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Abstract:  

Supervised machine learning is an increasingly popular tool for analysing large political 

corpora. The main disadvantage of supervised machine learning is the need for thousands of 

manually created training data points. This issue is particularly important in the social sciences 

where every new research question requires the automation of a new task with new and 

imbalanced training data. This paper analyses how transfer learning algorithms like BERT can 

help address this challenge by storing information on statistical language patterns (‘language 

knowledge’). Moreover, we show how leveraging a universal task called Natural Language 

Inference (NLI) further reduces data requirements (‘task knowledge’). We systematically 

show the benefits of transfer learning on a wide range of eight tasks from five datasets. Across 

these eight tasks, BERT-NLI trained on 100 to 2500 data points performs on average 10.7 to 

18.2 percentage points better than classical algorithms without transfer learning. Our study 

indicates that BERT-NLI trained on 500 data points achieves similar average performance as 

classical algorithms trained on around 5000 data points. Moreover, we show that transfer 

learning works particularly well on imbalanced data. We conclude by discussing limitations of 

transfer learning and by outlining new opportunities for political science research.  
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1. Introduction 

From decades of political speeches to millions of social media posts - more and more 

politically relevant information is hidden in digital text corpora too large for manual analyses. 

The key promise of computational text analysis methods is to enable the analysis of these 

corpora by reducing the need for expensive manual labour. These methods help researchers 

extract meaningful information from texts through algorithmic support tools and have 

become increasingly popular in political science over the past decade (Grimmer and Stewart 

2013; Lucas et al. 2015; Wilkerson and Casas 2017; Benoit 2020; Atteveldt, Trilling, and 

Calderon 2022).  

Supervised machine learning is one such algorithmic support tool (Osnabrügge, Ash, and 

Morelli 2021). Researchers manually create a set of examples for a specific task (training data) 

and then train an algorithm to reproduce the task on unseen text. The main challenge of this 

approach is the creation of training data. Supervised algorithms require relatively large 

amounts of training data to obtain good performance, making them a “nonstarter for many 

researchers and projects" (Wilkerson and Casas 2017). Lack of data is particularly problematic 

in the social sciences where every new research question entails a new task (task diversity) 

and some concepts of interest are only present in a small fraction of a corpus (data 

imbalance). Compared to the Natural Language Processing (NLP) literature, for example, 

political scientists are less interested in recurring benchmark tasks with rich and artificially 

balanced data. The ensuing data scarcity problem is probably an important reason for the 

greater popularity of unsupervised approaches in the social sciences. Unsupervised 

approaches are difficult to tailor to specific tasks and are harder to validate, but they do not 

require training data (Denny and Spirling 2018; Miller, Linder, and Mebane 2020, 4).  



 3 

This paper argues that this data scarcity problem of supervised machine learning can be 

mitigated through deep transfer learning. The main assumption of transfer learning is that 

algorithms can learn ‘language knowledge’ and ‘task knowledge’ during a pre-training phase 

and store this ‘knowledge’ in their parameters (Ruder 2019; Pan and Yang 2010).1 During a 

separate fine-tuning phase, they can then build upon this ‘prior knowledge’ to learn new tasks 

with less data. Put differently, an algorithm’s parameters can represent statistical patterns of 

word probabilities (‘language knowledge’), link word correlations to specific classes (‘task 

knowledge’) and later reuse these parameter representations for new tasks (‘knowledge 

transfer’).  

In the political science literature, the use of shallow ‘language knowledge’ through pre-

trained word embeddings has become increasingly popular (Rodriguez and Spirling 2022; 

Rheault and Cochrane 2020; Rodman 2020), while the investigation of deep ‘language 

knowledge’ and models like BERT has only started very recently on selected tasks (Widmann 

and Wich 2022; Bestvater and Monroe 2022; Licht, Hauke forthcoming). We are not aware of 

political science literature on ‘task knowledge’.  

This paper therefore makes the following contributions: We systematically analyse the 

benefits of transfer learning across a wide range of tasks and datasets relevant for political 

scientists; we study the importance of ‘task knowledge’ as a second important component of 

transfer learning; we systematically analyse how much training data, and therefore 

annotation labour, different algorithms require to help projects estimate their data 

 
1 Note that we only use the word ‘knowledge’ to help create an intuitive understanding of transfer learning 

without too much jargon. Algorithms do not ‘know’ or ‘understand’ anything in a deeper sense. The machine 
learning process is essentially a sequence of parameter updates to optimise the statistical solution of a very 
specific task. Some authors colloquially call this internal parameter representation ‘knowledge’. For a more 
formal discussion of transfer learning see Ruder (2019) and Pan and Yang (2010). 
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requirements with different methods; and we specifically analyse the impact of transfer 

learning on imbalanced data. 

To test the theoretical advantages of transfer learning, we systematically compare the 

performance of two classical algorithms (Support Vector Machine, Logistic Regression) to two 

transfer learning algorithms (BERT-base and BERT-NLI) on eight tasks from five widely used 

political science datasets.  

Our analysis empirically demonstrates the benefits of transfer learning. BERT-NLI 

outperforms classical algorithms by 10.7 to 18.2 percentage points (F1-macro) on average 

when 100 to 2500 annotated data points are available. BERT-NLI achieves similar average F1-

macro performance with 500 data points as classical algorithms with around 5000 data points. 

We also show that BERT-NLI performs better with very little training data (<= 1000), while 

BERT-base is better when more data is available. Moreover, we find that shallow knowledge 

transfer through word embeddings also improves classical algorithms. Lastly, we show that 

transfer learning is particularly beneficial for imbalanced data. These benefits of transfer 

learning robustly apply across a wide range of datasets and tasks.  

We conclude by discussing limitations of deep transfer learning and by outlining new 

opportunities for political science research. To simplify the re-use of BERT-NLI in future 

research projects, we open-source our code2, general purpose BERT-NLI algorithms3 and 

provide advice for future research projects. 

  

 
2 https://github.com/MoritzLaurer/less-annotating-with-bert-nli 
3 https://huggingface.co/MoritzLaurer  
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2. Supervised Machine Learning from a Transfer Learning 

Perspective 

2.1 Supervised Machine Learning in Political Science  

Many excellent surveys of text as data approaches in political science exist, providing a 

taxonomy of the most important methods (Grimmer and Stewart 2013), focussing on specific 

subfields of political science (Slapin and Proksch 2014; Lucas et al. 2015), or detailing the main 

stages of the analysis process and more recent developments (Wilkerson and Casas 2017; 

Benoit 2020; Atteveldt, Trilling, and Calderon 2022; Chatsiou and Mikhaylov forthcoming). 

The rich text-as-data literature demonstrates the wide variety of methods in the toolkit of 

political scientists: supervised or unsupervised ideological scaling; exploratory text 

classification with unsupervised machine learning; or text classification approaches with prior 

categories, using dictionaries or unsupervised machine learning (Grimmer and Stewart 2013). 

This paper focuses on one specific group of approaches: text classification with prior 

categories with supervised machine learning.  

In the social sciences, supervised machine learning projects normally start with a 

substantive research question which requires the repetition of a specific classification task on 

a large textual corpus. Researchers might want to: explain Russian foreign policy by classifying 

thousands of statements from military and political elites into ‘activist’ vs. ‘conservative’ 

positions (Stewart and Zhukov 2009); or understand delegation of power in the EU and 

classify legal provisions into categories of delegation (Anastasopoulos and Bertelli 2020); or 

predict election results and need to classify thousands of tweets into sentiment categories to 

approximate twitter users’ preferences towards key political candidates (Ceron et al. 2014). 
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These research projects required the classification of thousands of texts in topical, sentiment 

or other conceptual categories (classes) tailored to a specific substantive research interest.  

Using supervised machine learning to support this process roughly involves the following 

steps: A tailored classification task is developed, for example through iterative discussions 

resulting in a codebook; experts or crowd workers implement the classification task by 

manually annotating a smaller set of texts (training and test data); a supervised machine 

learning algorithm is trained and tested on this manually annotated data to reproduce the 

human annotation task; if the algorithm’s output obtains a desired level of accuracy and 

validity, it can be used to automatically reproduce the task on very large unseen text corpora. 

If implemented well, the aggregate statistics created through this automatic annotation can 

then help answer the substantive research question. 

Political scientists have mostly used a set of classical supervised algorithms for this process, 

such as Support Vector Machines (SVM), Logistic Regression, Naïve Bayes etc. (Benoit 2020). 

These classical algorithms are computationally efficient and obtain good performance if large 

amounts of annotated data are available (Terechshenko et al. 2020). Their input is usually a 

document-feature matrix which provides the weighted count of pre-processed words 

(features) per document in the training corpus. Solely based on this input, these models try 

to learn which feature (word) combinations are most strongly linked to a specific class (e.g. 

the topic “economy”). Several studies have shown the added value of these algorithms (for 

example Osnabrügge, Ash, and Morelli 2021; Peterson and Spirling 2018; Burscher, 

Vliegenthart, and De Vreese 2015; Colleoni, Rozza, and Arvidsson 2014). 

The key disadvantage of these classical algorithms is that they start the training process 

without any prior ‘knowledge’ of language or tasks. Humans know that the words “attack” 

and “invasion” express similar meanings, or that the words “happy” and “not happy” tend to 
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appear in different contexts. Humans also quickly understand the task “classify this text into 

the category ‘positive’ or ‘negative’”. Classical algorithms on the other hand need to learn 

these language patterns and tasks from scratch with the training data as the only source of 

information. Before training, the SVM is only an equation that can draw lines into space. A 

SVM has no prior internal representation of the semantic distance between the words 

“attack”, “war” and “tree”. This lack of prior ‘knowledge’ of language and tasks is the main 

reason why classical supervised machine learning requires large amounts of training data. 

A first solution to the ‘language knowledge’ limitation was popularised in 2013 with word 

embeddings (Mikolov et al. 2013). Words that are often mentioned in similar contexts are 

represented with similar vectors – a proxy for semantic similarity. These embeddings can for 

example be used as input features for classifiers and have gained popularity in political 

science (Rodriguez and Spirling 2022; Rheault and Cochrane 2020; Rodman 2020). They can 

provide classical classification algorithms with a shallow form of ‘language knowledge’. Word 

embeddings have, however, two shortcomings for supervised machine learning: first, they 

are static. The vector of the word “capital” is the same, whether it appears next to the word 

“city”, “investment” or “punishment”. Second, by themselves, they are only stand-alone 

numeric representations of words. Newer algorithms integrated word embeddings more 

deeply into algorithms specifically designed for supervised machine learning (e.g. BERT).  

 

2.2 Deep Transfer Learning 

Deep transfer learning tries to create ‘prior knowledge’ by splitting the training procedure in 

roughly two phases: pre-training and fine-tuning (Howard and Ruder 2018). First, an 

algorithm is pre-trained to learn some general purpose statistical ‘knowledge’ of language 

patterns in a wide variety of domains (e.g. news, books, blogs). Second, this pre-trained 
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algorithm is fine-tuned on annotated data to learn a very specific task.4 Transfer learning 

therefore has two important components (Pan and Yang 2010; Ruder 2019): (1) learning 

statistical patterns of language (language representations) and (2) learning a relevant task 

(task representations). Both types of representations are stored in the parameters of the 

algorithm.  

For learning general purpose language representations, the most prominent solution is 

BERT (Devlin et al. 2019) which is a type of Transformer algorithm (Vaswani et al. 2017). 

Transformers like BERT are first pre-trained using a very simple task, which does not require 

manual annotation (self-supervised training), for example Masked Language Modelling 

(MLM). For MLM, around 15% of words (or sub-word units called “tokens”) are randomly 

hidden behind a “[MASK]” token. The algorithm is then tasked with predicting the original 

word behind this mask. Concretely, the Wikipedia sentence “Corruption is a form of 

dishonesty (…) which is undertaken by a person (…) in order to acquire illicit benefits or abuse 

power (…)” (Wikipedia 2021) could be randomly converted to “[MASK] is a form of dishonesty 

(…) which is undertaken [MASK] a person (…) in order to acquire illicit benefits or [MASK] 

power (…)”. The algorithm is then tasked with predicting the true word behind each mask 

token given the context of visible words. This is repeated millions of times on texts from 

Wikipedia and books (16 gigabytes of text) in the original BERT algorithm and on additional 

data such as news articles (76GB), texts behind popular links on Reddit (38GB) and story-like 

texts (31GB) in newer algorithms (e.g. He, Gao, and Chen 2021, 16). The overall objective of 

this procedure is for the algorithm’s parameters to learn statistical patterns of language 

 
4 This describes the focus of the main steps. In practice, pre-training also involves learning (less relevant) task(s) 

and fine-tuning also involves learning the language of specific domain(s) (e.g. legal or social media texts).  
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(language representations) such as semantic similarities of words or context-dependent 

ambiguities from a wide variety of texts.5  

While sizeable performance increases with BERT-base models are possible based on its 

‘language knowledge’ (Devlin et al. 2019; Terechshenko et al. 2020), data requirements are 

still relatively high. Widmann and Wich (2022), for example, show strong performance gains 

for an emotion detection task, but point out that the amount of training data is still an 

important limitation and that classes with less data underperform. An important reason for 

this is that models like BERT-base have been pre-trained on a very generic self-supervised 

task like Masked Language Modelling, which is quite different from the final classification 

task. Most classification tasks are very dissimilar to the task of predicting hidden words. This 

is why the last, task-specific layer of BERT (the classification head tuned for MLM) is normally 

deleted entirely and reinitialised randomly before fine-tuning – which constitutes an 

important loss of ‘task knowledge’ (see appendix B for details on BERT’s layered structure). 

BERT then needs to be fine-tuned on manually annotated data, to learn a new and useful task 

and each of its classes from scratch.  

 

2.3 BERT-NLI – Leveraging the Full Potential of Deep Transfer Learning 

More recently, methods have been proposed which do not only use prior ‘language 

knowledge’, but also prior ‘task knowledge’ of Transformers. There are several different 

approaches using these innovations (Schick and Schütze 2021; Brown et al. 2020; Ma et al. 

2021). This paper uses one approach, based on Natural Language Inference (NLI), first 

 
5 Note that there are many other pre-training tasks and procedures (Aroca-Ouellette and Rudzicz 2020). 
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proposed by Yin, Hay, and Roth (2019) and later refined for example by Wang et al. (Wang et 

al. 2021). 

What is NLI? NLI is a task and data format, which consists of two input texts and three 

output classes. The texts are a ‘context’ and a ‘hypothesis’. The task is to determine if the 

hypothesis is True, False or Neutral given the context.6 A hypothesis could be “The EU is 

trustworthy” with the context “The EU has betrayed its partners during the negotiations on 

Sunday”. In this case, the correct class would be False, as the context contradicts the 

hypothesis. Note that it is not about finding the objective truth to a scientific hypothesis, but 

only about determining if the context string entails the hypothesis string. See table 1 below 

for examples.  

 
Table 1 - Examples of the NLI human intelligence task 

Hypothesis Context Class 
The EU is trustworthy The EU has betrayed its partners during the 

negotiations on Sunday 
False 

The EU is trustworthy The US has betrayed its partners during the 
negotiations on Sunday 

Neutral 

The EU is trustworthy Civil society praised the EU for reliably 
keeping its promises. 

True 

 

NLI has three important characteristics from a transfer learning perspective: It is data-rich, 

it is a universal task, and it enables label verbalisation. First, NLI is a widely used and data-rich 

task in NLP. Many NLI datasets exist, and crowd-coders have created more than a million 

unique hypothesis-context pairs (appendix B). Using this data, a pre-trained Transformer can 

 
6 Note that there is some variation in how the input texts and classes are called in the literature. NLI can also be 

called Recognising Textual Entailment (RTE), the ‘context’ can be called ‘premise’ and the three classes can be 
called ‘entailment’, ‘contradiction’, ‘neutral’ (Williams, Nangia, and Bowman 2018). We use the simplified 
vocabulary based on the instructions shown to crowd workers.  



 11 

be further fine-tuned on the NLI classification task, creating an NLI-Transformer (e.g. BERT-

NLI).  

Second, NLI is a universal task. Almost any classification task can be converted into an NLI 

task. Take the text “Stocks are soaring” and our task is to classify this text into the topical 

classes “Economy” or “Politics”. BERT-NLI can always only execute the NLI task: predicting 

one of the classes True/False/Neutral given a context-hypothesis pair. We can, however, 

translate the topic classification task into an NLI task by expressing each topical class as a 

‘class-hypothesis’. We can automatically reformat the text to ‘The quote: “Stocks are 

soaring” ’ as context and test the two class-hypotheses “The quote is about economy” and 

“The quote is about politics”.7 Each context-hypothesis pair is provided as input to BERT-NLI, 

which predicts the three NLI classes True/False/Neutral for each class-hypothesis. Note that 

for our purpose of classification with less training data, we loosen the requirements of the 

original NLI-task. For our purpose, the class-hypotheses do not have to be actually true. We 

are only interested in selecting the class-hypothesis which is more likely than the other 

hypotheses in order to select the corresponding class. The predictions for the classes False 

and Neutral class are ignored. See table 2 for details. 

  

 
7 We add the delimiter string ‘The quote: {text}’ to the context to make the hypothesis ‘The quote is about …’ 
more natural. The literature seems to use less natural formulations like ‘It is about …’  (Yin, Hay, and Roth 2019) 
which reduce performance in our experiments. 
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Table 2 - Universal NLI task format and label verbalisation 

Original (con)text Original class 
labels 

Hypotheses with 
verbalized classes 

Prediction NLI Prediction 
target classes 

‘The quote: 
“Stocks are 
soaring” ’ 

Economy “The quote is about 
economy” 

True: 78% 
False: 3% 
Neutral: 29% 

Economy 
Politics “The quote is about 

politics” 
True: 54% 
False: 10% 
Neutral: 36% 

{any_other_cl
ass} 

“The quote is about 
{any_other_class}” 

True: X% 
False: Y% 
Neutral: Z% 

‘We need to stop 
illegal migration 
to maintain our 
national way of 
life’ 

In favour of 
migration 

 “Migration is good” True: 3% 
False: 57% 
Neutral: 40% 

Against 
Migration 

Against 
migration 

“Migration is bad” True: 68% 
False: 3% 
Neutral: 29% 

 

Using a universal task for classification is an important advantage in situations of data 

scarcity. Both classical algorithms and BERT-base algorithms need to learn the target task the 

researcher is interested in from scratch, with the training data as the only source of task-

information. If the target task is translated into the universal NLI task, BERT-NLI can start with 

the relevant ‘task knowledge’ it has already learned from hundreds of thousands of NLI 

context-hypothesis pairs. No task-specific parameters need to be randomly initialised. No 

‘task knowledge’ is lost.  

This is also linked to the third important characteristic of NLI classification: label 

verbalization (Schick and Schütze 2021). Remember that human annotators always receive 

explicit explanations of each class in form of a codebook and can use their prior knowledge 

to understand the task without any examples. Standard classifiers, on the other hand, only 

receive each class as an initially meaningless number (both classical algorithms and BERT-
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base). They never see the description of the classes in plain language and need to statistically 

guess what the underlying classification task is, only based on the training data. With the NLI 

task format, the class can be explicitly verbalised in the hypothesis based on the codebook 

(see table 2). More closely imitating human annotators, BERT-NLI can therefore build upon 

its prior language representations to understand the meaning of each class more quickly. 

Expressing each class in plain language provides an additional important signal to the 

algorithm.  

As we will show in section 3, the combination of Transformers, self-supervised pretraining, 

intermediate training on the data-rich NLI task, reformatting of target tasks into the universal 

NLI task and label verbalisation can substantially reduce the need for task-specific training 

data.  

 

 
 
 
3. Empirical Analyses  

3.1 Setup of empirical analyses: data and algorithms 

To investigate the effects of transfer learning we analyse a diverse group of datasets, 

representing typical classification tasks which political scientists are interested in. The 

datasets vary in size, domain, unit of analysis, and task-specific research interest (see table 

3). For all datasets, the overall task for human coders was to classify a text into one of multiple 

predefined classes of substantive political interest. Additional details on each dataset are 

provided in appendix A. 
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Table 3 - Key political datasets used in the analysis 

Dataset Task Domain Unit of 
Analysis 

Includes 
Context? 

Avg. Text 
length 

Data Points 
Train / Test  

Manifesto Corpus 
(Burst et al. 2020) 

Classify text in 8 
general topics 

Party 
Manifestos 

Quasi-
sentences 

Yes 116 
characters 
(348 with 
context) 

121570 all 
88158 train 
33412 test 

Sentiment 
Economy News 
(Barberá et al. 
2021) 

Differentiate if 
economy is 
performing well or 
badly according to 
the text (2 classes) 

News 
articles 

News 
headline & 
first 
paragraphs 

No 1624 cha. 3382 all 
3000 train 
382 test 

US State of the 
Union Speeches 
(Policy Agendas 
Project 2015) 

Classify text in 
policy topics (22 
classes) 

Presidential 
Speeches 

Quasi-
sentences 

Yes 116 cha. 
(347 with 
context) 

21641 all 
15207 train 
6434 test 

US Supreme Court 
Cases (Policy 
Agendas Project 
2014) 

Classify text in 
policy topics (20 
classes) 

Law, 
summaries 
of court 
cases and 
rulings 

Court case 
summaries 
(multiple 
paragraphs) 

No 2456 cha. 7752 all 
5236 train 
2326 test 

CoronaNet (Cheng 
et al. 2020) 

Classify text in 
types of policy 
measures against 
COVID-19 (20 
classes) 

Research 
assistant 
texts and 
copies from 
news & 
government 
sources 

One or 
multiple 
sentences 

No 297 cha. 48998 all 
34298 train 
14700 test 

Manifesto stances 
towards the 
military (subsets of 
Burst et al. 2020). 

Identify stance 
towards the simple 
topic “military” (3 
classes: 
positive/negative/
unrelated). 

Party 
Manifestos 

Quasi-
sentences 

Yes Similar to 
Manifesto 
Corpus 
above 

13507 all 
3970 train 
9537 test 

Manifesto stances 
towards 
protectionism 
(subsets of Burst et 
al. 2020). 

Identify stance 
towards the 
concept 
“protectionism” (3 
classes: 
positive/negative/
unrelated). 

Party 
Manifestos 

Quasi-
sentences 

Yes Similar to 
Manifesto 
Corpus 
above 

5878 all 
2116 train 
3762 test 

Manifesto stances 
towards traditional 
morality (subsets of 
Burst et al. 2020).  

Identify stance 
towards the 
complex concept 
“traditional 
morality” (3 

Party 
Manifestos 

Quasi-
sentences 

Yes Similar to 
Manifesto 
Corpus 
above 

7478 all 
3188 train 
4290 test 
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classes: 
positive/negative/
unrelated). 

 

We prepare the input for the algorithms to be as close as possible to the input human 

coders had received during annotation. First, for some datasets (Burst et al. 2020; Policy 

Agendas Project 2015), the unit of analysis for classification were individual quasi-sentences 

extracted from longer speeches or party manifestos. Human coders did, however, not 

interpret these quasi-sentences in isolation, but after reading the preceding (and following) 

text. We therefore test each algorithm with two types of inputs: only the single annotated 

quasi-sentence, or the quasi-sentence concatenated with its preceding and following 

sentence. Research indicates that including the quasi-sentence preceding the target sentence 

improves classification performance, even if the preceding sentence could belong to a 

different class (Bilbao-Jayo and Almeida 2018).  

Second, each human coder based their annotations on instructions in a codebook. When 

using BERT-NLI, we can provide these explicit coding instructions to the algorithm via the 

class-hypotheses (‘label verbalisation’, see above). For example, (Barberá et al. 2021) asked 

coders to determine if a news article contains positive or negative indications on the 

performance of the U.S. economy. Based on the codebook, we therefore formulated the two 

class-hypotheses “The economy is performing well overall” and “The economy is performing 

badly overall”. Each text is tested against all possible class-hypotheses and the ‘truest’ 

hypothesis then determines the predicted class. By translating the codebooks into class-

hypotheses, we can provide valuable additional information to the BERT-NLI algorithm, which 

human annotators usually receive via the codebook, but other algorithms cannot process (see 

appendix B for details on all hypotheses we tested on all datasets).  
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Algorithms and comparative analysis pipeline 

Each dataset is analysed with the following algorithms:  

● Classical algorithms: Support Vector Machines (SVM) and Logistic Regression, two widely 

used algorithms to represent classical approaches. For each classical algorithm we test 

two types of feature representations: TFIDF vectorization and average word embeddings 

(see appendix E). Word embeddings provide a shallow form of ‘language knowledge’. 

● A standard Transformer: We use DeBERTaV3-base, which is an improved version of the 

original BERT (He, Gao, and Chen 2021). 

● An NLI-Transformer: We fine-tune DeBERTaV3-base on 1.279.665 NLI hypothesis-context 

pairs (“BERT-NLI”). 

 

The objective of our analysis is to determine how much data, and therefore annotation 

labour, is necessary to obtain a desired level of performance on diverse classification tasks 

and imbalanced data. To ensure comparability and reproducibility across datasets and 

algorithms, each dataset is analysed based on the same script: the random training sample 

size is successively increased from 0 to 10 000 data points, hyperparameters are tuned on a 

validation set, final performance is tested on a holdout test set. We assess uncertainty by 

taking three random training samples and report standard deviation (see appendix C). 

To analyse the impact of data imbalance, we analyse each algorithm with two metrics: 

Standard accuracy and F1-macro. Accuracy counts the fraction of correct predictions (and is 

equivalent to F1-micro). The disadvantage of accuracy/F1-micro is that it overestimates the 

performance of classifiers overpredicting majority classes and neglecting minority classes. In 

most social science use-cases, however, minority classes are of equivalent substantive 

importance as majority classes, making accuracy/F1-micro a misleading metric for 
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performance. We therefore use F1-macro as the primary metric. The F1 score is the harmonic 

mean of precision and recall. F1-macro weighs each class equally, independently of its size, 

and is therefore a good metric for performance on all classes with imbalanced data. 

 

 

3.2 Empirical results 

Figure 1 displays the aggregate average scores across all datasets. Figure 2 displays the results 

per dataset (see appendix D for detailed metrics). We focus on two main aspects across tasks: 

overall data efficiency and ability to handle imbalanced data.  

 

 
The ‘classical-best’ lines display the results from either the SVM or Logistic Regression, 

whichever is better. Note that four datasets contain more than 2500 data points, see figure 2.  

Figure 1 - Average performance on eight tasks vs. training data size per algorithm 
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Regarding data efficiency, deep transfer learning algorithms perform significantly better 

than classical algorithms across all tasks. The results show that BERT-NLI outperforms the 

classical algorithms with TFIDF by 10.7 to 18.2 percentage points on average (F1-macro) when 

100 to 2500 annotated data points are available (7.3 to 13.2 with BERT-base). Classical 

algorithms can be improved by leveraging shallow ‘language knowledge’ from averaged word 

embeddings, but a performance difference of 8.0 to 12.3 F1-macro remains (1.4 to 9.4 with 

BERT-base). The results indicate that BERT-NLI achieves similar average F1-macro 

performance with 500 data points as the classical algorithms with around 5000 data points.8 

The performance difference remains, as larger amounts of data are sampled (5000 – 10 000, 

see figure 2 and appendix D) and applies across domains, units of analysis and tasks.  

Moreover, transfer learning is particularly effective at handling imbalanced data, as 

indicated by higher improvements with F1-macro than accuracy/F1-micro. With accuracy/F1-

micro, BERT-base and BERT-NLI perform +7.2 and +8.4 percentage points better than the best 

classical algorithm with TFIDF (averaged across the data intervals 100 to 2500). Measured 

with F1-macro, BERT-base and BERT-NLI perform +10.6 and +14.6 percentage points better. 

For classical algorithms, the shallow ‘knowledge transfer’ through averaged word 

embeddings also leads to a higher F1-macro improvement (+4.0) than accuracy/F1-micro 

improvement (+2.3) compared to TFIDF.  

The higher F1-macro score improvements compared to accuracy/F1-micro indicates that 

transfer learning reduces reliance on majority classes. First, both BERT variants (and word 

embeddings) require fewer examples for the words used in minority classes thanks to their 

prior representations of e.g. synonyms and semantic similarities of texts (‘language 

 
8 Note that the results above 2500 data points are harder to compare, as only 4 datasets have more than 2500 
data points. This statement is therefore based on the performance for 4 datasets (see appendix D) as well as 
the overall trendline for all 8 datasets.   
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knowledge’). Second, BERT-NLI performs particularly well on F1-macro. Its prior ‘task 

knowledge’ further reduces the need for data for minority classes. In fact, BERT-NLI can 

already predict a class without a single class example in the data (‘zero-shot classification’). It 

does not need to learn each class for the new task, but it uses the universal NLI task where 

classes are expressed in hypotheses verbalising the codebook. This capability is also 

illustrated in figures 1 and 2 by the metrics with zero training examples.  

Note that our metrics are based on fully random training data samples, which do not 

always contain examples for all classes, especially for datasets with many classes. This 

simulates a typical challenge social scientists are facing, where random sampling is common 

and even advanced sampling techniques like active learning require an initial random 

sampling step (Miller, Linder, and Mebane 2020). Transfer learning and especially prior ‘task 

knowledge’ can therefore become another tool in our toolbox to address the issue of 

imbalanced data. Also note that accuracy/F1-micro is significantly higher than F1-macro for 

all algorithms and only reporting one metric provides a misleading picture of actual 

performance on imbalanced data. 

Overall, the comparison between the two BERT algorithms shows that BERT-NLI is useful 

in situations where little and imbalanced data is available (<= 1000). As more data becomes 

available to learn the new task (and minority classes) from scratch, the value of the universal 

task format decreases. At around 1000 to 2500 data points, enough data seems to be 

available for BERT-base to learn the new task from scratch and reusing the universal task does 

not add value anymore or hurts performance.9  

 
9 The main reason for this is probably that the NLI classification head always only has parameters for three 

general classes (True/False/Neutral), while fine-tuning BERT-base entails adding tailored parameters for each 
new class in the head. As more data is added, the new classification head of BERT-base can be better tailored to 
the new classes and therefore performs better than the generic 3-class head of BERT-NLI. 
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In addition, we observe that hyperparameters and text pre-processing can have an 

important impact on performance. For example, while BERT algorithms are normally trained 

for less than 10 epochs, we find that training for up to 100 epochs increases performance on 

small datasets (see appendix E for a systematic study on hyperparameters). Moreover, if the 

unit of analysis are quasi sentences, including the preceding and following sentence during 

pre-processing systematically increases performance. 
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Figure 2 - Classification performance (F1-macro) as a function of training data size per dataset 
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4. Discussion of Limitations 

While transfer learning leads to high classification performance, several limitations need to 

be discussed. First, deep learning models are computationally slow and require specific 

hardware. BERT-like Transformers take several minutes to several hours to fine-tune on a 

high-performance GPU, while a classical algorithm can be trained in minutes on a laptop CPU. 

To help alleviate this limitation, we share our experience for accessing GPUs (appendix F) and 

choosing the right hyperparameters (appendix E). Our extensive hyperparameter 

experiments indicate that a set of standard hyperparameters performs well across tasks and 

data sizes and researchers can refer to these default values to reduce computational costs. 

Moreover, using BERT requires learning new software libraries. Luckily, there are relatively 

easy to use open-source libraries like Hugging Face Transformers, which only require a 

moderate understanding of Python and no more than secondary education in math (Wolf et 

al. 2020).10 Furthermore, specifically for BERT-NLI, we share our algorithms and code. We 

provide several BERT-NLI models used in this paper with state-of-the-art performance on 

established NLI benchmarks. We invite researchers to copy and adapt our models and code 

to their own datasets.11  

An additional disadvantage specifically of NLI is its reliance on human annotated NLI data, 

which is abundantly available in English, but less so in other languages. We also provide a 

multilingual BERT-NLI model pre-trained on 100 languages, but we expect it to perform less 

well than the English models (appendix B).12 There are several other techniques for leveraging 

 
10 The main library used in this paper is Hugging Face Transformers, which also provides a beginner-friendly 

introduction: https://huggingface.co/course/chapter1/1  
11 All our NLI models are available at https://huggingface.co/MoritzLaurer. Our code is available at 

https://github.com/MoritzLaurer/less-annotating-with-bert-nli. 
12 https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli 



 23 

‘prior task knowledge’ which do not rely on human annotated data and could be explored in 

future research (Schick and Schütze 2021; Brown et al. 2020; Ma et al. 2021). 

Lastly, algorithm (pre-)training can introduce biases and impact the validity of outputs. 

There is a broad literature on bias in deep learning algorithms (Blodgett et al. 2020) and this 

most likely extends to political bias and NLI. It is possible, for example, that the hypotheses 

“The US is trustworthy” and “China is trustworthy” will result in different outputs for 

semantically equal inputs as one actor might have been mentioned more often in a negative 

context than others during (pre-)training. Political bias in deep learning is an important 

subject for future research. Similarly, whether the supervised machine learning pipeline used 

for a specific new research question is internally and externally valid is an important 

additional assessment for substantive research projects (Baden et al. 2021). 
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5. Conclusion and outlook 

Lack of training data is a major hurdle for researchers considering supervised machine 

learning. This paper outlined how deep transfer learning can lower this barrier. Transformers 

like BERT can store information on statistical language patterns (‘language knowledge’) and 

they can be trained on a universal task like NLI to help them learn downstream tasks and 

classes more quickly (‘task knowledge’). In contrast, classical algorithms need to learn 

language and tasks from scratch with the training data as the only source of information for 

any new task. 

We systematically test the effect of transfer learning on a range of eight tasks from five 

widely used political science datasets with varying size, domain, unit of analysis, and task-

specific research interest. Across these eight tasks, BERT-NLI trained on 100 to 2500 data 

points perform on average 10.7 to 18.2 percentage points better than classical algorithms 

with TFIDF vectorization (F1-macro). We also show that leveraging the shallow ‘language 

knowledge’ of averaged word embeddings with classical algorithms improves performance 

compared to TFIDF, but the difference to BERT-NLI is still large (8.0 to 12.3 F1-macro). Our 

study indicates that BERT-NLI trained on 500 data points achieves similar average F1-macro 

performance as classical algorithms with around 5000 data points. Moreover, transfer 

learning works particularly well for imbalanced data, as it reduces the data requirements for 

minority classes. Researchers can use our results as a rough indicator for how much 

annotation labour their task could require with different methods.  

Based on these empirical findings, we believe that deep transfer learning has great 

potential for making supervised machine learning a more valuable tool for social science 

research. As most research projects tackle new research questions which require new data 
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for different tasks on mostly imbalanced data, the reduction of data requirements is a 

substantial benefit. Moreover, this enables researchers to spend more time on ensuring data 

quality rather than quantity and carefully creating test data for ensuring the validity of 

algorithms. Accurate algorithms combined with high quality datasets directly contribute to 

the validity of computational methods. 

There are many important directions for future research this paper could not cover. This 

paper used random sampling for obtaining training data. Active learning can further reduce 

the number of required annotated examples (Miller, Linder, and Mebane 2020). In fact, 

combinations of active learning and BERT-NLI are promising, as the zero-shot classification 

capabilities of BERT-NLI can be used in the first sampling round. Moreover, issues of political 

bias and validity need to be investigated further. Computational social scientists should 

become a more active part of the debate on (political) bias and validity in the machine 

learning community.  

Lastly, we believe that transfer learning has great potential for enabling the sharing and 

reusing of data and algorithms in the computational social sciences. Datasets are traditionally 

only useful for one specific research question and fine-tuned algorithms can hardly be reused 

in other research projects. Transfer learning in general and universal tasks in particular can 

help break these silos. Computational social scientists with a ‘transfer learning mindset’ could 

create general purpose datasets and algorithms designed for a wider variety of use cases. 

Transfer learning opens many new venues for sharing and reuse which have yet to be 

explored.  
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