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Abstract

The events we experience day to day can be described in terms of their affective quality: 

some are  rewarding,  others  are  upsetting,  and  still  others  are  inconsequential.  These 

natural distinctions reflect an underlying representational structure used to classify the 

affective  quality  of  events.  In  affective  psychology,  many  experiments  model  this 

representational structure with two dimensions, using either the dimensions of valence 

and arousal, or alternatively, the dimensions of positivity and negativity. Using an fMRI 

dataset, we show that these affective dimensions are not strictly linear combinations each 

other, and show that it is critical that all four dimensions be used to examined the data. 

Our  findings  include  (1)  a  gradient  representation  of  valence  anatomically  organized 

along the fusiform gyrus, and (2) distinct subregions within bilateral amygdala tracking 

arousal versus negativity. Importantly, these patterns would have remained concealed had 

either of the prevailing 2-dimensional approaches been adopted a priori.
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The events we experience can be distinguished in terms of how they affect us in a 

very general sense: we can evaluate whether an event is qualitatively rewarding or 

aversive (positive/negative) or whether it is relatively inconsequential (neutral). The 

arousal dimension distinguishes the neutral from the rewarding/aversive events, and the 

valence dimension distinguishes the rewarding from the aversive events. Affective 

quality, which is a feature of any event, allows us to predict a wide range of behavioral 

response patterns, including which events will be perceived, attended to, remembered, 

approached, or avoided. Due to this predictive power, psychologists and neuroscientists 

alike have shown great interest in how the dimensions of affective quality are represented 

in the brain (e.g., Chikazoe, Lee, Kriegeskorte, & Anderson, 2014; Kim, Mattek, Bennett, 

Solomon, Shin, & Whalen, 2017; Lindquist, Satpute, Wager, Weber, & Barrett, 2015; 

O'Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001). 

The principal dimensions of affect (valence and arousal) are so ubiquitous that 

they permeate numerous domains of psychology and other related fields, such as 

economics (where decisions are influenced by positively-valenced economic gains and 

negatively-valenced losses), learning and reinforcement theory (where behavior is 

determined by positively-valenced rewards or negatively-valenced punishments), and 

even clinical theory (where diagnostic categories can be organized by positive-valence or 

negative-valence symptom profiles; e.g., Hariri, 2015). Across all of these subfields, 

researchers often characterize brain responses (or other physiological or behavioral 

responses) in terms of what happens following an affectively-charged event. The unseen 

challenge in this domain, however, is that any experiment will necessarily have to make 

theoretical assumptions about the affective dimensions themselves—these assumptions 
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will inherently scaffold any experimental design and/or model that is meant to investigate 

some particular behavioral or physiological response associated with the affective quality. 

The relative appropriateness of the theoretical assumptions will, in turn, constrain the 

nature of the experimental results. Although investigations about affective quality are 

numerous, to date, the choice of which theoretical assumptions to impose on the affective 

dimensions remains an experimenter degree-of-freedom, as there has been considerable 

debate about the ontological structure of valence and arousal (for reviews, see Mattek, 

Wolford, & Whalen, 2017 and Brainerd, 2018). Moreover, researchers do not generally 

motivate or describe which theoretical structure they are subscribing to, even though this 

choice is inextricably tied to the nature and interpretation of their results. 

Background. There are two established theories about affective dimensions that 

have gained significant traction in experimental work, and their premises are logically 

opposed to each other (see Table 1 for a depiction of this logical opposition). One 

approach (referred to as Model VA for valence/arousal), which can be represented with a 

Cartesian plane that has valence of the x-axis and arousal on the y-axis (Figure 1A), 

posits that (a) valence is best represented with a line (i.e., the degree to which an event is 

positive can be predicted by inverting the degree to which it is negative; e.g., Russell, 

2017), and that (b) changes in arousal cannot be predicted by changes in valence (i.e., 

changes in arousal happen independently from changes in valence; e.g., Russell, 1980). 

An alternative approach (referred to as Model PN for positivity/negativity), which can be 

represented with a Cartesian plane that has positivity on the x-axis and negativity on the 

y-axis (Figure 1B) posits that (a) valence is best represented with a plane, or two 

orthogonal lines (i.e., the degree to which an event is positive cannot be predicted by 
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considering the degree to which it is negative; e.g., Cacioppo & Berntson, 1994), and that 

(b) changes in arousal can be predicted by changes in valence (i.e., arousal is a linear 

combination of the two valence dimensions; e.g., Watson & Tellegen, 1985; Lang 1995; 

Kron, Pilkiw, Banaei, Goldstein, & Anderson, 2015). 

�

Table 1. Illustration of the logical opposition between the existing approaches for 
measuring and modeling dimensions of affective quality.  

�

Figure 1. Affective quality is routinely represented in one of two ways: A) using the 
dimensions of valence and arousal (Model VA) or B) using the dimensions of positivity 
and negativity (Model PN).
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Despite the logical opposition of these two premises, both sets of assumptions are 

supported by large bodies of observed data, and thus has ensued the predicament of 

having to arbitrarily choose which set of assumptions should be correctly adopted for any 

given experiment as the field moves forward. Conveniently, a newly proposed synthesis 

of these two theories has demonstrated how to predict which of these two sets of 

assumptions will be supported by observed rating data.  Specifically, this higher order 

prediction can be made by considering a third variable, valence ambiguity, which reflects 

the consistency with which an event is assigned a particular valence value (Mattek et al., 

2017; Brainerd, 2018). That is, when ambiguity is high, the first set of assumptions 

(Model VA) will be correct, but when it is low, the alternative set of assumptions (Model 

PN) will be correct, and this newly proposed theoretical principle has been 

mathematically formalized with a set of equations (Mattek et al., 2017). The importance 

of mentioning this new theory, is that it emphasizes that valence, arousal, positivity, and 

negativity are all partially independent. That is, one set of dimensions is not merely a 

rigid rotation of the others, as has been suggested in prior work (Barrett & Russell, 1999). 

Because they are not related by a rigid rotation, all four dimensions must be considered in 

experimental work moving forward.

In this paper, we use an fMRI experiment to illustrate just how critical this 

theoretical issue is when it comes to the interpretation of experimental data. Here, we find 

that the nature of the experimental results is completely contingent of whether one adopts 

Model VA versus Model PN to approach the data. Moreover, the synthesis of the two sets 

of results yields interpretable patterns of brain activity, which supports the utility of 

theoretically synthesizing the existing approaches, as is done in Mattek et al (2017).
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Methods.

General Approach and Experimental Predictions. How exactly can these 

theoretical approaches be investigated with functional magnetic resonance imaging 

(fMRI)? First, consider the measured activity of any given voxel in the brain , which 1

could potentially exhibit activity variation that is best predicted by either (A) a valence 

contrast (positive versus negative conditions), (B) an arousal contrast (high intensity 

versus low intensity conditions), (C) a positivity contrast (positive versus not positive 

conditions), or (D) a negativity contrast (negative versus not negative conditions). To 

adopt any of the theoretical assumptions listed in the previous section inherently involves 

making a priori predictions about how these contrasts will fit the measured activity, 

which are described in the next few paragraphs.

To begin, if we adopt Model VA and assume that valence is linear, we are 

fundamentally making an a priori prediction that the measured responses should differ 

proportionally to the degree that two experimental conditions differ with respect to their 

valence quality. That is, the assumption of linear valence predicts that comparing a 

positive condition to a negative condition (contrast A) will maximize the effect of 

valence, whereas comparing a positive condition to a neutral condition (or a negative to a 

neutral condition; i.e., contrasts C or D) would result in a weaker valence effect. For 

fMRI in particular, the assumption of linear valence also inherently predicts that the 

coefficients from contrast D (negativity) will have opposite signs compared contrast C 

(positivity), and that these effects will occur in overlapping voxels. 

 The logic here could be applied to any dependent measure.1
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On the other hand, if we adopt Model PN and assume valence is not linear (i.e., if 

we assume valence is at least two dimensions and brain activity in a positive condition is 

not the opposite of brain activity in a negative condition), then regional activity during a 

positive condition will be equally different from a neutral and a negative condition. In 

this case, the underlying prediction that comes along with the assumption of nonlinear 

valence, is that contrasts C and D will yield stronger valence effects compared to contrast 

A. That is, a linear valence regressor (contrast A), which assumes a response to neutrality 

is closer to positivity than negativity, will yield a weaker effect compared to a positivity 

regressor that compares positive to not positive (negative + neutral) conditions (contrast 

C) or a negativity regressor that compares negative to not negative (positive + neutral) 

conditions (contrast D). The assumption that positivity and negativity are not linearly 

related not only involves a prediction that contrasts C and D will yield stronger valence 

effects compared to contrast A, it also allows the effects of positivity to be in 

anatomically distinct brain regions compared to the effects of negativity, which is not 

possible with a linear valence contrast (A). 

Finally, the assumption that changes in arousal can be predicted from changes in 

positivity and negativity (i.e., that arousal is a linear combination of the valence 

dimensions), which is inherent to many version of Model PN, inherently predicts 

observed anatomical overlap between contrast B (arousal) compared to contrasts C 

(positivity) and D (negativity). Specifically, if it is correct to assume Model PN, regional 

activity that is linearly proportional to arousal (contrast B) should be the union of regions 

that are linearly proportional to positive and negative conditions (contrasts C and D). 

However, if changes in arousal are at least partially independent from changes in valence, 
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regional activity proportional to arousal should be in anatomically distinct voxels 

compared to the regions proportional to positivity and/or negativity. 

These predictions lay out very specifically how the assumptions of established 

theoretical structures can be tested. Conveniently, the multivariate nature of fMRI 

measurements makes it more obvious how all of the assumptions, despite their logical 

opposition, can be simultaneously true, which is afforded by the new, synthesized 

theoretical structure (Mattek et al. 2017). That is, in theory, any particular voxel might 

show a response pattern that is most closely aligned with linear valence (contrast A), 

arousal (contrast B), positivity (contrast C), or negativity (contrast D). However, in 

current practice, experiments that involve manipulations of affective quality do not 

examine all four dimensions, and the reason that all four dimensions are not examined in 

current practice is justified by the prevailing theories, which claim that some of the 

dimensions are redundant and therefore unnecessary (see Background). That is, if 

positivity is the opposite of negativity (Russell, 2017), there is no reason to have more 

than one valence contrast. On the other hand, if arousal is proportional to valence (Lang, 

1995; Kron et al., 2015), there is no reason to have an arousal contrast in addition to 

valence. One of the major proposals offered by the new theoretical synthesis (Mattek et 

al., 2017), is that these dimensions are not as redundant as they are claimed to be, but also 

that orthogonality (lack of redundancy) cannot be assumed either . Here, we offer an 2

experimental design and modeling strategy that effectively teases apart these partially 

redundant dimensions and verifies their partially independent representation in patterns of 

neural activity. The general design and analysis approach demonstrated here is not limited 

Another way of potentially describing this partial redundancy is to say that the system of variables has a 2

fractional dimensionality between 2 and 3. 
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to fMRI measurements, and could be applied to other physiological and/or behavioral 

measures to test how they are influenced by changes in affective quality.

Participants.  Thirty-two participants were recruited from Dartmouth College 

and the local community (N=32, 19 female). The robust psychological manipulation in 

this experiment (see Stimuli & Experimental Design) allowed for this modest sample 

size, which has been used successfully in fMRI designs with similar affective 

manipulations (e.g., Jin et al., 2015; Kim et al., 2017). In accordance with the Committee 

for the Protection for Human Subjects, participants provided informed consent prior to 

their participation and were compensated with either monetary payment or course credit 

following their participation.  For quality control, six of these participants were excluded 

for excessive movement  during their scan session, leaving a total of twenty-six 3

participants (N=26, 15 female, mean age = 20.1 years old). All exclusions were decided 

prior to group analyses in an effort to maximize the quality of the data.

Stimuli.  Experimental stimuli consisted of seventy-two items from three distinct 

modalities (24 faces, 24 sentences, 24 complex scenes). Faces were selected from an in-

house database of emotional facial expressions, sentences were constructed based on 

previous work (see stimuli described in Mattek et al., 2017), and complex images were 

selected from either the International Affective Picture System (IAPS) or an internet 

search that yielded comparable images.  Items were selected to span the psychological 

dimensions of interest, which are constrained within a triangular structure in either 2-

Excessive motion during functional scans was indicated by biologically implausible 3

spikes (>10% TRs) in the signal, or lack of strong signal in visual cortex for all stimuli 
versus fixation (which suggests the participant’s eyes were closed). Excessive motion 
during anatomical scans was indicated by grossly blurred images which caused a failure 
to converge on an alignment across the functional and anatomical scans. All exclusions 
were decided prior to group analyses.
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dimensional affective space (Figure 2A; see Mattek et al., 2017 for an in-depth discussion 

on this triangular structure).  Note that decades of experimental work have shown that 

affective ratings of briefly presented stimulus items are reliably and naturally constrained 

within this psychological structure (e.g., see Kron et al., 2015; Knutson, Katovich, & 

Suri, 2014; Mattek et al., 2017), making it a suitable guideline for selecting stimuli for 

this experiment.  In other words, stimuli outside this boundary tend to be the exception 

rather than the rule, and only occasionally appear in specific cultural or experimental 

contexts (e.g., Tsai, Knutson, & Fung, 2006; Kuppens, Tuerlinckx, Russell, & Barrett, 

2013). In this sense, the triangular structure within valence and arousal space is a 

naturally occurring (rather than an experimentally imposed) constraint on the stimulus 

selection.

The stimulus items used here were organized into twelve clusters of six items 

each, such that each cluster sampled a localized aspect of the psychological space, and 

contained exactly 2 faces, 2 sentences, and 2 complex scenes.  The location of each item 

in the space was determined using data from a number of pilot experiments as well as 

previously published data.  Post-experiment behavioral categorizations demonstrated that 

our participants reliably categorized the stimulus items according to four affective 

conditions of interest: clearly positive, clearly negative, ambiguously valenced, neutral 

(see section below on post-scan task). Items within a cluster were not related to each 

other in any particular semantic way—the sentences did not describe the scenes or faces, 

rather, the only factor held constant within a cluster of stimuli was the affective quality of 

interest.
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Figure 2. (A) The twelve clusters of stimulus items, for visualization purposes, are 
represented here in valence X arousal space (although they could also be plotted in 
positivity X negativity space and would have similar relative distances). Blue clusters 
represent positive stimulus items, red clusters represent negative stimulus items, magenta 
clusters represent ambiguously valenced stimulus items, and green clusters represent 
affectively neutral items.  Each item is plotted according to its mean rating along each 
dimension, with each condition clearly occupying a different part of the space. (B) [Top] 
Each cluster of items contained two face items, two scene items, and two sentence items, 
which were presented in a pseudo-random order within a single stimulus block; [Bottom] 
each functional run contained one block with each of the affective conditions: P=positive; 
N=negative; A=ambiguously valenced; 0=affectively neutral.  

General procedure.  After providing consent and demographic information, 

participants took part in a forty-minute scanning session consisting of an anatomical scan, 

followed by six functional scans that lasted five minutes each. After the scan session, 

participants completed a brief computer task where they provided ratings in response to 

the stimuli seen in the scanner. 

Image acquisition parameters.  All participants were scanned at the Dartmouth 

Brain Imaging Center using a 3 Tesla Siemens Prisma Scanner with a 32-channel head 
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coil.  Anatomical T1-weighted images were collected using a high-resolution 3D MP-

RAGE sequence, with 160 contiguous 1-mm-thick slices (TE =4.6 ms, TR =9800 ms, 

FOV=240 mm, flip angle=8°, voxel size=1 x 0.94 x 0.94 mm). Functional images were 

acquired using an echo-planar T2*-weighted imaging (EPI) sequence. Each volume 

consisted of 54 slices with 135 mm coverage (TE=31 ms, TR=2500 ms, flip angle=79°, 

voxel size = 2.5 x 2.5 x 2.5mm, PAT=2, Grappa=1, SMS=2).

fMRI experiment design. During each functional scan, stimulus items were 

ordered and timed according to a state-item design (Donaldson, Petersen, Ollinger, & 

Buckner, 2001) using PsychoPy software (Peirce, 2009). This design choice facilitated 

our ability to tease apart effects of the affective quality of the stimuli from the item 

modality (Somerville, Wagner, Wig, Moran, Whalen, & Kelley, 2012).  More specifically, 

the twelve items from a particular localized cluster in affective space (Figure 2A) were all 

presented within a single 49-second block (randomly jittered timing with a mean inter-

stimulus interval (ISI) of 4 seconds and a Poisson-distributed ISI length). This design 

ensured that the affective quality remained effectively constant within each block. Item 

modality was manipulated orthogonally to affect (i.e., all modalities are present at every 

affective level; Figure 2B, top panel).

The twelve localized clusters of items (3 positive, 3 negative, 3 ambiguously 

valenced, 3 affectively neutral) were pseudorandomly presented across the functional EPI 

scans (four 49-second blocks per run with 18 seconds of fixation between each block; 

Figure 6, bottom panel), such that each run contained one neutral block, one positive 

block, one negative block, and one ambiguously-valenced block. The ordering of these 

blocks was randomized within run. The items within each block were presented 
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according to a fixed pseudorandomized order. Each run began with 9 seconds of fixation. 

All twelve clusters (containing a total of seventy-two items; 24 faces, 24 scenes, 24 

sentences) were presented once in the first three runs, and then all items were repeated 

once again across the final three runs (6 runs total), but in a different order. A small white 

square was presented at the onset of each block (for 2 seconds) and a small black square 

was presented at the offset of each block (for 2 seconds), (these squares were modeled as 

regressors of no interest). Participants were asked to press a button when they saw the 

black square to ensure attention, and this task was successfully accomplished by all 

included participants.

Post-scan task.  Following the scanner session, all participants completed a 

computer task in the lab where they provided affective ratings of the items that were 

presented in the scanner. Items were rated for arousal using a 9-point Likert scale and 

valence using a 3-alternative forced-choice task that consisted of the options “positive,” 

“negative,” and “no emotion.”  Post-scan procedures were identical to those used in 

previous work, which has shown that these two rating responses can be mathematically 

combined to generate continuous values along the dimensions of positivity, negativity, 

and linear valence (Mattek et al., 2017), allowing the items to be effectively mapped into 

either theoretical space under consideration here. These behavioral data verified the 

assignment of each item into their respective affective conditions. 

Data analysis. All fMRI data were preprocessed using a standard pipeline of 

functions in AFNI (Cox, 1996): slice time correction, registration of all EPI images to the 

first EPI image, alignment of anatomical and EPI images, alignment to a standard 

anatomical space (Montreal Neurological Institute [MNI] space); smoothing with a 
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Gaussian kernel of 6mm; and normalizing the signal to a mean of 100 such that beta 

weights would reflect percent signal change. Each participant’s data was modeled using a 

general linear (GLM) approach with AFNI’s 3dDeconvolve function, which models the 

BOLD signal time course of each voxel using an array of linear regressors (often referred 

to as the design matrix). For this design, there were 3 “state” regressors and 21 “item” 

regressors.  The state regressors modeled the affective quality of the stimulus blocks: one 

regressor modeled the stimulus blocks in general (blocks of stimulus-on versus fixation) 

and two regressors parametrically modulated this general on/off block regressor 

according to the affective quality of the items within each block. These two modulating 

regressors capture the effects of the affective manipulation, which are the primary 

regressors of interest in this paper. These two regressors are the only thing that changes 

between the Model VA analysis (valence and arousal) and the Model PN analysis 

(positivity and negativity), which is described in more detail in the following paragraph. 

For Model VA, the 2 modulating state regressors were defined with an arousal 

value and a linear valence value, respectively, which was effectively constant across each 

block (by design), and reflected the affective quality of the cluster of items presented in 

that block. These modulating values were estimated using the post-scan session rating 

data, by averaging across all participants and all items within each block. On the other 

hand, for Model PN (Figure 1B), the 2 modulating state regressors reflected the positivity 

value and the negativity value, respectively, which was also effectively constant across 

each block (by design) and reflected the affective quality of the cluster of items presented 

in that block. These values were also estimated using the post-scan session rating data. 

Note that positivity and negativity are difficult to model as independent regressors, 
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because in practice they are usually inversely correlated variables, which was also true in 

this experiment. However, the inclusion of the ambiguously-valenced condition allowed 

us circumvent this issue and impose perfect orthogonality between these regressors: for 

the clearly positive blocks, the unipolar positivity modulating regressor was set to 1 and 

the unipolar negativity modulating regressor was set to 0; for the clearly negative blocks, 

the unipolar positivity modulating regressor was set to 0 and the unipolar negativity 

modulating regressor was set to 1; for the ambiguously-valenced blocks, both modulating 

regressors were set to 1; and for the neutral blocks, both modulating regressors were set 

to 0 (note that these values were scaled to appropriately sum to zero, of course). This 

approach ensured that the positivity and negativity regressors had a temporal correlation 

of exactly zero. Mathematically, inclusion of all four conditions is required to achieve 

this orthogonality. 

All other regressors remained fixed across both Models VA and PN. The 21 item 

regressors captured the presence of the 3 particular stimulus modalities in this design 

(faces, scenes, sentences), allowing for estimates of 7 hemodynamic-response time points 

for each modality. The area under the estimated hemodynamic-response curve was used 

for further analyses of the item modality effects at the group level. Finally, 23 regressors 

of no interest were included: 7 hemodynamic-response time points for the start cues at the 

beginning of each block (2-second white square) and 7 hemodynamic-response time 

points for stop cues at the end of each block (2-second black square), 6 motion 

regressors, and 3 polynomial regressors to account for scanner drift (zero-, first-, and 

second-order).
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These models were applied to each individual subject, and the resulting beta 

weights for each voxel were then carried over to a group analysis, to see which voxels 

were linearly related to the affective dimensions at the group level. Functional regions 

associated with each affective dimension were selected using a reasonable statistical 

threshold (false discovery rate set to 0.05, cluster size > 20 contiguous 2.5 x 2.5 x 2.5 mm 

voxels).  

Results.

The primary effects of interest for this report are related to the different affective 

qualities that form the experimental conditions. As described in the previous section, 

affective quality was modeled in two ways: first by imposing contrasts along the valence 

and arousal dimensions (i.e. Model VA, contrasts A and B described in Methods); second 

by imposing contrasts along the positivity and negativity dimensions (i.e., Model PN, 

contrasts C and D described in Methods). Here, we compare the results yielded by each 

pair of contrasts, with particular attention to the theoretical predictions described in the 

first part of the Methods section. 

Effects of affective quality: whole brain summary. Table 2 and Figure 2 

summarize the brain regions that track differences in affective quality when (a) linear 

valence and arousal are used to model differences in affective quality (Model VA) or (b) 

positivity and negativity are used to model differences in affective quality (Model PN). 

These functional brain regions represent clusters of voxels (size > 25 contiguous 2.5 x 2.5 

x 2.5 mm voxels) that survived a reasonably conservative statistical threshold (false 

discovery rate = 0.05; e.g., Bennett, Baird, Miller, & Wolford, 2009) for determining 
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whether any given voxel’s activity, over time, was linearly related to the manipulation 

along a particular affective dimension while controlling for false positives. 

A major takeaway from the whole-brain results is that each of the two 

psychological models (Model VA versus Model PN) reveals a substantially different 

answer to the question of where affective information is represented in the brain, as the 

functional regions yielded by each model are essentially non-overlapping. This 

observation in and of itself supports the notion that all four dimensions (arousal, valence, 

positivity, negativity) are partially independent, rather than a rigid linear rotation of each 

other, in support of the new theoretical synthesis about the underlying dimensional 

structure (Mattek et al., 2017). It is additionally important to note that the set of 

functional regions associated with each model fit together like puzzle pieces in particular 

regions of interest, in a striking way that cannot be readily ascribed to chance, further 

supporting the legitimacy of the new approach of looking at all four dimensions 

separately.  The effects in these regions of interest are described in more detail in the 

following section.
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Table 1.

�
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�
Figure 2. Maps of functional brain regions that show statistical effects linearly related to 
each affective dimension: (A) model VA: voxels tracking linear valence are magenta and 
voxels tracking arousal are green; (B) model PN: voxels tracking positivity are blue and 
voxels tracking negativity are red. Note that all (expect one2) of these functional regions 
have positive beta weights, and colors reflect the affective dimension the region is 
functionally related to, not the degree or direction of relationship. Regions yielded by 
model VA and regions yielded by model PN are almost entirely non-overlapping. These 
clusters (all > 20 contiguous, 2.5 x 2.5 x 2.5 mm voxels1) survived a reasonably 
conservative correction that set the false discovery rate to 0.05. 
Abbreviations: ATP (anterior temporal pole), IFG (inferior frontal gyrus), IPL (inferior 
parietal lobule), ITG (inferior temporal gyrus), MFG (middle frontal gyrus), MTG 
(middle temporal gyrus), PCC (posterior cingulate cortex), Post G (postcentral gyrus), 
SPL (superior parietal lobule).
1: Cluster size note: Due to a priori predictions held by the field regarding the amygdala’s involvement in 
affective processing generally, the negativity clusters for amygdala were included in this map even though 
they are slightly smaller in size (left: 16 contiguous voxels and right: 19 contiguous voxels) than the 
threshold set for the entire brain (all other regions >20 contiguous voxels). However, note that the arousal-
sensitive clusters within amygdala shown in (A), were >20 voxels, consistent with the whole brain 
threshold.
2: Statistical note: The PCC region is negatively associated with negativity (i.e., has a negative mean beta 
weight, all other regions depicted have positive mean beta weights). 
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Effects of affective quality: regions of interest. If we consider the union of the 

functional brain regions yielded by Model VA and Model PN, some strikingly organized 

patterns emerge in the data. For simplicity, we highlight the three regions which show 

effects along more than one psychological dimension: fusiform gyrus, amygdala, and 

anterior temporal pole (ATP); as well as the only region that tracked linear valence: right 

SPL. The patterns of activation in each of these regions is described in more detail below.

Fusiform gyrus. The pattern of activation in bilateral fusiform gyrus is shown in 

Figure 3. Activity in the fusiform gyrus tracks the arousal dimension bilaterally, but in the 

right hemisphere this gyrus also tracks positivity and negativity. That is, the right 

fusiform represents each unipolar valence dimension (positivity, negativity), but not 

linear valence. Strikingly, the sub-regions within right fusiform that are sensitive to 

negativity, arousal, and positivity, respectively, are neatly anatomically organized from 

the more anterior aspects to the more posterior aspects of the gyrus, revealing a right-

lateralized gradient representation of valence in the fusiform, which is situated just 

dorsally to the fusiform face area (FFA, see section on item modality effects). 
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Figure 3. Fusiform gyrus results from Figure 2A and 2B are combined and focused on in 
this figure. In the right fusiform, valence is represented along an anatomical gradient. 
Purely negative-sensitive voxels are more anterior, purely positive-sensitive voxels are 
more posterior, and arousal-sensitive voxels (which show increased activity to positivity 
and/or negativity compared to affectively neutral stimuli) are anatomically interposed 
between the pure valence regions. Combining the results from both theoretical models VA 
and PN are necessary to see this pattern, which would have been overlooked had either 
model alone had been selected a priori. Colors represent affective condition, not beta 
weights: all beta weights are positive and survived a reasonably conservative statistical 
threshold that set the false discovery rate to 0.05.

Amygdala. The pattern of activation in the amygdala is shown in Figure 4. Both 

negativity and arousal are represented within the amygdala, but in distinct locations. 

Voxels sensitive to negativity are located in the lateral aspects of bilateral amygdala, 

whereas voxels sensitive to arousal are located more dorsal-medially. Had Model AV 

been chosen a priori, the resulting conclusion for this dataset would have been that the 

amygdala tracks arousal generally (i.e., positive and/or negative conditions). Had Model 

PN been chosen a priori, the resulting conclusion for this dataset would have been that 

the amygdala tracks negativity but not positivity. Only by acknowledging the synthesis of 
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both dimensional structures can we see that the amygdala tracks both arousal and 

negativity in distinct anatomical locations.

In turn, these data shed light on an existing debate about whether the amygdala 

represents information about valence or arousal (e.g., Jin, Zelano, Gottfried, & Mohanty, 

2015; Kim et al., 2017). In many cases, the amygdala is found to be specifically sensitive 

to negative valence (e.g., LeDoux, 1998; Öhman, 2005), but other experiments show it is 

also sensitive to positivity/reward (e.g., Garavan, Pendergrass, Ross, Stein, & Risinger, 

2001; Kensinger & Schacter, 2006; Douglass, Kucukdereli, Ponserre, Markovic, 

Gründemann, Strobel et al., 2017).  In the current data, model VA shows the amygdala 

tracking general arousal (and not linear valence), which would suggest the amygdala is 

sensitive to both positivity and negativity. However, model PN shows the amygdala 

tracking negativity but not positivity), suggesting that this structure has a bias for 

processing negative information. By examining the data with both models, we can see 

that the amygdala represents information about both valence and arousal, rather than 

being exclusively dedicated to processing a particular dimension. 

�

Figure 4. Amygdala results from Figure 2A and 2B are combined and focused on in this 
figure. Responses related to negativity and arousal are largely non-overlapping (except 
for 2 voxels). Negativity is represented more laterally whereas arousal is represented 
more medially. Combining the results from both theoretical models VA and PN are 
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necessary to see this pattern, which would have been overlooked had either model alone 
had been selected a priori. Colors represent affective condition, not beta weights

Our results within bilateral amygdala show that negativity is represented in lateral 

amygdala whereas arousal is represented more dorsal-medially. This pattern of activity 

can be interpreted based on known signal flow through this anatomical structure: inputs 

from the visual ventral stream come in laterally (i.e., the basal-lateral nucleus; Aggleton, 

1992) and output to the hypothalamus and brainstem exit dorsal-medially in humans (i.e., 

the central nucleus; Whalen & Phelps, 2009). With this signal processing pipeline in 

mind, perhaps the amygdala is able to transform a negativity input signal received 

laterally into a general arousal signal at the output nuclei, which might receive inputs 

about positivity from some other source.

Anterior temporal pole. Like the amygdala, the ATP tracks both negativity and 

arousal. However, unlike the patterns in the fusiform and amygdala, representations of 

unipolar negativity and arousal have substantial overlap in ATP (these effects are shown 

separately in the coronal slices depicted in Figure 2A & B, respectively). Interestingly, 

this is the only brain region where there is substantial overlap across any of the 

psychological dimensions in this design (fusiform and amygdala have a small overlap 

between regions but are still mostly distinct, as shown in Figures 3 & 4). 

Superior parietal lobule. SPL is the only brain region whose activity was linearly 

related to the valence dimension. In the rest of the brain, the representation of valence is 

specific to either positivity or negativity. Here, the effect was found in the right 

hemisphere specifically. Had Model PN been assumed a priori, this effect of linear 

valence would have remained concealed.  
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The SPL is the only functional region that our experiment identified as being 

linearly related to valence. It is worth noting that the superior parietal lobule has been 

implicated in the general representation of quantitative number lines (Dehaene, Piazza, 

Pinel, & Cohen, 2003). This suggests that this region also represents affective quality 

along a number line, such that the activity is higher for more positive information and 

lower for more negative information. This result frames the perception of affective 

quality as a form of magnitude calculation, consistent with existing work showing SPL 

represents more general forms of magnitude, including the magnitude of physical, 

temporal, and social distances (Parkinson, Liu, & Wheatley, 2014).  

Effects of item modality: connection to effects of affective quality.  Due to the 

structure of the experimental design, it was possible to separate out the effects of looking 

at a particular type of image (face versus complex scene versus short sentence), because 

item modality was manipulated orthogonally to the affective quality of the images. For 

example, by extracting regions sensitive to the presentation of faces versus other 

modalities, we were able to estimate the location of the FFA at the group level and 

determine that the FFA was located just ventral to the region representing valence and 

arousal in the bilateral fusiform gyrus (see section above on Fusiform results). In other 

words, the gradient representation of valence in the right fusiform seems to be built on 

the dorsal edge of the functional region dedicated to a more general representation of 

faces. 

The functional regions that track the presence of any given stimulus modality in 

this experiment (i.e., faces versus complex scenes versus sentences) are anatomically tied 

to the regions that track affective quality. For example, bilateral SPL showed increased 
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activity to the presence of sentences, and an adjacent SPL region on the right was 

proportional to changes in linear valence. Further, a region of the cerebellum that 

activated to the sentence modality has an adjacent cerebellar region that was proportional 

to changes in positivity. Complex scenes (e.g., IAPS), evoked activity across large 

portions of the dorsal and ventral visual streams, with the ventral activity extending 

anteriorly all the way to the amygdala, a structure that was implicated in the processing of 

affective quality in this experiment and more generally. Finally, the regions tracking the 

arousal dimension (Table 1, Figure 3A) generally correspond to known regions that 

appear in face localizers (e.g., fusiform gyrus, middle occipital gyrus, anterior temporal 

pole; Haxby, Hoffman, & Gobbini, 2000).

Discussion.

Overall, we find that the patterns of functional brain activity associated with each 

affective dimension (valence, arousal, positivity, negativity) are largely non-overlapping. 

This result runs contrary to the commonly employed theoretical assumptions outlined in 

the introduction and experimental predictions, which assume substantial redundancy 

between some of these dimensions. Here, we observe that effects of positivity and effects 

of negativity are in non-overlapping anatomical locations, which runs contrary to the 

theoretical assumption that positivity and negativity have a purely inverse linear 

relationship (Green, Goldman, & Salovey, 1993; Russell & Carroll, 1999; Russell, 2017). 

Rather, the current data suggest that much of the brain does not represent valence in this 

linear way. Additionally, we observe that effects of positivity and effects of negativity do 

not anatomically overlap with effects of arousal, which runs contrary to the theoretical 

assumption that arousal emerges from a linear combination of the valences (Lang, 1995; 
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Kron et al. 2015). Rather, the current data suggest that general arousal is represented in 

independent anatomical locations compared to positivity, negativity, or linear valence.

        Nonetheless, one brain region did show an effect of linear valence (SPL), 

suggesting that one cannot necessarily assume that valence is non-linear for all dependent 

measures. Furthermore, there is some anatomical overlap for effects of positivity and 

arousal (in the right fusiform gyrus) and some anatomical overlap for effects of negativity 

and arousal (in the ATP). This overlap suggests that with respect to at least some 

dependent measures, valence and arousal will be redundant. 

Generalizability. The generalizability of the patterns observed here are likely 

constrained by task parameters, specifically, item modality. The regions tracking affective 

quality seem to be anatomically close to, but distinct from, functional regions tracking 

item modality. This would suggest more broadly that representations of affective quality 

will change anatomical location in the brain, depending on relevant sensory modalities or 

other task parameters. It follows that meta-analyses that combine experiments employing 

different item modalities to evoke affective quality are at risk for averaging out real 

effects of that are specific and predictable based on non-affective task parameters. 

Along these lines, one would predict that the valence gradient seen around FFA in 

this design would perhaps appear in a region other than the fusiform gyrus, if the task did 

not prominently feature faces as a stimulus modality. Indeed, valence gradients have been 

identified in other brain regions in the rodent literature: namely, the nucleus accumbens 

shell has a rostrocaudal valence gradient that codes for the approach/avoid properties of 

habitual behaviors (Reynolds & Berridge, 2002; Reynolds & Berridge, 2008), and a 

mirrored valence gradient in the prefrontal cortex can selectively bias or inhibit the 



!   RUNNING HEAD: Affect fMRI 28
  

expression of valenced behaviors through projections to the nucleus accumbens shell 

(Richard & Berridge, 2013). In this sense, valence gradients might be a more 

fundamental organizing principle that manifests in many different brain networks. 

Overall summary. To help understand what we can conclude from these results, 

consider an analogy in which the variable of physical temperature (hot versus cold) takes 

the place of the variable of psychological valence (positive versus negative). Consider 

how your own bodily response to temperature varies around an equilibrium point, such 

that there is a certain set of physiological processes that are engaged when the system is 

too cold and a quite different set of processes that are engaged when the system is too 

hot. Any physiological feature of these processes can be observed and measured 

following a controlled manipulation of temperature, and these features are not necessarily 

quantitatively opposite in their structure. That is, when it is cold there might be the 

occurrence of “goosebumps” which pulls the skin out, but there is no literal inverse of 

goosebumps that pushes the skin inward causing dimples when it is hot. With this 

example, it is easy to see that it would be an error to model the textural properties of the 

skin as a linear response to temperature. Here, we show that the structure of the 

biological response to valence manipulations (as measured by fMRI) have the same 

inherent structure as the biological response to temperature manipulations, such that 

responses to opposite ends of the dimension are not opposite in their measurable form. 

This general pattern has been demonstrated with other physiological measurements, not 

just fMRI (e.g., see Lang, 1995 for a review). 

To take this analogy further, consider that the equilibrium point for subjectively 

felt temperature is a point of optimization that, by definition, minimizes the amount of 
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metabolism that needs to be dedicated to regulating the temperature of the system. In 

turn, a sufficient change in temperature away from equilibrium, in either direction, will 

cause physiological changes associated with a general metabolic increase (like sweating, 

which occurs in both hot and cold states). Here, increases along the arousal dimension are 

analogous to the general metabolic increases required for temperature regulation as the 

system moves away from the equilibrium point, regardless of direction. 

Still, despite this nonlinear pattern of responses to hot versus cold temperature, 

our conception of temperature as a linear dimension is not an error. We can readily point 

out naturally occurring features that vary linearly with temperature (such as the density of 

liquid or the speed of sound). Furthermore, we can subjectively feel the gradient of 

temperature as it changes, for example, when we turn the heat on in a cold room, if we 

overshoot we can feel the transition from feeling cold to feeling hot happen over time. 

Although it is possible, it is relatively unusual for part of the body to be hot and for part 

of it to be cold simultaneously, so the presence of one state tends to exclude the other. 

Using the logic of this analogy, we can see how it is correct to simultaneously 

acknowledge both the opposition of positivity and negativity (linear valence) as well as 

the independence of the biological response patterns to positivity versus negativity.

To summarize, valence and arousal are important psychological variables that 

influence a wide range of neuropsychological processes, such as attention, memory, and 

decision-making. This paper demonstrates a technique for designing experiments and/or 

modeling manipulations that captures the effects along each of these affective 

dimensions. The method demonstrated here is based on theoretical principles that are 

aligned with observed behavior (Mattek et al., 2017). We apply the method in 
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conjunction with fMRI measurements, which yields insights about how affective quality 

is represented by the brain. These insights would have remained concealed had 

commonly used two-dimensional approaches been employed. Most generally, this paper 

offers a proof-of-concept as to how organizing variables at the level of psychological 

theory can enhance the interpretation of biological measurements. 
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