of Festinger and Carlsmith (1959), obtained by entering
t = 2.22 and Ny = Ny = 20 into the JASP Summary Stats module and changing the prior
setting to a t-distribution with location 0.35, scale 0.102, and degrees of freedom 3. Figure
from JASP.

that are centered away from zero. The first informed prior was elicited from Dr. Suzanne
Oosterwijk, a social psychologist at the University of Amsterdam. This “Oosterwijk prior”
(Gronau et al., 2017) was elicited in the context of a specific effect, but we believe it is
plausible more generally for effects in experimental psychology whose presence needs to be
ascertained by a statistical analysis. The Qosterwijk prior is a t-distribution with location
0.350, scale 0.102, and 3 degrees of freedom (dotted line in Fig. ; it assigns most mass to
effect sizes from 0.1 to about 0.6. Because this prior is highly informative and the number
of observations in the FC study is fairly small, the change from prior to posterior (solid
line in Fig. |2)) is modest. The Bayes factor BF( indicates that the data are 5.743 times
more likely under the informed alternative than under the null hypothesis. Under equal
prior model probabilities, this reanalysis leaves H( a non-negligible posterior probability of
14.8% (i.e., 1/6.743).

One might suspect that it is possible to find as much evidence for there being an
effect, that is, H1, as desired for a given data set just by changing the prior distribution.
This, however, is not true. The second informed prior that we consider is an “oracle” prior
that assigns all of its mass to a single point: the observed effect size d = 0.702. This “prior”
can be obtained in JASP by choosing a normal distribution prior with mean of 0.702 and
standard deviation of 0. Note that as a prior it is unrealistic, since in practice it is impossible
to know the observed effect size before conducting the experiment. However, it showcases
the maximum evidence possible in favor of the alternative hypothesis (Edwards, Lindman,
& Savagel (1963). Using this oracle prior, we obtain a Bayes factor of 10.45 in favor of
the alternative hypothesis H; over the null hypothesis Hy. Hence, even if researchers are
blatantly cheating by assigning all prior mass to the observed effect size, the data are only
10.45 times more likely under H; than under Hy; under equal prior model probabilities, such
an extreme form of cheating still leaves H( a posterior probability of 8.7% (i.e., 1/11.45).
In this particular scenario we find that a seminal result, significant with a p-value of .032,
does not yield compelling evidence against Hg when assessed from a default or an informed
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Bayesian perspectiveﬁ We wish to stress that the strength of evidence provided by a Bayes
factor can be best appreciated by considering the raw numbers, perhaps visualized as a
proportion wheel (see Fig. [I|and ; the classification scheme proposed by Jeffreys provides
a useful, but rough guideline that should not take precedence over a more careful assessment
of the strength of evidence.

In sum, the Bayesian reanalyses shown in Figs. |I| and [2| are easily obtained in JASP
and paint an inferential picture more complete than the one provided by the statement
“t(38) = 2.22, p = .032”.

Concluding Comments

The Summary Stats module in JASP unlocks a comprehensive Bayesian experience
from a few commonly-reported summary statistics. Here we illustrated use of the module
for the case of an independent-samples t-test, but the Summary Stats module can also
be used for inferences concerning paired-samples t-tests, correlation coeflicients, binomial
proportions, and linear regression models. An entire literature filled with classical statistics
is now open for a straightforward Bayesian reanalysis.

In addition to being able to look back on the existing literature, we can also look
forward. For instance, editors and reviewers may request that authors include a Bayesian
analysis alongside their classical results—which can be accomplished with JASP in mere
seconds. For a specific data set, the classical and Bayesian results may disagree (e.g.,
Wetzels et al., |2011]). We believe that such a discrepancy is cause for additional reflection,
because it suggests that the data are perhaps not as informative as one would have otherwise
believed. As reviewers and editors we can request that authors acknowledge this uncertainty
and be transparent about the conflicting accounts of the data.

An additional advantage of a Bayesian analysis is that one can use the data efficiently
to inform follow-up studies by taking the posterior distribution from the current study as a
prior distribution for further studies. This allows one to compute the so-called replication
Bayes factors (Ly, Etz, Marsman, & Wagenmakers, |in press; [Verhagen & Wagenmakers|,
2014])), which quantify the additional evidence brought forth by the new data.

Note however, even when the summary statistics are “sufficient” (i.e., they capture
all relevant information; e.g., |Ly, Marsman, Verhagen, Grasman, & Wagenmakers, [2017)) on
general grounds it is still beneficial to have access to the raw data. The raw data can be
used to confirm that the statistical model is appropriate, the desirability of which is vividly
displayed by Anscombe’s quartet (e.g., |[Anscombe} 1973; Matejka & Fitzmaurice| 2017).
Anscombe’s quartet, shown here in Fig. [3] consists of four scatter plots; in each scatter
plot, the summary statistics (i.e., sample size, mean, variance, and Pearson correlation) for
the X and Y variables are identical, and so are the Bayes factors — nevertheless, for three
of the four scatter plots the inference in terms of the strength of a linear association based
on the observed Pearson’s correlation efficient 7 is meaningless[’]

In closing, the kind of Bayesian reanalyses outlined here provides an opportunity to
expand summary statistics to statements about posterior distributions and Bayes factors.

SFor a further discussion of the FC results, see https://web.archive.org/web/20170901132636/
https://mattiheino.com/2016/11/13/1legacy-of-psychology/.

"See also Alberto Cairo’s Anscombosaurus at https://web.archive.org/web/20170901133148/http://
www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html,


https://web.archive.org/web/20170901132636/https://mattiheino.com/2016/11/13/legacy-of-psychology/
https://web.archive.org/web/20170901132636/https://mattiheino.com/2016/11/13/legacy-of-psychology/
https://web.archive.org/web/20170901133148/http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
https://web.archive.org/web/20170901133148/http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
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Anscombe’s Quartet

Figure 3. Anscombe quartet (Anscombe, 1973). In each panel, the summary statistics are
identical: The X variable has a sample mean of Z = 9 and a sample variance of s2 = 11,
the Y variable has a sample mean of y = 7.50 and a sample variance of 322/ ~ 4.125, and the
Pearson correlation coefficient is r = 0.816.

Such an expansion affords (1) an additional inferential perspective that supplements the
classical perspective, (2) reanalyses of published findings without requiring the raw data,
and (3) a highly efficient method for editors, reviewers, readers, and reporters to gauge
whether the conclusions from a different statistical paradigm contradict or confirm the
classical conclusions. We hope that the Summary Stats Module will spur more nuanced
assessments of statistical evidence and reporting of statistical outcome measures that are
both comprehensive and inclusive.
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