Main content

Contributors:
  1. Igor Stubailo
  2. Paul Davis

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: We develop a three-dimensional model of shear wave velocity and anisotropy for the Mexico subduction zone using Rayleigh wave phase velocity dispersion measurements. This region is characterized by both steep and flat subduction and a volcanic arc that appears to be oblique to the trench. We give a new interpretation of the volcanic arc obliqueness and the location of the Tzitzio gap in volcanism based on the subduction morphology. We employ the two-station method to measure Rayleigh phase velocity dispersion curves between periods of 16 s to 171 s. The results are then inverted to obtain azimuthally anisotropic phase velocity maps and to model 3-D variations in upper mantle velocity and anisotropy. Our maps reveal lateral variations in phase velocity at all periods, consistent with the presence of flat and steep subduction. We also find that the data are consistent with two layers of anisotropy beneath Mexico: a crustal layer, with the fast directions parallel to the North American absolute plate motion, and a deeper layer that includes the mantle lithosphere and the asthenosphere, with the fast direction interpreted in terms of toroidal mantle flow around the slab edges. Our combined azimuthal anisotropy and velocity model enables us to analyze the transition from flat to steep subduction and to determine whether the transition involves a tear resulting in a gap between segments or is a continuous deformation caused by a lithospheric flexure. Our anisotropy results favor a tear, which is also consistent with the geometry of the volcanic belt.

License: Academic Free License (AFL) 3.0

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.