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Abstract 15 

Sensorimotor signaling is a key mechanism underlying coordination in humans. The increasing 16 

presence of artificial agents, including robots, in everyday contexts, will make joint action with them 17 

as common as a joint action with other humans. The present study investigates under which 18 

conditions sensorimotor signaling emerges when interacting with them. Human participants were 19 

asked to play a musical duet either with a humanoid robot or with an algorithm run on a computer. 20 

The artificial agent was programmed to commit errors. Those were either human-like (simulating a 21 

memory error) or machine-like (a repetitive loop of back-and-forth taps). At the end of the task, we 22 

tested the social inclusion toward the artificial partner by using a ball-tossing game. Our results 23 

showed that when interacting with the robot, participants showed lower variability in their 24 

performance when the error was human-like, relative to a mechanical failure. When the partner 25 

was an algorithm, the pattern was reversed. Social inclusion was affected by human-likeness only 26 

when the partner was a robot. Taken together, our findings showed that coordination with artificial 27 

agents, as well as social inclusion, are influenced by how human-like the agent appears, both in 28 

terms of morphological traits and in terms of behaviour.  29 
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Introduction 30 

We coordinate activities with others on a daily basis – from paddling together in a kayak to 31 

playing in music ensembles. Successful coordination is achieved thanks to a complex plethora of 32 

cognitive mechanisms that allow us to continuously exchange implicit (nonverbal) signals with our 33 

partners. For instance, if you are kayaking in double with a friend that is less trained than you and 34 

s/he is not able to keep up with your tempo, you will notice it, even if s/he does not tell you. To 35 

ensure the achievement of your goal, namely, keeping the kayak moving, you will probably change 36 

your tempo to adapt to theirs. In doing so, your friend might interpret your change in behaviour as 37 

intention to help them (McEllin et al., 2018; Vesper et al., 2011).  38 

Nonverbal signaling in joint action task 39 

When performing actions with others, in the so-called joint-action scenario, we continuously use 40 

non-verbal signals, such as gaze direction, bodily posture, movement kinematics, reduction of 41 

behavioural variability, or prosody (see Vesper, et al., 2017 for a review). Such signaling strategy 42 

has been recently defined as action-based communication (Sebanz & Knoblich, 2021) or 43 

sensorimotor communication (Vesper & Sevdalis, 2020) and it mainly relies on body movements 44 

(e.g., Sartori, et al. 2009; Pezzulo, et al., 2013; Remland, et al. 1995). Sensorimotor communication 45 

serves three functions in social interactions: (a) informing the co-agent about our action intentions, 46 

(b) facilitating real-time coordination; (c) eliciting joint emotional and aesthetic experiences (see 47 

Vesper & Sevdalis, 2020 for a review). An example of using sensorimotor communication to 48 

highlight own action intentions is the exaggeration of action kinematics to reduce perceptual 49 

ambiguity and to facilitate action-recognition for the infant, i.e., motionese (Brand et al., 2002; 50 

Koterba & Iverson, 2009).  51 

Reduction of behavioural variability as a form of nonverbal signaling 52 

When the aim is to achieve real-time coordination, partners tend to reduce their behavioural 53 

variability. For instance, using a finger-tapping task, Vesper et al. (2011) showed that when pairs 54 
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of participants were asked to synchronize discrete button presses in a reaction time task (Vesper 55 

et al., 2011), the variability in their responses was reduced compared to when they produced a 56 

simple reaction time task alone. Also, McEllin et al., (2018) showed that in a joint scenario in which 57 

pairs of participants were asked to play a virtual xylophone, participants modulated velocity 58 

parameters depending on whether their partner knew, or did not know, the action sequence to be 59 

performed. This suggests that when in a joint-action scenario, humans reduce response variability, 60 

with the intention to help the partner to “stay in the loop”, without committing errors in coordination 61 

(e.g., Vesper et al., 2011; McEllin et al., 2018; Sacheli et al., 2013). This is true for social 62 

interactions characterized by cooperative intent and goal-interdependency (Deutsch, 2011). On the 63 

contrary, when competing in a joint action task, individuals tend to intentionally modify their 64 

movements and behaviour (i.e., by being more variable or misleading) (e.g., Tomeo et al.; 2021) to 65 

be less informative with respect to predictions made by the competitor.  66 

Adaptation to partner’s errors in the context of Dyadic Motor Plan  67 

It is important to note that even if humans have the means to achieve coordination through the 68 

above-mentioned mechanisms, and even if our coordinated activities are trained over many hours, 69 

we are still prone to making mistakes. Only a few studies so far have investigated the impact of 70 

errors on joint action dynamics, mainly focusing on self- and-other error and action monitoring (e.g., 71 

Loehr et al., 2013; Moreau, 2021). A recent study by Sacheli and colleagues (Sacheli et al., 2021) 72 

showed that errors in joint action have an impact on sensorimotor signaling. Using a musical turn-73 

taking task, the authors showed that violation of expectations driven by the partner’s error triggers 74 

an implicit tendency to correct the error, sacrificing individual efficiency in favor of sensorimotor 75 

signaling.  76 

Here, we propose to consider adaptation to partner’s errors in joint action tasks within the 77 

embodied cognition framework (Loehr et al., 2013) and the Dyadic Motor Plan model (Sacheli et 78 

al., 2013; 2018). According to the embodied cognition framework, individuals activate their 79 

sensorimotor representation of an action when observing actions of others (Blakemore & Frith; 80 
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2005; Wilson & Knoblich, 2005; Grafton, 2009; Schubert & Semin; 2009). This action simulation or 81 

motor resonance has been indicated as the process that supports interpersonal coordination, as it 82 

allows to integrate self- and other-internal models within a Dyadic Motor Plan (DMP) (Prinz, 1990; 83 

Jeannerod, 2006; Vesper et al., 2010; Herwig, 2015). According to the DMP account, during 84 

interactive tasks, we represent our own and others' actions in terms of their contribution to the 85 

achievement of the joint goal (i.e., paddling so that the kayak goes straight). This allows us to 86 

represent and predict the effects of our own and our partner’s actions jointly. Thus, when partner’s 87 

action effects do not contribute to the achievement of the joint goal as predicted (for example, they 88 

are paddling at a different tempo or incorrectly), we select an appropriate response based on the 89 

effect this error produces with respect to the overarching joint goal (Sacheli et al., 2013; 2018). In 90 

effect, sensorimotor signaling emerges when a DMP is established. When a mismatch in the 91 

predicted behaviour of the partner and the observed one is detected, partners are ready to adapt 92 

consequently to achieve the joint goal.  93 

Sensorimotor signaling as the basis for social inclusion of artificial agents  94 

By ensuring coordination and achievement of joint goals, sensorimotor signaling indirectly 95 

impacts prosocial attitudes (Michael et al., 2020). For instance, it has been shown that subsequent 96 

to coordination tasks, individuals show higher cooperation and helping behaviour towards their 97 

partners (Kokal et al., 2011). Similarly, Hove and Risen (2009) found that the degree of synchrony 98 

between participants in a finger-tapping task correlates with subsequent affiliation ratings (Hove & 99 

Risen, 2009). It has been proposed that successful joint action increases social bonding and group 100 

membership by increasing the perceived similarity between co-agents. Thus, the increased 101 

trustworthiness and pro-sociality reported following interactive tasks that rely on coordination may 102 

be the result of the group-membership effect (Michael et al., 2020; Tajfel, 1970) which raises the 103 

expectation that in a future interaction in-group members will act toward in-group interest (Michael 104 

et al., 2016). Taken together, sensorimotor signaling seems to be a key mechanism of social 105 

cognition ensuring effective social interactions both directly and indirectly. 106 
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Joint action with artificial agents 107 

At present, we interact not only with other humans but also with artificial agents that may (or 108 

not) be embodied. Soon, the application of artificial agents (including robots) within everyday 109 

contexts, such as workplaces, homes (Horvitz, 2016), and clinical settings (Ciardo & Wykowska, 110 

2020) will make joint action with them as common as a joint action with other humans. For instance, 111 

robots will likely be involved in rescue operations during emergencies or could be taking the role of 112 

a partner in training our motoric skills in sports, maybe also training paddling skills. The interesting 113 

aspect of robots is that despite their artificial nature, they can induce in humans similar social 114 

cognitive mechanisms as those elicited by other humans during social interactions (Wiese et al., 115 

2017; Wykowska, 2020; Ciardo et al., 2020; Hinz et al., 2021; Abubshait et al., 2020). This is 116 

particularly true for those robots that are designed to resemble humans in appearance, i.e., 117 

humanoids. A critical aspect during joint action with artificial agents is their morphology. Indeed,  118 

thanks to their embodied nature and their ability to move and act (potentially autonomously) within 119 

our environment, robots are artificial agents that can resemble humans not only in their physical 120 

appearance but also in their motor repertoire. Martini and colleagues investigated the relationship 121 

between human-likeness in morphology and robots’ capability of inducing gaze following in 122 

humans. The authors showed that the degree to which humans follow the gaze direction of a robot 123 

does not linearly decrease with human-likeness in the morphology. Rather, the relationship 124 

between morphology and gaze following is best described by an inverted u-shaped pattern (Martini, 125 

Buzzell, and Wiese, 2015). In a recent study, Abubshait et al. (2020) tested the interplay between 126 

physical and behavioural human-likeness on joint attention. The authors showed that while physical 127 

appearance modulated joint attention only for lifelike interactions with the robot, behavioural 128 

features, such as the reliability of gaze signals, modulated joint attention across different types of 129 

interactions (lifelike vs. lab-based). Similarly, Ghiglino and colleagues (2020) showed that less 130 

attentional engagement is needed to process and interpret artificial agents’ behaviour when it 131 

closely resembles one of a human being. Thus, the discussion about artificial agents’ human-132 
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likeness should not be limited to the physical appearance per se, but it should be extended to their 133 

behaviour as well (Metta et al., 2008).  134 

Aim of study 135 

In the present study, we aimed at evaluating conditions under which an artificial agent (a 136 

humanoid robot or a computer program run on a standard PC) induces human sensorimotor 137 

signaling (nonverbal) during joint action. We focused on the reduction of variability as a measure 138 

of sensorimotor signaling in an interaction context, allowing for forming a joint goal, and thereby, 139 

for a dyadic motor plan to be established. Specifically, we were interested in cases in which the 140 

human should adapt to an erring behaviour of the artificial agent (thereby violating predictions 141 

formed through DMP), especially if the errors resemble human-like behaviour, in comparison to 142 

mechanical failures. In line with the above argumentation, we reasoned that sensorimotor signaling 143 

(and thus coordination) should also affect the social inclusion of the agent. 144 

In short, we were interested in whether (i) humans would exhibit sensorimotor signaling towards 145 

an erring artificial agent in a joint action task, (ii) the signaling behaviour would be dependent on 146 

the human-likeness of the agent’s erring behaviour, and (iii) the signaling behaviour would be 147 

related to a higher tendency to socially include the agent. In addition, we aimed at testing whether 148 

all these effects would depend on human-like appearance and motor repertoire of the artificial 149 

agent.  150 

To address these questions, we designed an experimental paradigm in which human 151 

participants were asked to play a musical duet either with the iCub (Metta et al., 2008) humanoid 152 

robot (Experiment 1) or a computer algorithm (Experiment 2) that were programmed to make errors 153 

during their performance. We manipulated the human-likeness of the erring behaviour between-154 

subjects in a way to reproduce a typical human mistake, i.e., a memory error, or a machine-like 155 

failure, i.e., entering a repetitive behavioural loop. After the joint task, we tested – by using a ball-156 

tossing game inspired by the Cyberball paradigm (Williams & Jarvis, 2006; Ciardo et al., 2020) – 157 

whether our manipulation affected also the willingness to be socially inclusive towards the artificial 158 
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agent. The Cyberball task has been extensively used in social psychology research to evaluate 159 

ostracism and social acceptance. In the original version of the study (Williams & Jarvis, 2006), 160 

participants are asked to virtually toss a ball towards two players, in a three-player game. One of 161 

the two players usually ostracizes the other one. The two players usually resemble in-group and 162 

out-group individuals. Group membership can be defined by any relevant characteristic shared (or 163 

not) between the participant and one of the players (e.g. race, sex, or social status). The typical 164 

result is that participants tend to toss the ball more often toward the ostracized player if s/he belongs 165 

to the ingroup instead of if s/he is an outgroup member. 166 

We reasoned that the human-likeness of erring behaviour displayed by the artificial agent should 167 

affect sensorimotor signaling. Specifically, we predicted that when the erring behaviour belongs to 168 

a human repertoire (swapping by mistake an element of the sequence) and is also displayed by an 169 

embodied humanoid robot, the error itself does not compromise the DMP, as participants are still 170 

able to represent it in terms of its effects on the joint goal. As a consequence, their performance 171 

should display characteristics of sensorimotor signaling as a strategy to recover coordination and 172 

reach the joint goal. When the error is mechanical, i.e., the agent moves in an endless loop, the 173 

DMP should be compromised since participants are not able to represent the effects of the agent’s 174 

action on DMP. In consequence, they cannot adapt their performance as much as in the case of 175 

human-like erring behaviour. Specifically, we predicted the effects of human-likeness on accuracy, 176 

performance in the task, and variability. We also predicted that these effects should be observed 177 

for the embodied robot, due to the possibility of representing its actions at the sensorimotor level. 178 

The effects were expected to be attenuated for the algorithm run on a standard PC, due to its non-179 

human-like motor repertoire. 180 

Regarding the impact of sensorimotor signaling during a joint task on willingness to include the 181 

agent as an in-group member we predicted that participants should prefer to socially include the 182 

agent that showed a human-like erring behaviour instead of a mechanical one. Specifically, we 183 

expected that the probability to toss the ball toward the iCub or the computer should be higher for 184 

those participants who experienced a human-like error instead of a mechanical one. Such a result 185 
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would support the idea that the human-like erring behaviour increased the social inclusion and 186 

willingness to interact again with the agent. Also in this case, we predicted stronger differential 187 

effects across the erring conditions for the humanoid robot relative to the computer algorithm, due 188 

to the robot’s human-likeness in appearance. 189 

Materials and Methods 190 

Participants 191 

Seventy-three right-handed adults (27 males; mean age = 23.7 ± 3.8 years) took part in the study. 192 

Participants were recruited through the “Join the Science” mailing list (http://www.great-193 

campus.it/join-the-science/). The experimenter sent an e-mail with brief information about the study, 194 

the expected duration, and compensation. Inclusion criteria were: (i) age between18 and 35 years 195 

and (ii) right-handedness. Exclusion criteria were self-reported neurological or motor disorders. All 196 

participants had a normal or corrected-to-normal vision and were not informed about the purpose of 197 

the study. All participants gave their informed written consent. The studies were conducted under 198 

the ethical standards laid down in the 1964 Declaration of Helsinki and were approved by the Local 199 

Ethical Committee (Comitato Etico Regione Liguria). According to the Ethical approval, we collected 200 

only demographic information about age, sex, and handedness. After having signed the consent 201 

form, participants filled in a series of questionnaires to address general attitudes towards robots1 202 

(see SM 1.1). Participants received 15 Euros for their participation. 203 

In total, the data of 14 participants were excluded from data analysis (see data analysis section for 204 

further details). Therefore, the final sample size was N= 59, see Table 1 for demographics of each 205 

experimental condition.  206 

 207 

                                                           
1 Please note that the questionnaires that were administered to have a qualitative description of our sample 
to be able to check if our experimental groups did not differ regarding a priori biases towards robots. Thus, 
average scores of the questionnaires are not considered a dependent measure of interest for  our study and 
are reported in the Supplementary Materials. 

http://www.great-campus.it/join-the-science/
http://www.great-campus.it/join-the-science/
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Table 1. Demographic informations of the final sample across experimental conditions. 208 

 iCub partner condition Computer partner condition 

Human-like erring condition N= 14  
6 males  
mean age = 21.8 ± 2.9 years 
 

N= 13 
4 males  
mean age = 22.3 ± 2.8 years 
 

Mechanical erring condition N= 16 
6 males  
mean age = 22.8 ± 2.5 years 
 

N= 16  
7 males  
mean age = 25.8 ± 4.1 years 
 

 209 

Experimental setup and stimuli 210 

For a visual representation of the setup and the task, see Video 1 (https://osf.io/38yg6) 211 

Our study was implemented in a multi-modal human-robot interactive scenario, where the 212 

participant and the robot interacted with a vertical touch screen by producing a set of periodic audio 213 

sequences. The experimental setup included a PC controlling the stimuli and responses, an iCub 214 

humanoid robot (Metta et al., 2008), and a vertically positioned multi-touch screen (1099.4 x 634.0 215 

x 36.8 mm, 60Hz). iCub’s pointing gesture was pre-defined as in Ciardo et al., 2019. The default 216 

trajectory time of iCub’s arm was defined by design to be 350 ms. Participants performed the task 217 

standing next to iCub facing the touch screen (see Fig. 1). They were presented with a black screen 218 

divided into two equal portions by a white midline. In each hemifield of the screen, a music “pad” 219 

was presented. The pad consisted of an array of six coloured dots (Ø: 5 cm) positioned on the 220 

vertices of a hexagon, all equidistant from the center (see Fig. 1). Each dot corresponded to a 221 

specific tone. The pad was centered with respect to iCub’s right arm. Tone duration was 450 ms and 222 

it was estimated empirically, based on iCub’s minimum period achievable in the audio sequence. 223 

Procedure 224 

The task consisted of three phases: training, teaching, and duet where the duet was the actual 225 

experimental task. The first two phases were comparable across conditions 226 

Training phase. Participants were instructed to invent a melody by tapping a sequence (sequence 227 

invented at participants’ own will) of 6 different colored dots on the vertical touchpad. Participants 228 

were asked to repeat the sequence four times. Thus, each melody was composed of twenty-four 229 

https://osf.io/38yg6
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taps. Participants could choose to start their sequence with any of the six dots and follow the order 230 

they preferred. However, each tone could be played only once within each sequence. Participants 231 

were instructed to try to keep a constant tempo. During the training, only participants’ music pad was 232 

presented on the screen while the robot was standing next to them in a resting position (i.e., with its 233 

arm along the body). The training ended when participants were able to execute their melody (i.e., 234 

24 taps) correctly ten times. 235 

Teaching phase. Participants were instructed to “teach” the melody to iCub. Thus, while they were 236 

playing the sequence, iCub performed the same task as a follower. It reacted merely by repeating 237 

the participant's actions. Once a dot selection was detected, the task controller sent a request to the 238 

robot for tapping the same dot. To induce the belief that iCub was learning and improving during the 239 

teaching phase, we sequentially decreased the average delay of iCub’s tap with respect to the 240 

participant’s tap (delay condition: 650, 550, and 450ms). In this phase of the experiment, we decided 241 

not to add self-generated mistakes to the performance of the robot. See SM 2 for a detailed 242 

description of the teaching phase.  243 

Duet phase. In this phase, participants were instructed as follows: “iCub has now learned how to 244 

play your melody correctly with the right tempo, and now it can play on its own. Your task now is to 245 

play a duet with iCub, trying to maintain synchrony and not making errors”. 246 

iCub’s music pad was programmed to play following the average period estimated from the last four 247 

trials of the teaching phase. Specifically, the inter-tap interval between two consecutive taps was 248 

equal to the average time differences between two consecutive taps collected from the human 249 

participants in the last four trials of the teaching phase. In this way, we ensured that the robot’s music 250 

pad was playing according to a tempo tailored to each participant.  251 

Across participants, we manipulated the context of the interaction by programming the robot and the 252 

music pad to produce an error in 60% of the trials. For half of the participants, in the erroneous trials, 253 

the iCub switched one element of the melody by pressing the wrong key (Human-like error), while 254 

for the other half of participants it interrupted the melody and moved back and forth between two 255 
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keys in an “endless’ loop (Mechanical error), see Video 1 (https://osf.io/38yg6). The duet phase 256 

included 24 trials in total, the number of correct and erroneous trials was 10 and 14, respectively. 257 

Correct and erroneous trials were fully randomized. Participants were not informed about how iCub 258 

and its music pad were programmed. 259 

In all three experimental phases the trial procedure was as follows: At the beginning of each trial, 260 

the pad was presented as inactive (i.e., empty circles, see Video 1) with a central white circle. To 261 

begin the trial, participants had to press the white circle until it turned yellow, and the pad became 262 

active (i.e., all circle outlines turned into filled circles). Participants performed the tapping sequence 263 

always with their right arm. 264 

In Experiment 2, the apparatus, stimuli, and procedure were the same as in the iCub experiment, 265 

with the only exception that instead of the iCub robot, the participants performed the task standing 266 

next to a computer controlling the task, see Video 2 (https://osf.io/38yg6/). To help participants to 267 

detect where the algorithm will point next, a white dot resembling the mouse cursor was presented 268 

with the music pad, giving the participants the impression that the algorithm was “tapping”. 269 

Social inclusion 270 

The willingness to include the agent as an in-group social partner was evaluated after the interactive 271 

task by using a ball-tossing game inspired by the Cyberball paradigm (Williams & Jarvis, 2006; 272 

Ciardo et al., 2020). Stimuli were pictures of a female human partner and a picture of either the iCub 273 

or the computer. The act of throwing the ball was simulated by presenting a 1sec video of a 274 

schematic ball moving. Participants were asked to choose to pass the ball to whoever they wanted. 275 

Each trial started with the presentation of pictures of the human player and the artificial co-agent, on 276 

the left and right sides of the screen, respectively2, while the name of the participant was presented 277 

at the bottom. Upon receiving the ball, the participant had 500 ms to press either the “Z” or “M” key 278 

on a standard QUERTY-keyboard, to pass the ball to the human player (“Z”) or the artificial agent 279 

                                                           
2 Please note that the choice of presenting the artificial agent always on the right side of the screen was 
motivated by the fact that during the interactive task, the partner was always located on the right side of the 
setup, see Fig.1. 

https://osf.io/38yg6
https://osf.io/38yg6/
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player (“M”). Timeout was highlighted with a 500 ms feedback display. The task included 240 trials 280 

plus trials to replace timeouts. A short pause was given to participants after 120 trials. In the 281 

computer experiment, the picture of the iCub was replaced with a drawing of a computer.  282 

Data analysis 283 

In both experiments, we focused the analysis on the duet phase (see SM for data analysis of the 284 

teaching phase and questionnaires). We excluded data of participants that performed below 50% of 285 

the accuracy of correct trials (i.e., the trials in which the robot or the computer performed correctly). 286 

In total, the data of 5 participants were excluded from the iCub condition and the dataset of 9 287 

participants from the Computer condition. 288 

All the analyses were conducted using the lme4 package (Bates et al., 2014) in R. Parameter 289 

estimates (β) and their associated t-tests (t, p), calculated using the Satterthwaite approximation 290 

for degrees of freedom (Kuznetsova et al., 2015) are presented to show the magnitude of the 291 

effects, with bootstrapped 95% confidence intervals (Efron & Tibshirani, 1994). 292 

Sensorimotor signaling 293 

To address sensorimotor signaling we focused only on correct trials, namely, trials in which both 294 

the artificial agent and the participant performed the sequence correctly3. The dependent variables 295 

were the average inter-tap interval (ITI) asynchrony and its variability. First, we estimated the ITI 296 

as the time interval between two consecutive taps of the same trial, namely the difference between 297 

the timestamps of a tap and its previous one. The first tap of each trial was excluded. Then, we 298 

estimated the difference between the ITI of the artificial agent (iCub or computer) and the ITI of the 299 

human, i.e., “ITI asynchrony”. The standard deviation of the ITI asynchrony is the “variability in ITI 300 

asynchrony”, see SM Fig 2. 301 

                                                           
3 Please note that the analysis was focused on correct trials only because in erring trials, i.e., when the robot made errors, 

the motor behaviours of the robot and the motor behaviour of the participant differered in their spatial componets (i.e. 
distance between two consecutive taps). Also, given the random nature of errors, such differences in the spatial aspects 
of the robot’s movement were not comparable neither across trials nor participants.  



 

14 

 

 302 

Figure 1. The figure depicts how Intertap Interval was defined for each agent within each trial (24 taps). Please note that 303 
the picture is a mere graphical representation of inter tap intervals (ITI) and that the length of the depicted segment is 304 
arbitrary. For each agent, the average tapping period was estimated as the time interval between two consecutive taps 305 
of the same trial, namely the difference between the timestamps of a tap and its previous one, also defined as ITI, after 306 
the exclusion of the first tap of each trial. Thus, the average period of the human agent is the average of all the yellow 307 
segments. The average period for the artificial agent (iCub or computer) corresponded to the average of all the red 308 
segments. ITI asynchrony is the difference between the ITI of the artificial agent (iCub or computer) and the ITI of the 309 
human. ITI asynchrony is depicted as the blue segments. Thus, mean ITI asynchrony and mean variability in ITI 310 
asynchrony correspond to the mean and standard deviation of the blue segments, respectively 311 

Mean ITI asynchrony and variability in ITI asynchrony were estimated for each trial as indexes of 312 

signaling between the human and the artificial partner. Both measures were then compared 313 

separately across the Erring conditions (Human-like or Mechanical). Although mean ITI asynchrony 314 

and variability in ITI asynchrony are related measures, they reflect two different aspects of 315 

performance. The former indicates on average how well participants were able to predict the 316 

tapping time of the partner and to perform their action accordingly within a single trial. The second 317 

one reflects how well they were able able to maintain such precise predictions within a given trial. 318 

The first one is related to motor control capabilities, i.e. the ability to predict (based on the action-319 

perception link) when an event will occur and when the required action is to be performed. On the 320 

other hand, variability in performance indicates how much participants adapt their performance to 321 

the asynchronies they detected between their own and others’ actions. It is identified as an index 322 

of coordination strategies. 323 

Task Performance 324 
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To address how Human-like or Mechanical erring behaviour affects task performance when 325 

coordinating our actions with artificial agents, we focused on error rate and tapping period. Errors 326 

were defined as trials in which the participant pressed incorrectly the buttons of the music pad or 327 

did not complete the sequence, i.e. less than 24 keypresses were performed. The tapping period 328 

of each trial was estimated as the mean of all the time differences between two consecutive taps 329 

within the same 24 –tap sequence, see Fig.2.  330 

Arcsine-transformed error rate and Average tapping period were modeled as a function of Error 331 

Occurrence, i.e., if the trial included an error from the artificial partner (Yes, No), and Erring 332 

condition (Human-like or Mechanical), plus their interactions, as fixed effects, and participants as 333 

a random effect. 334 

Social inclusion of the artificial agent 335 

The frequencies of choosing to toss the ball toward the iCub robot or the computer were submitted 336 

to a logistic mixed model with Erring condition as a fixed effect and participant as a random effect.  337 

 338 

Figure 1. Panel a: iCub experiment setup. Panel b: Computer setup experiment 339 

Results  340 

Sensorimotor signaling 341 
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Experiment 1: iCub partner 342 

 Results showed that although the mean ITI asynchrony did not differ across conditions [Wilcoxon-343 

test = 0.356, p-value = 0.706], variability in ITI asynchrony was affected by the Erring condition 344 

[Wilcoxon-test = 0.502, p-value = 0.001]. Specifically, the variability in ITI asynchrony was lower for 345 

those participants who interacted with the iCub committing human-like errors compared to those 346 

who interacted with the mechanically-erring robot, see Fig.3. 347 

 348 

Figure 3. Average variability in ITI asynchrony plotted as a function of Erring condition (Human-like or 349 

Mechanical) in Experiment 1 (iCub partner). Asterisk denotes a significant difference. 350 

 Experiment 2: Computer partner 351 

Results showed that the mean ITI asynchrony did not differ across conditions [Wilcoxon-test = 352 

0.326, p-value = 0.121]. However, the variability in ITI asynchrony was modulated by the Erring 353 

condition [Wilcoxon-test = 0.757, p-value = 0. 001]. Specifically, the variability in ITI asynchrony 354 

was lower for participants who experienced the computer erring in a mechanical way compared to 355 

those who were exposed to the human-like error context, see Fig.4. 356 
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  357 

Figure 4. Average variability in ITI asynchrony plotted as a function of Erring condition (Human-like or 358 

Mechanical) in Experiment 2 (Computer partner). Asterisk denotes a significant difference. 359 

Task Performance 360 

Experiment 1: iCub partner 361 

Results showed a marginal interaction between Error Occurrence and Erring condition on error 362 

rates [β = 0.196, t28 = 1.951, p = 0.061, 95% CI = (0.018, 0.377)], see Fig.5a. No main effect or 363 

interaction was found for average tapping period [all p > 0.250]. 364 

Experiment 2: Computer partner 365 

Results showed a main effect of Error Occurrence on error rates [β = 0.181, t27 = 2.945, p = 366 

0.007, 95% CI = (0.061, 0.301)] with higher error rate for trials in which the computer made an 367 

error (0.34±0.18%) compared to when it performed the melody correctly (0.20±0.15%), see Fig. 368 

5b. No main effect or interaction was found for average tapping period [all p > 0.511]. 369 
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 370 

Figure 5. Arcsin-transformed error rate as a function of Error Occurrence, i.e., if the trial included or not an 371 
error from iCub (Yes, No), and Erring condition (Human-like or Mechanical) for the iCub( panel a) and the 372 

computer (panel b) experiment. Asterisks denote significant differences. 373 

 374 

Social inclusion of the artificial agent 375 

Experiment 1: iCub partner 376 

The analysis revealed that the probability to choose the robot instead of the human player was 377 

significantly increased for those participants who interacted with a human-like erring robot [β = .45, 378 

z = 6.25, p < 0.001, CI = (0.31; 0.59)], see Table 2 and Fig. 6a. Specifically, the increase in the 379 

probability of choosing iCub was 1.57 times higher.  380 

Experiment 2: Computer partner 381 

The analysis revealed that the probability to choose the computer did not differ between the two 382 

Erring conditions [β = -.15, z = -1.22, p = 0.223, CI = (-0.40; 0.10)], see Fig.6b.  383 
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 384 

Figure 6. The frequencies of choosing to toss the ball toward the human or the artificial player are plotted as 385 
a function of the Erring Condition (Human-like or Mechanical) for the iCub (panel a) and the computer (panel 386 

b) experiment. Asterisk denotes a significant difference. 387 

Table 2. The average percentage of choosing the artificial agent in the ball-tossing game as a 388 
function of the erring behaviour condition and experiment. 389 

Experiment Erring behaviour condition 

 

iCub experiment Human-Like 61% 

Mechanical 54% 

Computer experiment Human-Like 52% 

Mechanical 55% 

Discussion 390 

The present study aimed to evaluate whether (i) humans would exhibit sensorimotor signaling 391 

towards an erring artificial agent (robot or computer) in a joint action task, (ii) the signaling behaviour 392 

would be dependent on the human-likeness of the agent’s erring behaviour, and (iii) if the signaling 393 

behaviour would result in a higher tendency to socially include the artificial agent. To address these 394 

questions, we designed an experimental paradigm in which human participants were asked to play 395 

a musical duet either with the iCub humanoid robot or with an algorithm on a computer that were 396 

programmed to make human-like or mechanical errors during their performance. After the joint 397 
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task, we tested – with an adapted Cyberball (Williams & Jarvis, 2006; Ciardo et al., 2020) game – 398 

whether our manipulation affected also the willingness to include the agent as an in-group social 399 

partner.  400 

Joint action with artificial agents: Sensorimotor signaling and adaptation to partner’s 401 

errors  402 

We predicted that the human-likeness of erring behaviour displayed by the agent should affect 403 

sensorimotor signaling and adaptation to partner’s errors, especially when the agent has a human-404 

like shape and motor repertoire. Specifically, we reasoned that when the erring behaviour belongs 405 

to a human repertoire, the error itself does not compromise the DMP, as participants are still able 406 

to represent it in terms of its effect on the joint goal. On the contrary, mechanical errors presumably 407 

compromise the DMP, thereby impairing adaptation. Thus, we expected higher accuracy, faster 408 

performance, and lower variability when the embodied agent committed a human-like error 409 

compared to when it failed in a mechanical-way. Our results showed that indeed, when interacting 410 

with iCub, participants showed lower variability in their performance when the error was a mismatch 411 

of the sequence, resembling a human error, compared to when the robot showed a mechanical 412 

error. Reduction of behavioural variability during joint action has been considered as a form of 413 

nonverbal signaling (Sebanz & Knoblich, 2021; Vesper & Sevdalis, 2020) which aims to make 414 

oneself more predictable to help the partner maintain and recover coordination when a joint goal is 415 

established (e.g., Vesper et al., 2011; McEllin et al., 2018; Sacheli et al., 2013). This is in line with 416 

Sacheli and colleagues' study (2021), showing that in human-human interactions, the violation of 417 

expectations driven by the partner’s error triggers an implicit tendency to correct the error, 418 

sacrificing individual efficiency in favor of sensorimotor signaling. In a similar vein, in our study, 419 

when the robot error occurred, participants reduced their variability to facilitate coordination with 420 

iCub. Interestingly, this occurred only when the erring behaviour resembled a human-like error. In 421 

such condition, participants were still able to represent the errors in terms of their effectiveness in 422 

reaching (or not) the joint goal, namely, playing the melody in synchrony. Thus, although the iCub 423 

was unreliable as a partner, participants were still able to establish a DMP allowing them to evaluate 424 
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and predict how the robot was (or not) contributing to reach the joint goal and they adapted their 425 

performance consequently. When the iCub error was a mechanical failure, the impossibility to 426 

represent iCub’s behaviour in terms of its effects presumably prevented the establishment of a 427 

DMP. As a consequence, participants might have not been able to adapt their performance and 428 

ended out of the loop, by committing significantly more errors in the trials in which also iCub 429 

committed errors, relative to correct trials. 430 

On the other hand, when the partner was a computer algorithm run on a standard PC, participants 431 

showed a reversed pattern. Specifically, lower variability in performance was found for the condition 432 

in which the computer displayed a mechanical failure compared to the human-like error. Such result 433 

was unexpected, as when the partner is an agent with a non-human like motor repertoire, the lack 434 

of a motoric component of the action should have prevented any form of action simulation or motor 435 

resonance (Blakemore & Frith; 2005; Wilson & Knoblich, 2005; Grafton, 2009; Schubert & Semin; 436 

2009). As a consequence, the non-motoric “action” of a computer should not have been 437 

represented in terms of their contribution to the DMP, irrespectively of the human-likeness 438 

manipulation. It might be that in the case of the computer algorithm partner, participants decreased 439 

their variability in the condition in which the agent displayed behaviour that was better fitting to their 440 

representation of that agent. A standard computer might have been represented by participants as 441 

a mechanical device and thus, its mechanical erring behaviour might have fit participants’ 442 

expectations. This might have elicited higher degree of implicit mechanisms of cooperative 443 

signaling. 444 

 This would, however, suggest an alternative explanation for the effect in Experiment 1 (with iCub). 445 

Also, in this case, the effect might not have been driven so much by the human-likeness per se, 446 

but rather how much a behaviour fits to the representation of the agent. A humanoid robot 447 

resembles a human more than a disembodied computer algorithm and thus a human-like error is 448 
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what participants might have expected from the robot. This might have induced cooperative 449 

signaling.4 450 

Apart from behavioural variability, participants’ performance accuracy was also affected by the 451 

erring behaviour differently across the two experiments. When interacting with the iCub robot, the 452 

failures of the co-agent only marginally affected accuracy. However, when the partner was the 453 

computer, participants' performance was influenced by the erring behaviour. Specifically, the error 454 

rate was higher for those trials in which the computer failed. Such a result indicates that participants 455 

were not able to complete the task when the computer failed. Such a phenomenon is well known 456 

in human-factors literature as the Out-of-the-Loop problem (OOTL), i.e., the impairment in human 457 

performance in performing a task when a failure in an automatized system occurs. Humans that 458 

are OOTL usually take longer or are unable to decide if, and how, they should intervene (Berberian, 459 

et al., 2017; Norman, 1991). The OOTL phenomenon has been listed as one of the major causes 460 

of incidents in a highly automatized work environment, such as air traffic control in civilian aviation 461 

(Norman, 1991). The fact that errors of the iCub only marginally affected performance accuracy 462 

suggests that the human-like motor repertoire of the robot prevented participants to end up OOTL. 463 

Interestingly, the marginal interaction effect on error rate when the partner was the iCub seemed 464 

to be driven by the mechanical erring condition (cf. Fig. SM 4a), speaking in favor of the idea that 465 

inability to represent an error in the context of DMP results in the OOTL phenomenon.  466 

Taken together, our results suggest that during joint action with artificial agents physical 467 

appearance of the partner and behavioural human-likeness may interact. Specifically, it might be 468 

that the human-like appearance and motor repertoire of the iCub might have triggered a different 469 

representation, expectation, and prediction about its behaviour than a standard computer. Indeed, 470 

several studies showed that despite their artificial nature,  humanoid robots can trigger in humans 471 

attribution of intentionality (for a review see Perez-Osorio & Wykowska, 2020). According to Daniel 472 

                                                           
4 It is important to highlight that the differences in the sensorimotor signaling across agents cannot be 
explained by participants’ lack of error perception. When asked directly, participants reported a failure in the 
partner behaviours equally across conditions (see SM 3). 
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Dennett (1971; 1987), when interacting with an agent, humans adopt different types of stances, 473 

i.e., Intentional, Design/ Mechanical, or Physical. When the partner is another human, we adopt 474 

the intentional stance, namely, we explain and predict their behaviour (and errors) as resulting from 475 

mental operations. When facing artificial and mechanical systems, like computers, their behaviour 476 

(and failures) are explained and predicted referring to the way they were designed or programmed 477 

to act, i.e., we adopt the design/mechanical stance. A recent series of studies showed that humans 478 

can explain behaviours of the iCub robot using both intentional and mechanical stances (Marchesi 479 

et al., 2019).  480 

The adoption of an Intentional or Mechanical stance might be crucial for the type of internal model 481 

we build about artificial agents, affecting, in consequence, also the DMP. Indeed, within a DMP, 482 

we represent our own and others' actions in terms of their contribution to the achievement of the 483 

joint goal. That is, the different types of internal models that we have regarding our partner will not 484 

only result in different expectations about how s/he can contribute to the joint goal, but also in 485 

different representations of how we need to contribute to it. This happens, for example, when we 486 

interact with partners of different physical characteristics or expertise in a task. For example, when 487 

kayaking, the DMP will be different, depending on whether our partner is a child or an instructor. In 488 

the former case, the DMP relies on the representation of a partner that is not as strong as we are, 489 

which brings us to expect that s/he contributes less to the paddling. In contrast, when the partner 490 

is an instructor, the DMP relies on the representation of a partner that has more expertise than we 491 

do, resulting in the expectation that s/he would contribute to paddling substantially. In our study, 492 

when the iCub’s error was human-like, the violation of expectations related to the error was still 493 

plausible within the internal representation of the robot as an intentional agent. As a consequence, 494 

participants could adapt their performance as they would with another intentional agent. On the 495 

contrary, when the robot failed mechanically, the error was not plausible within their representation 496 

of the “intentional” robot, thus participants were not able to explain the error and ended “out of the 497 

loop”. In a similar vein, when the partner was the computer, participants were able to interpret and 498 
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adapt, only when the failure was plausible within the representation of the computer agent, namely, 499 

in the mechanical erring condition, which fit the “computer” representation and expectations.  500 

Sensorimotor signaling as the basis for social inclusion of artificial agents 501 

The final aim of the study was to evaluate the impact of sensorimotor signaling during a joint 502 

task on the social inclusion of artificial agents (i.e., willingness to include the agents as in-group 503 

social partners). Thus, after the joint action tasks, participants performed a ball-tossing game 504 

inspired by the Cyberball paradigm (Williams & Jarvis, 2006; Ciardo et al., 2020). We predicted that 505 

after the interactive task, participants should prefer to interact again with the agent after it showed 506 

a human-like erring behaviour rather than a mechanical one. This should be particularly 507 

pronounced for the human-like robot agent, due to its more social presence. Results showed that 508 

indeed the probability of choosing iCub as the receiver of the ball, instead of the human avatar, 509 

was higher for those participants who interacted with the human-like erring robot, relative to those 510 

who interacted with the robot which was erring in a mechanical way. Interestingly, this was not the 511 

case in the standard computer experiment. Indeed, after the interaction with the computer partner, 512 

the probability to toss the ball toward the artificial partner was equal across erring conditions, 513 

suggesting that the effect on social inclusion is not driven by the violation of expectation per se. 514 

These results suggest a transfer effect between the interactive task and the willingness to 515 

include iCub as an in-group social partner. Specifically, the possibility to maintain a dyadic motor 516 

plan during the joint task might have led participants to perceive the interaction as smoother and 517 

the iCub as a trustworthy partner, despite the errors. Also, it is possible that the human-like error 518 

increased the perceived similarity between participants and the iCub, resulting in a group 519 

membership effect. Previous evidence showed that the perceived similarity between self and 520 

partner is crucial in affecting social cognition mechanisms (Ciardo et al., 2021). Ciardo and 521 

colleagues showed that joint attention is influenced by both implicit and explicit cues of similarity 522 

elicited by age (Ciardo et al., 2014; 2021) or the attitude of the partner during the interaction (Ciardo 523 

et al., 2015). Similarly in our study, participants might have perceived the human-like behaviour as 524 
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a more cooperative attitude. Indeed, although in both conditions iCub made an error in 60% of the 525 

trials, in the human-like condition, following the error, it continued to play, although incorrectly. On 526 

the contrary, in the mechanical erring condition, the robot continued moving back and forth between 527 

keys interrupting playing altogether. In the former case, participants might have perceived the 528 

behaviour of iCub as an attempt to recover from its error. Thereby, they might have perceived the 529 

robot as cooperative or more committed to reaching the joint goal. Notably, this effect was not due 530 

only to the behaviour, as subsequent to the interaction with the computer failing in a human-like 531 

way, participants did not show a preference to interact with it again. Thus, the social inclusion of 532 

artificial agents is influenced by a joint effect of human-likeness of appearance and of behaviour. 533 

Limitations and future directions 534 

The study has some limitations that need to be addressed in future research. Firstly, we used a 535 

computer as a partner in Experiment 2. Such a choice did not allow us to directly compare 536 

participants’ performance between the two agent conditions. Indeed, although the actions of the 537 

robot and the computer were comparable in terms of their effects in reaching (or not) the joint goal, 538 

they differed in the amount of information associated with them. iCub’s actions were characterized 539 

not only by the visual and auditory effects they were producing on the music pad but also by motoric 540 

information that was lacking when the partner was a computer program running on a standard PC. 541 

Another point that can be examined in future research is the manipulation of the reliability of the 542 

robot. Indeed, in our study, the iCub (and the computer as well) were committing an error in the 543 

majority of the trials (60%), thus they were unreliable partners. It remains to be answered whether 544 

the frequency at which the artificial agent violates our expectations can affect sensorimotor 545 

signaling and social inclusion. Finally, in the mechanical erring condition, participants might have 546 

interpreted the whole system as being faulty, instead of a failure of the agent in completing the task. 547 

Future studies should include a specific question about this possibility in the manipulation check 548 

interview.  549 

Conclusions 550 
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In the present study, we examined conditions under which artificial partners elicit sensorimotor 551 

signaling in a joint musical task, and what are the consequences of erring behaviour on social 552 

inclusion of artificial agents. Our results showed that when interacting with artificial agents, human-553 

likeness both in physical appearance and in the behaviour of an artificial agent have an interactive 554 

impact on coordination and social inclusion in joint tasks with artificial agents.  555 
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Supplemental Material: 694 

Joint action with artificial agents: human-likeness in behaviour and 695 

morphology affects sensorimotor signaling and social inclusion 696 

SM 1 Questionnaires addressing attitudes towards robots. 697 

After arriving in the lab participants filled out the following questionnaires: 698 

•The Frankenstein Syndrome Questionnaire (FSQ [1]): self-report scales that investigate the 699 
anxiety perceived towards robots in contexts of interaction. 700 
•The Negative Attitudes Towards Robots Scale (NARS [2]): self-report scales that investigate 701 
negative attitudes towards robots 702 
•The Robotic Social Attitude Scale (RoSAS [3]): a self-report questionnaire that investigates the 703 
attribution of anthropomorphic characteristics to robots 704 
Self-report questionnaires presentation and data collection were controlled by OpenSesame 705 
software. Average scores for each subscale are presented in Table 1 for iCub and Computer 706 
partner separately (Experiment 1 and 2, respectively). 707 
The analyses on questionnaire responses between the two experiments show that there were no 708 
differences 709 
 in participants’ general attitudes towards robots across the two experiments (cf. Table 1)  710 
 711 
Table1. Average scores and standard deviations for the subscales of the NARS, FSQ, and RoSAS. 712 
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 713 

SM 2 Detailed Teaching phase procedure. 714 

In the teaching and duet phases, participants were presented with their music pad and an identical 715 
music pad in front of the robot. The robot’s music pad played in a pre-programmed way, and the 716 
robot was moving its hand and finger in line with each successive “tap” to give the impression that it 717 
was causing the tone to play. It was located at the minimum possible distance to avoid damages to 718 
both the robot’s arm and the screen. Participants were told that iCub’s tapping was executed in a 719 
touchless manner by means of an infrared system embedded into the touchscreen’s frame. Before 720 
beginning these phases of the task, we showed and asked participants to experience the touchless 721 
tapping modality using the infrared frame of the touchscreen. 722 

In the teaching phase, participants were instructed to teach the melody to iCub. Thus, while they 723 
were playing the sequence, iCub performed the same task as a follower. It reacted merely by 724 
repeating the participant's actions. Once a dot selection was detected, the task controller sent a 725 
request to the robot for tapping the same dot. To induce the belief that iCub was learning and 726 
improving during the teaching phase, we manipulated the average delay of iCub’s tap (delay 727 
condition). In this phase of the experiment, we decided not to add self-generated mistakes to the 728 
performance of the robot. The delay introduced represented the iCub’s response time for tapping a 729 
single dot in relation to the human’s tap, that is, the time between the detection of the participant's 730 
tap and the iCub’s tap. The delay conditions were: 650, 550, and 450 ms. The values have been 731 
selected empirically taking into account iCub’s arm movement trajectory time (350 ms) ± estimated 732 

Questionnaire Subscale iCub partner  Computer partner  
Mann-Whitney-
Wilcoxon Test   M SD  M SD 

        

FSQ 

General anxiety toward 
humanoid robots 

37.38 11.93  34.21 11.08 
 

W = 353 
p-value = 0.297 

Apprehension toward social 
risks of humanoid robots 

24.38 5.31  22.21 4.76 
 

W = 331.5 
p-value = 0.167 

Trustworthiness of 
developers of humanoid 
robots 

23.48 5.55  21.07 3.81 

 
 

W = 296, 
 p-value = 0.053 

Expectations for humanoid 
robots in daily life 

27.14 7.98  27.83 5.93 
 

W = 516 
p-value = 0.138 

        

NARS 

Negative attitudes toward 
situations and interactions 
with robots 

11.76 4.20  9.69 3.02 

 
 

W = 332.5 
p-value = 0.170 

Negative attitudes toward 
the social influence of 
robots 

13.28 4.11  12.55 3.81 
 

W = 376.5, 
 p-value = 0.497 

Negative attitudes toward 
emotions in interaction with 
robots 

8.03 8.03  7.14 7.14 

 
 

W = 332.5, 
 p-value = 0.170 

        

RoSAS 

Competence 7.02 1.27  7.45 1.19 
W = 525.5, 

 p-value = 0.104 

Discomfort 2.69 1.08  2.94 1.28 
W = 458.5, 

 p-value = 0.559 

Warmth 3.10 1.51  3.84 1.73 
W = 534, 

 p-value = 0.0785 
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variability of the position controller (100ms) [4]. The teaching phase comprised 22 trials, in which 733 
participants had to perform their 24-dots sequence keeping the tempo as constant as possible. In 734 
the first 6 trials, the iCub performed with a delay of 650 ms. Then, in the 6 subsequent trials, iCub’s 735 
performance was delayed by 550 ms. In the last 10 trials, iCub tapped on each dot with a delay of 736 
450 ms, giving the impression that it has improved its performance and learned the melody. 737 
Participants' performance in the last four trials was used to model iCub’ s behaviour in the duet 738 
phase. If participants made an error in executing their trial, the trial was aborted and restarted. 739 

SM 3 Data analysis and results of the Teaching phase. 740 

In the teaching phase, participants were instructed to teach the melody to iCub. Thus, while they 741 
were playing the sequence, iCub performed the task as a follower. Across the teaching phase, the 742 
robot reduced its delays on tapping with respect to participants' tap: Delay conditions were: 650, 743 
550, and 450 ms. Participants’ average periods were modeled as a function of Delay condition as 744 
a fixed effect and participants as a random effect. Analyses were conducted using the lme4 745 
package [5] in R. Parameter estimates (β) and their associated t-tests (t, p), calculated using the 746 
Satterthwaite approximation for degrees of freedom [6] are presented to show the magnitude of the 747 
effects, with bootstrapped 95% confidence intervals. The analysis was run separately for the iCub 748 
and Computer experiments. 749 

Experiment 1: iCub partner 750 

Results showed that compared to the 650 ms delay condition participants performed faster only 751 
when the iCub performed with the shortest delay (450ms) [β = 135.87, t29.81 = 6.761, p < 0.001, 752 
95% CI = (96.482, 175.250)] (822.97 vs 958.84 ms). See Fig1a.  753 

Experiment 2: Computer partner 754 

Results showed that, compared to the 650 ms delay condition, participants performed faster both 755 
when the computer played with an intermediate delay (550ms) [β = 76.38, t29.61 = 3.625, p < 756 
0.001, 95% CI = (35.090, 117.674)] (953.87vs 1060.73 ms), and when the delay was of 450 ms 757 
[β = 183.24, t29.61 = 8.697, p < 0.001, 95% CI = (141.95, 224.53)] (877.49 vs 1060.73 ms). See 758 
Fig1b.  759 

 760 

Figure 2 Average period in performing the melody across AI agents delays condition during the teaching 761 
phase, for the iCub (a) and Computer (b) partner. 762 

SM 4 Manipulation Check 763 
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At the end of the experiment participants were asked to answer verbally two questions: 764 

Q1: Did you notice the erring behaviour? 765 

Q2: How would you describe the errors of the robot/computer? 766 

The experimenter took notes of participants’ replies and two independent raters categorized the 767 
answers as a function of the following dimensions: 768 

Q1: Yes, No; 769 

Q2: Intentional, Mechanical, n/a 770 

Only replies on which both evaluators agreed were considered for the analysis. Of 59 respondents, 771 
83.1% reported the occurrence of an error in the partner's performance (N = 49) while the remaining 772 
16.9% did not notice any error in the performance of the partner (N = 10). The chi-square test 773 
indicated no difference in error detection between the type of agent (iCub vs Computer) or between 774 
the Erring behaviour condition (Human-like vs. Mechanical), [χ2 = 0.679, df = 3, p= 0.871], see 775 
Fig.2. 776 

 777 

Figure 2: Frequencies of responses to Q1 question plotted as a function of the Erring behaviour condition 778 
(Human-like vs. Mechanical) and the type of partner participants interacted with (iCub vs. Computer). 779 

Out of the 49 participants who recognized the partner’s errors, 32.7% described the errors referring 780 
to intentionality (N = 16), 40.8% described the error using mechanical or physical words (N = 20), 781 
and 26.5% were not able to describe the type of error (N=13). The chi-square test indicated no 782 
difference in how participants described the error between the type of agent (iCub vs. Computer) 783 
or Erring behaviour condition (Human-like vs. Mechanical), [χ2 = 11.625, df = 3, p= 0.071], see 784 
Fig.3. It is perhaps worthwhile to note that when the agent was the iCub robot, participants never 785 
explained the human-like error as “mechanical”. Although this is only a qualitative indication, it 786 
might be an interesting point for future studies. 787 
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 788 

Figure 3: Frequencies of responses to Q2 question plotted as a function of the Erring behaviour condition 789 
(Human-like vs. Mechanical) and the type of partner participants interacted with (iCub vs. Computer). 790 
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