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Abstract

A growing body of research asks whether the opportunity to realize the genetic

endowment for education varies by parental socio-economic status (G×SES). While

the behavioral genetic Scarr-Rowe hypothesis (SRH) suggests stronger, the socio-

logical compensatory advantage hypothesis (CAH) predicts weaker genetic effects

for individuals with a high SES. Using data from the German TwinLife survey, I es-

timate biometric twin models to test for a G×SES and whether it can be accounted

for by SES differences in the effect of genes associated with cognitive ability or by

SES differences in the effect of genes independent of cognitive ability. While for

secondary school track no G×SES can be found, there is a G×SES for tertiary

enrolment in line with the CAH that is mainly accounted for by SES differences in

the effect of genes associated with cognitive ability.

Keywords: Gene-Environment interaction, Scarr-Rowe hypothesis, Compensatory Ad-

vantage hypothesis, Behavioral Genetics, Intergenerational transmission of advantage,

Social inequality of educational opportunity.
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1 Introduction

One important topic of the research on social mobility is the intergenerational transmis-

sion of educational advantage with numerous studies reporting considerable effects of the

parental socio-economic status (SES) on educational attainment (e.g. Breen and Jons-

son 2005; Jackson 2013). So, while there is abundant descriptive evidence of the social

inequality of educational opportunity, the question which mechanisms give rise to this

phenomenon, however, is still not fully answered. At the same time, behavioral genet-

ics research reports considerable heritability estimates for educational attainment, with

meta studies reporting mean heritability estimates of about 40% (Branigan et al. 2013;

Silventoinen et al. 2020), meaning that genetic differences account for around 40% of the

variance in educational attainment. So, if the aim is to shed light on the mechanisms

of the intergenerational transmission of educational advantage, the presence of both SES

and genetic effects suggests to combine sociological and behavioral genetic accounts.

Trascending the nature vs. nurture debate, a central branch of behavioral genetics

research asks how genetic and environmental influences interact in shaping individual

traits and behaviors. One part of this research on gene-environment interactions (G×E)

investigates whether the opportunity to realize the genetic endowments for education

varies by SES (G×SES). Here, two competing hypotheses can be distinguished. On the

one hand, the Scarr-Rowe hypothesis (SRH, Rowe et al. 1999; Scarr-Salapatek 1971)

assumes that the realization of an advantageous genetic disposition is enhanced in en-

riched environments so that stronger genetic effects can be expected for individuals with

a high SES leading to a positive G×SES interaction. On the other hand, the sociological

compensatory advantage hypothesis (CAH, Bernardi 2014) assumes that high-SES fam-
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ilies compensate for early disadvantages of their children, e.g. disadvantageous genetic

dispositions, so that weaker genetic effects can be expected for individuals with a high

SES leading to a negative G×SES interaction.

Traditionally, the behavioral genetics literature tests the SRH primarily for cognitive

ability (see e.g. Giangrande et al. 2019; Gottschling et al. 2019; Grasby et al. 2019;

Hanscombe et al. 2012; Spengler et al. 2018; Turkheimer et al. 2003; Woodley of Menie

et al. 2018). Here, results are mixed with a meta study showing that the SRH is mainly

confirmed for the USA, while for Western Europe and Australia often null findings or

negative moderations in line with the CAH are reported (Tucker-Drob and Bates 2016).

However, there is also a growing number of studies that test if the genetic effect

on educational outcomes is moderated by SES with most studies focusing on the USA.

Domingue et al. (2015) show that the genetic effect on the highest school degree is

negatively moderated by SES while Conley et al. (2015) don’t find a G×SES. Papageorge

and Thom (2020) report mixed findings for different educational outcomes: A negative

G×SES for the probability of obtaining a high school degree and a positive G×SES for

obtaining a college degree. Using school socio-economic status as a moderator, Trejo

et al. (2018) report mixed findings with the probability of postsecondary schooling as

the outcome and a positive G×SES for college completion as the outcome. Finally, Lin

(2020) finds a negative moderation of the genetic effect on years of education by parental

education. Focusing on mathematics tracking in the US high school system and using

school SES as a moderator, Harden et al. (2020) find a non-significant positive moderation

of the genetic effect on the initial tracking level and a significant negative moderation

of the genetic effect on the the persistence in a given track. Finally, Uchikoshi and

Conley (2021) report stronger genetic effects on educational attainment and mathematics

tracking for individuals with a higher SES while Figlio et al. (2017) don’t find a G×SES

for academic achievement. There are substantial fewer studies from outside the USA.

For Germany, Baier and Lang (2019) report a positive moderation of the heritability of

years of education by parental education. For Finland, Erola et al. (2021) find a similar

pattern, whereas Isungset et al. (2021) don’t find a G×SES with Norwegian data.
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All the discussed studies have in common that they only test for the presence of a

G×SES. They do not address the question through which mechansims such a G×SES

may arise. The question of the mechanisms of a G×SES is addressed only in two stud-

ies by Tucker-Drob and Harden (2012a,b) who report a positive G×SES for academic

achievement and show that this G×SES can be fully explained by a stronger realization

of genes associated with different non-cognitive skills for high-SES individuals. However,

especially against the heterogeneous state of research on G×SES for education where

some studies confirm the SRH, some the CAH and some studies report mixed or null

findings, a closer investigation of possible mechanisms giving rise to a G×SES is needed

to provide a better theoretical understanding of the phenomenon.

Therefore, drawing on data from the German twin study TwinLife (Diewald et al.

2021), I follow Tucker-Drob and Harden (2012a,b) by investigating the mechanisms of

G×SES for the secondary school track and tertiary enrolment as two central educational

outcomes along the educational career. Specifically, I estimate moderated bivariate twin

models which do not only allow to test for the presence of a G×SES in general, but also

help to differentiate the particular genetic pathways through which such a G×SES may

arise. Drawing on previous research that has consistently shown that cognitive ability

is a central mediator of the genetic effect on educational outcomes (e.g. Bartels et al.

2002; Calvin et al. 2012; Johnson et al. 2009; Krapohl et al. 2014), the design allows

decompose a G×SES into a moderation of the effect of genes associated with cognitive

ability and a moderation of the effect of genes independent of cognitive ability. Tracing

back the genetic pathways on education, thus, allows a more detailed understanding of

the mechanisms of the G×SES for education.

2 Theoretical Framework

The aim of this section is to provide a better understanding of how the SES may affect

the realization of the genetic endowment for education. In the first step, I discuss how a

genetic endowment for education is realized via so-called gene-environment transactions
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driven by cognitive ability. In the second step, I discuss how the SES may affect these

ability-driven gene-environment transactions leading to a G×SES for education.

2.1 The genetic effect on education

One central finding of behavioral genetics research is that all human behavior is heritable

(Turkheimer 2000). So while it is clear that education is heritable (see Branigan et al.

2013; Silventoinen et al. 2020), the question is how, i.e. through which mechanisms, the

genetic endowment for education is actually realized (Tucker-Drob 2017).

An answer to this question can be derived from a transactional perspective on human

development that conceptualizes individuals as active agents that shape their own envi-

ronment but are also influenced by their environment (Sameroff 2009). From a behavioral

genetics perspective, this idea can be used to explain the realization of the genetic endow-

ment for education: Based on genetically influenced traits and behaviors, individuals are

matched to environments which in turn have an effect on education, thus translating ini-

tial genetic differences into phenotypic educational differences1. This process is termed as

gene-environment transaction (Tucker-Drob 2017; Tucker-Drob et al. 2013; Tucker-Drob

and Harden 2017).

So, the process of gene-environment transaction can be decomposed into two parts:

The first part refers to the matching of an individual into an environment based on genet-

ically influenced traits and behaviors which is best conceptualized in terms of active and

evocative gene-environment correlation (rGE, Plomin et al. 1977): Based on genetically

influenced traits and behaviors, individuals select actively into environmental niches (ac-

tive rGE) and/or evoke environmental reactions by others (evocative rGE). The second

part refers to the effect of the experienced environment on education. This effect may be

direct or indirect, e.g. involving several feedback loops between the genetically influenced

trait and the environmental exposure (Dickens and Flynn 2001). So, the realization of

both parts of the gene-environment transaction is a necessary condition for the realization

1Alternative versions of a gene are called alleles. While the genotype refers to an individual’s com-
bination of the alleles, the phenotype refers to the observed traits and behaviors (Knopik et al. 2017,
p. 20)
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of the the genetic endowment for education, i.e. the translation of genetic differences in

a given trait into phenotypic differences in education (Tucker-Drob 2017, p. 473). One

important implication of this perspective is that the realization of a genetic endowment

for an outcome like education is not an immutable biological process where the genes op-

erate directly and uniquely “through the ribosomes” but is an environmentally mediated

process (Jencks 1980, p. 730; see also Freese 2008). As a consequence, a strong genetic

effect or a high heritability does not imply the irrelevance of environmental influences.

Quite the contrary, the realization of a genetic endowment depends on the opportunity

to have proper environmental experiences (Jencks 1980; Scarr 1992).

What are the genetically influenced traits based on which individuals are matched

via active and evocative rGE processes into educational relevant environments, i.e. what

are the “driving forces” of the gene-environment transactions (Tucker-Drob and Harden

2017)? Tucker-Drob and Harden (2012a,b, 2017) argue to consider non-cognitive skills

like motivations, academic self-concept or intellectual interest as possible driving forces

and have empirically shown that a G×SES for academic achievement can be explained

by SES differences in the effect of genes associated with different non-cognitive skills

(Tucker-Drob and Harden 2012a,b).

Others argue that cognitive ability is an important driving force of the matching

process into educational relevant environments (see Beam et al. 2015; Dickens and Flynn

2001) which is corroborated by empirical studies showing that cognitive ability is a central

mediator of the genetic effect on educational outcomes (e.g. Bartels et al. 2002; Calvin et

al. 2012; Johnson et al. 2009; Krapohl et al. 2014). So, since Tucker-Drob and Harden

(2012a,b) already tested whether non-cognitive skills account for a G×SES for academic

achievement and no study so far has tested whether a G×SES for education is accounted

for by SES differences in the effect of genes associated with cognitive ability2, in this

article, I use cognitive ability as a candidate driving force to test whether SES differences

2Notice, that the finding of cognitive ability as a central mediator of the genetic effect on education
does not necessarily imply that a G×SES for education is also accounted for by SES differences in the
effect of genes associated with cognitive ability on education. It may well be that the effect of genes
associated with cognitive ability does not vary by SES and the G×SES is completely accounted for by
SES differences in the effect of genes independent of cognitive ability.
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in ability-driven gene-environment transactions result in a G×SES for education.

How would the realization of the genetic endowment for education via ability-driven

gene-environment transactions look like? The answer to this question depends on whether

a person has a high or low level of genetic endowment for cognitive ability3. On the

one hand, a high genetic endowment for cognitive ability may translate into a higher

cognitive ability based on which individuals select into environments (e.g. choosing more

challenging courses or spending more time in intellectually stimulating activities) or evoke

environmental responses (e.g. receiving more attention by teachers and better grades)

that in turn have a positive effect on education. On the other hand, a low genetic

endowment for cognitive ability may be reflected in a lower cognitive ability based on

which individuals select into environments (e.g. choosing less challenging courses or

dropping out of school) or evoke environmental responses (e.g. receiving less attention

by teachers and worse grades) that in turn have a negative effect on education. In both

scenarios, initial differences in the genetic endowment for cognitive ability are translated

into phenotypic differences in education via ability-driven gene-environment transactions.

Based on the previous arguments, the first hypothesis can be formulated:

H1 : A part of the genetic influences on the educational outcomes can be explained by

genes associated with cognitive ability.

2.2 SES differences in the genetic effect on education

How may the SES facilitate or constrain these ability-driven gene-environment transac-

tions and therefore the realization of the genetic endowment for education leading to a

G×SES? In this section, I discuss two competing hypotheses about possible SES differ-

ences in the realization of the genetic endowment for education: The behavioral genetic

Scarr-Rowe hypothesis (SRH, Rowe et al. 1999; Scarr-Salapatek 1971) and the sociolog-

ical compensatory advantage hypothesis (Bernardi 2014).

3Here, I use a single dimensional concept of a genetic endowment ranging from low to high. Alter-
natively, one might think of a bi-dimensional case with two qualitatively different genetic dispositions
affecting the same outcome: a positive genetic potential and a negative genetic risk. However, with
the data at hand, it is not possible to differentiate nor model this bi-dimensional case. Therefore, the
theoretical discussion is limited to the uni-dimensional case.
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The empirical starting point of the SRH is a study conducted by Scarr-Salapatek

(1971) with twin data from schools in Philadelphia (USA) where she found higher her-

itability estimates for cognitive ability for high-SES children than for low-SES children.

The finding of stronger genetic effects on cognitive ability for individuals with a higher

SES was replicated by Fischbein (1980) for Sweden and by Rowe et al. (1999) for the

USA. The SRH can be linked to the more general G×E mechanism of enhancement from

the G×E typology by Shanahan and colleagues (Shanahan and Boardman 2009; Shana-

han and Hofer 2005) which refers to the facilitation of the realization of a positive or

high genetic endowment within an enriched environment, meaning that the realization of

an individual’s genetic endowment is pushed “to her or his upper limit as defined by the

genotype” (Shanahan and Boardman 2009, p. 222). Therefore, although the SRH origi-

nally focused on SES differences in the genetic effect on cognitive ability, the more general

underlying enhancement mechanism allows the extension of the SRH to other outcomes

like education. The enhancement effect should be most visible among individuals with a

high genetic endowment since this group has the highest genetic limits, so that they can

gain most from pushing the realization of their genetic endowment to their genetically

defined upper limits.

Through which pathways might a high SES enhance the realization of a high genetic

endowment for education? An answer to this question can be derived from the concept

of primary SES effects (Boudon 1974) that refers to SES differences in academic skills

and performance. Previous research suggests that compared to low-SES parents, high-

SES parents have the necessary knowledge and resources to promote their children’s skill

development and learning processes by providing a cognitively stimulating environment,

more relevant learning materials or engaging more in learning oriented interactions, e.g.

reading books or holding discussions (cf. Cheadle 2008; Cheadle and Amato 2011; Cunha

and Heckman 2008; Duncan and Magnuson 2012; for an overview see Becker 2019).

In other words, by providing a rich and cognitively stimulating environment, high-SES

families facilitate the ability-driven gene-environment transactions outlined in the previ-

ous section: High ability individuals with a high SES have more opportunities to select
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themselves into cognitively stimulating environments (e.g. reading books or participating

in extracurricular activities) or to evoke cognitively stimulating responses (e.g. intellec-

tually stimulating discussions) which results in a stronger link between genes associated

with cognitive ability and the educational outcome leading to a G×SES for education.

Thus, using cognitive ability as a candidate driving force, the SRH suggests that high-

SES families enhance the realization of a high genetic endowment for cognitive ability by

facilitating ability-driven gene-environment transactions leading to the following hypoth-

esis:

H2: The SES differences in education are greatest among individuals with a high

genetic endowment for cognitive ability.

While the behavioral genetics literature on G×SES mainly concentrates on testing

the SRH, the sociological literature on the intergenerational transmission of educational

advantage offers an alternative perspective with the compensatory advantage hypothe-

sis (CAH, Bernardi 2014). According to the CAH, high-SES parents compensate for

early disadvantages of their children so that “life course trajectories of individuals from

privileged backgrounds are less dependent on prior negative outcomes” (ibid., p. 75). Al-

though the CAH was not originally formulated from a genetically informed perspective,

it can be easily applied to the study of G×SES for education by conceptualizing a low

genetic endowment for education as a specific form of the “prior negative outcomes” that

high-SES parents try to compensate for 4. Indeed, it is possible to match the CAH to

the more general mechanism of compensation of the typology of G×E mechanisms by

Shanahan and colleagues (Shanahan and Boardman 2009; Shanahan and Hofer 2005).

Here, the realization of a disadvantageous genetic endowment or a “genetic diathesis” is

constrained in an enriched environment.

Why and how do high-SES families compensate for a low genetic endowment for ed-

ucation? According to the theory of relative risk aversion (RRA, Breen and Goldthorpe

4Nielsen (2016) develops an argument that leads to the same expectation drawing on the work of
Saunders (2010). However, unlike Bernardi (2014) who provides e.g. with the theory of relative risk
aversion (Breen and Goldthorpe 1997) a discussion of the specific mechanisms giving rise to the expected
interaction, Nielsen (2016) does not address the specific mechanisms giving rise to the expected pattern
of G×SES. Therefore, my argument draws on the contribution by Bernardi (2014).
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1997) educational choices are driven by the aspiration to avoid social downward mobility.

In order to achieve this goal, high-SES children have to obtain higher levels of education

than low-SES children where a low or intermediate educational level is sufficient to avoid

social downward mobility. Thus, high-SES parents have an incentive to invest especially

in their less endowed offspring since they face the highest risk of educational failure and

social downward mobility and to make more ambitious educational choices irrespective

of their children’s ability and performance as described by the concept of secondary SES

effects Boudon (1974). At the same time, they are also equipped with the resources neces-

sary to successfully ensure the educational success for their less gifted children (Stienstra

et al. 2021). For instance, high-SES families have the financial resources to afford private

tutoring lessons (Bernardi 2014), dispose of the institutional knowledge to successfully

guide their children through the difficulties of the educational system (Schulz et al. 2017)

and are more likely to successfully challenge unfavorable decisions made by educational

gatekeepers (Lareau 2011).

From a transactional perspective this means that high-SES parents restrict educa-

tional harmful gene-environment transactions for their low ability offspring, thus con-

straining the effect of genes associated with cognitive ability on educational outcomes.

On the one hand, they may prevent their low ability children to select themselves into

environmental niches (e.g. choosing a less demanding coursework or dropping out of

school) or to evoke environmental responses (e.g. low educational recommendations or

bad grades) that have negative educational consequences. On the other hand, high-SES

parents might be able to buffer the negative educational consequences of an harmful

environment already experienced, e.g. by ignoring bad grades in their educational de-

cisions (Bernardi and Cebolla-Boado 2014; Breen and Goldthorpe 1997). So following

the CAH, the compensatory practices of high-SES families restrict harmful ability-driven

gene-environment transactions for their less endowed offspring, thus constraining the re-

alization of genes associated with cognitive ability, leading to the following hypothesis:

H3: The SES differences in education are greatest among individuals with a low genetic

endowment for cognitive ability.
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3 Data and Variables

For the empirical analysis I use data from the German twin study TwinLife (version 5.0.0,

Diewald et al. 2021), a longitudinal study of four birth cohorts of same-sex twins and

their families that started in 2014. Unlike convenience samples commonly used for twin

studies, TwinLife applies a register-based probability sampling design. Previous studies

have shown that the data includes families along the whole range of the socio-economic

spectrum in Germany (Lang and Kottwitz 2017) and the socio-demographic structure of

the twin families is comparable to non-twin families in other German probability-based

surveys (Mönkediek et al. 2020). For the analysis I use data of the second (born in

2003-2004) and fourth (born in 1990-1993) birth cohort from the first two survey waves

conducted in 2014-2016 (survey wave 1) and 2017-2019 (survey wave 2), covering an age

range of 10-14 for the younger and 21-27 for the older cohort.

The German educational system is characterized by two central educational transi-

tions: The transition into secondary schooling and tertiary education (Neugebauer and

Schindler 2012, p. 22). The transition into secondary schooling is around age 10-12 so

that the younger cohort is observed right after the transition into secondary schooling.

As in other studies (Stienstra et al. 2021), the secondary school track is measured via an

ordinal variable with four categories (1: Lower secondary school; 2: (Integrated) inter-

mediate school; 3: Comprehensive school; 4: Higher secondary school)5. The transition

into tertiary education is around age 18/19 (Neugebauer and Schindler 2012, p. 22) and

the tertiary enrolment is measured by the twin’s enrolment level in tertiary education.

For twins that already finished tertiary education, the highest reported tertiary degree is

considered. The resulting ordinal variable has three categories (1: Vocational training;

2: University of applied science; 3: University or higher). For both outcomes, the data of

the second survey wave was only used if the information about the educational outcome

in the first survey wave is missing.

Cognitive ability is measured in the first survey wave by a computer administrated

5For a short discussion of the ordinality assumption of the measurement of the secondary school track,
please refer to the appendix.
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version of the widely applied Culture Fair Test (CFT, Weiß 2006) that measures fluid

intelligence. Compared to crystalized intelligence (i.e. learned knowledge and skills), fluid

intelligence measures the ability to acquire skills and knowledge (Ortiz 2015). Sum scores

of all four subdimensions of the CFT - figural reasoning (15 items), figural classification

(15 items), matrices (15 items) and reasoning (11 items) - provided in the TwinLife data

set were used to construct an indicator of cognitive ability by estimating a Confirmatory

Factor Analysis (CFA) for each cohort. The fit of the measurement models is very good

(younger cohort: RMSEA = 0.027; older cohort: RMSEA = 0.017).

SES is measured by the parental education operationalized via the CASMIN classi-

fication (Brauns et al. 2003). Here, again information from the second wave was used

when information in the first wave was missing. For parents with different levels of edu-

cation, I follow the dominance approach as outlined by Erikson (1984) considering only

the highest level of education. To allow a better interpretation of the G×SES, parental

education is z-standardized.

To avoid an overestimation of shared environmental influences, all twin models control

for the twins’ sex and age (using age from the first survey wave) (McGue and Bouchard

1984). Missing values for cognitive ability, secondary school track and tertiary enrolment

are addressed with the Full Information Maximum Likelihood Estimator (FIML). Missing

values on the covariates age and sex and the moderator parental education, however, need

to be addressed in the analysis via listwise deletion6. This leads to a final sample size

of 1039 twin pairs for the younger cohort and of 979 twin pairs for the older cohort. A

descriptive overview of the used samples can be found in Table 1. Due to the low number

of twins attending a lower secondary school track (5% of the MZ twins and 2% of the DZ

twins) I conducted a robustness check of the moderation analysis for the younger cohort

by merging the categories “Lower Secondary” and “(Integrated) Intermediate” together.

The results of the robustness check support the reported results of the main analysis and

can be found in the appendix.

6I use the R package OpenMx for the twin modeling, where the covariates and the moderator are
specified as so called definition variables (cf. Mehta and Neale 2005) for which addressing missing data
via FIML is not possible.
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Younger cohort

MZ DZ

Min Max Mean SD N Min Max Mean SD N

Cognitive Ability -2.68 2.32 -0.03 0.87 832 -3.02 2.25 0.02 0.85 1220

Secondary School Track

Lower Secondary 0 1 0.05 0.21 788 0 1 0.02 0.15 1155

(Integrated) Intermediate 0 1 0.30 0.46 788 0 1 0.22 0.42 1155

Comprehensive 0 1 0.19 0.39 788 0 1 0.23 0.42 1155

Higher Secondary 0 1 0.46 0.50 788 0 1 0.53 0.50 1155

Parental Education 1 9 6.66 2.24 842 1 9 6.97 2.14 1236

Age at t1 10 12 11 0.36 842 10 12 11 0.28 1236

Sex

Male 0 1 0.45 0.50 842 0 1 0.50 0.50 1236

Female 0 1 0.55 0.50 842 0 1 0.50 0.50 1236

N (Twins) 842 1236

N (Twin pairs) 421 618

Older cohort

MZ DZ

Min Max Mean SD N Min Max Mean SD N

Cognitive Ability -3.25 1.64 0.07 0.83 1041 -3.69 1.69 -0.08 0.98 904

Tertiary Enrolment

Vocational Training 0 1 0.46 0.50 976 0 1 0.49 0.50 823

University of applied science 0 1 0.13 0.34 976 0 1 0.13 0.34 823

University or higher 0 1 0.41 0.49 976 0 1 0.38 0.49 823

Parental Education 1 9 5.82 2.34 1048 1 9 6.08 2.32 910

Age at t1 21 25 23.06 0.83 1048 21 25 23.02 0.80 910

Sex

Male 0 1 0.41 0.49 1048 0 1 0.44 0.50 910

Female 0 1 0.59 0.49 1048 0 1 0.56 0.50 910

N (Twins) 1048 910

N (Twin pairs) 524 455

Table 1: The descriptive statistics are calculated for the long-formatted data (one row =
one twin) before z-standardizing parental education.

4 Methods

For the statistical analysis I estimate biometric twin models (Knopik et al. 2017; Neale

and Maes 2004). Twin models build on the comparison of genetically identical monozy-
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gotic twins (MZ) and dizygotic twins (DZ) that share on average 50% of their genes

to decompose the variance of an outcome into three components that refer to additive

genetic (A), shared environmental (C) and non shared environmental influences includ-

ing the measurement error (E). The twin models are estimated as structural equation

models with the ACE components being specified as latent factors with a variance fixed

to 1 (Neale and Maes 2004). Both educational outcomes are ordinal variables which

is properly addressed in the statistical analysis by estimating liability threshold models

(c.f. ibid.). As every statistical model, the biometric twin model rests on a number of

identifying assumptions. These assumptions and possible consequences of their violation

are discussed in detail in the appendix. Furthermore, as shown in the appendix, the DZ

correlations are not smaller than half the MZ correlations for cognitive ability and both

educational outcomes which would indicate the presence of non-additive genetic effects

(D). Therefore, the ACE model and not the ADE model is the right choice. All calculated

models are parametrized as “path coefficients model”, meaning that the effects and not

the variances of the ACE factors are estimated (see ibid., p. 100).

The statistical analysis consists of three steps and a path diagram of the twin models

used in each of them can be found in Fig. 1. The first analysis step consists of two

univariate twin models. The baseline univariate model (see Fig. 1a) decomposes the

variance of cognitive ability and the educational outcomes for both cohorts into the

effects of the ACE components without controlling for parental education. While the

shared environmental factor is often conceptualized as a proxy measure of SES, this is

not necessarily the case (see Freese and Jao 2017). Therefore, in the full univariate model

(see Fig. 1b) parental education is added as a covariate so that the comparison of the

shared environmental effects between the baseline and the full univariate models allows

to assess how much of the shared environmental effects is accounted for by parental

education. Generally, the full univariate model already gives some first evidence about

genetic, shared and non-shared environmental influences on cognitive ability and both

educational outcomes.

In the second analysis step, a bivariate model (see Fig. 1c) in the Cholesky parametriza-
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Figure 1: Overview of twin models used in the analysis. Y = Educational outcome; X =
Cognitive ability; M = Parental education. Note: For display reasons, only one twin per
pair is shown and the control variables sex and age are not shown in the diagram.

tion (see Loehlin 1996) is estimated in order to decompose the genetic and environmental

effects on the educational outcomes into effects of ACE components associated with cog-

nitive ability (a21, c21 and e21) and the effects of the ACE components independent of

cognitive ability (a22, c22 and e22). So, for the genetic pathway a significant effect a21

means that genes associated with cognitive ability (A1) affect the educational outcome,

indicating ability-driven gene-environment transactions. A significant effect a22 means

that genes independent of cognitive ability (A2) affect the educational outcome, indi-

cating gene-environment transactions driven by other traits. Therefore, a significant a21
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would support hypothesis H1 according to which a part of the genetic influences on the

educational outcomes can be explained by genes associated with cognitive ability.

In the third step, a moderated bivariate twin model is estimated where the effects

of all ACE components are allowed to vary by SES (see Fig. 1d). This parametrization

is a bivariate adoption of the model proposed by Purcell (2002) and was used before by

Tucker-Drob and Harden (2012a,b) to investigate the mechansisms of G×SES. Different

to other approaches like a multigroup analysis, this parametrization has the advantage

to test for G×E while controlling for rGE between the moderator and the outcome by

estimating a main effect of the moderator (b1 and b2, see Purcell 2002)
7. For the interpre-

tation of the interaction effects, consider the effect of the genes associated with cognitive

ability (A1) on the educational outcome: a21 + ba21 ∗M . Here, a21 represents the main

effect of genes associated with cognitive ability on the educational outcome, conditional

for M = 0, i.e. for an average parental education. ba21 is the interaction effect which

informs if and how much the effect of the genes associated with cognitive ability on the

outcome varies by SES. A significant positive ba21 would go in line with the SRH and

hypothesis H2 while a significant negative ba21 supports the CAH and hypothesis H3.

All twin models are calculated with R (version 4.1.1) using the package OpenMx (version

2.19.8, Neale et al. 2016). Only the best fitting models are reported which are obtained by

dropping non-significant parameters and comparing the different models via Likelihood-

Ratio tests (cf. Neale and Maes 2004). An overview of the model comparisons is provided

in the appendix.

7Note that in the context of G×E, it is neccesary to distinguish two different rGE processes. First,
there are “benign” rGE processes: As explained in section 2.1, rGE constitute the first part of the gene-
environment transactions through which a genetic endowment is realized. So, a G×E may be explained
by environmental differences in the opportunity for rGE. Second, there are “malign” rGE processes, i.e.
a rGE between the moderator and the outcome. It is central to control for this second rGE process
when estimating a G×E since any unmodelled rGE of this kind may appear as a G×E. Therefore, the
Purcell model controls for rGE between the moderator and the outcome by estimating a main effect of
the moderator to rule out the possibility that a G×E stems from systematic genetic variation between
the groups defined by the moderator (Purcell 2002).

16



5 Results

In this section, the results of the biometric twin models are presented. First, I will discuss

the results of the univariate ACE models. Then, the results of the unmoderated bivariate

ACE models are presented and finally the results of the moderated bivariate ACE models

are shown.

5.1 Univariate Analysis

The first analysis step consists of calculating univariate ACE models in order to test for

genetic, shared environmental as well as non-shared environmental effects on cognitive

ability and both educational outcomes. The results of the univariate models are shown

in Tab. 2. While the baseline univariate model does not control for parental education,

in the full univariate model parental education is added as a measured covariate. The

decomposition of the variance of cognitive ability and the educational outcomes into the

standardized variance components8 based on the full univariate model is shown for both

cohorts in Fig. 2.

For the younger cohort, in the baseline model there are significant effects of the ACE

components on cognitive ability as well as the secondary school track. Controlling for

parental education reduces the remaining shared environmental effects substantially: For

cognitive ability by around 33% from 0.42 to 0.28 and for secondary school track by

23%. So while a substantial part of the shared environmental effects is accounted for

by parental education, there are still unexplained shared environmental influences. As

shown in Fig. 2, the heritability of cognitive ability is about 39% and most of the

remaining variance is explained by non-shared environmental factors (37%), followed by

parental education (13%) and shared environmental factors (11%). For the secondary

school track, the heritability is substantially lower (27%), while most of the variance

is explained by unmeasured shared environmental factors (42%) followed by parental

8All standardized variance components can be derived from the estimated path coefficients using path
tracing rules or covariance algebra (cf. Neale and Maes 2004). E.g. for the full univariate model, the
standardized genetic variance component, i.e. heritability (h2), conditional on sex and age is calculated
as: h2 = a2/(a2 + c2 + e2 + b2).
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Younger Cohort

Cogn. Abil. Sec. Educ.

Baseline Full Baseline Full

Est. SE Est. SE Est. SE Est. SE

a 0.53∗∗∗ 0.06 0.54∗∗∗ 0.05 0.53∗∗∗ 0.05 0.54∗∗∗ 0.05

c 0.42∗∗∗ 0.06 0.28∗∗ 0.09 0.87∗∗∗ 0.05 0.67∗∗∗ 0.05

e 0.52∗∗∗ 0.02 0.52∗∗∗ 0.02 0.27∗∗∗ 0.02 0.27∗∗∗ 0.02

b - - 0.31∗∗∗ 0.02 - - 0.52∗∗∗ 0.04

N 1039 1039 1039 1039

-2LL 4851.61 4655.21 3603.51 3334.89

Older Cohort

Cogn. Abil. Tert. Enrol.

Baseline Full Baseline Full

Est. SE Est. SE Est. SE Est. SE

a 0.74∗∗∗ 0.04 0.73∗∗∗ 0.02 0.71∗∗∗ 0.09 0.74∗∗∗ 0.09

c 0.25∗ 0.12 0 - 0.58∗∗∗ 0.10 0.37∗ 0.14

e 0.47∗∗∗ 0.02 0.47∗∗∗ 0.01 0.40∗∗∗ 0.03 0.39∗∗∗ 0.03

b - - 0.28∗∗∗ 0.02 - - 0.43∗∗∗ 0.04

N 979 979 979 979

-2LL 4682.50 4559.58 3207.64 3043.39

Table 2: Results of the univariate models. Significance: p < 0.001 :∗∗∗; p < 0.01 :∗∗;
p < 0.05 :∗; p < 0.10 :+. Est = Parameter estimate; SE = Standard Error. Note:
Estimates of 0 without standard error (-) refer to parameters fixed to zero. Effects of
covariates sex and age and intercept are not shown.

education (25%) and the non-shared environment only accounts for around 7% of the

variance in secondary school track.

For the older cohort, the baseline models for cognitive ability as well as tertiary

enrolment show significant effects of all ACE components. However, for cognitive ability,

when controlling for parental education in the full model, the shared environmental effect

disappears and can be dropped from the model, while for tertiary enrolment the shared

environmental effect is reduced by 36%. This means that parental education explains the

shared environmental effects on cognitive ability completely but only partially for tertiary

enrolment. As shown in Fig. 2, the heritability of cognitive ability is about 64%, while

the non-shared environment accounts for 27% and parental education for the remaining
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9%. For tertiary enrolment, genes account for 54% of the variance, parental education

for 18%, the non-shared environment for 15% and the remaining shared environment for

the remaining 13%.

Figure 2: Variance decomposition based on the full univariate ACE models conditional
on age and sex. See footnote 8 for an explanation of the calculation.

All in all, there are genetic and environmental influences on cognitive ability and the

educational outcome for both cohorts. While parental education accounts for a substan-

tial part of the shared environmental influences, there remains an unexplained part for

most variables. Comparing the results between cohorts, shows that in the older cohort,

genetic influences on both variables are stronger and (shared) environmental influences

are weaker. However, it remains open which factors explain the genetic influences of

the educational outcomes. Therefore, the second analysis step tests whether part of

the genetic effect on the educational outcomes can be accounted for by genes associated

with cognitive ability as assumed in the discussion of ability-driven gene-environment

transactions and H1.

5.2 Bivariate Analysis

The bivariate twin model allows to decompose the genetic and environmental effects on

the educational outcomes into effects of ACE components associated with cognitive ability

(a21, c21, e21) and effects of ACE components independent of cognitive ability (a22, c22, e22),

while controlling for parental education. The model results are summarized in Tab. 3
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and the variance decomposition9 of the educational outcomes is plotted in Fig. 3.

Sec. Educ. Tert. Enrol.

Est. SE Est. SE

a11 0.54∗∗∗ 0.05 0.73∗∗∗ 0.02

c11 0.27∗∗ 0.09 0 -

e11 0.52∗∗∗ 0.02 0.47∗∗∗ 0.01

a21 0.23∗∗∗ 0.08 0.43∗∗∗ 0.05

c21 0.25+ 0.14 0.36∗∗ 0.13

e21 0.07∗∗ 0.02 0.07∗ 0.03

a22 0.50∗∗∗ 0.05 0.63∗∗∗ 0.09

c22 0.63∗∗∗ 0.07 0 -

e22 0.26∗∗∗ 0.02 0.38∗∗∗ 0.03

b1 0.31∗∗∗ 0.02 0.28∗∗∗ 0.02

b2 0.53∗∗∗ 0.04 0.45∗∗∗ 0.04

N 1039 979

-2LL 7865.02 7432.22

Table 3: Results of the bivariate models. Significance: p < 0.001 :∗∗∗; p < 0.01 :∗∗;
p < 0.05 :∗; p < 0.10 :+. Est = Parameter estimate; SE = Standard Error. Note:
Estimates of 0 without standard error (-) refer to parameters fixed to zero. Effects of
covariates sex and age and intercept are not shown.

For the younger cohort, the ACE and SES effects on cognitive ability remain virtually

the same compared to the full univariate model. For the secondary school track, the

bivariate model reveals two different genetic pathways: On the one hand, there is a

significant effect of the genes associated with cognitive ability indicating ability-driven

gene-environment transactions (a21 = 0.23, p < 0.001). However, genes associated with

cognitive ability do not explain all the genetic effect, since on the other hand, genes

independent of cognitive ability also have a (stronger) effect on the secondary school

track indicating gene-environment transactions driven by other traits (a22 = 0.50, p <

0.001). This differentiation of the genetic pathways is reflected in Fig. 3: Nearly 17% of

the heritability of the secondary school track is accounted for by genes associated with

9Again, the variance components can be calculated from the path coefficients following the path
tracing rules or covariance algebra. For example, the total heritability of the educational outcome is
calculated as: h2

tot = (a221 + a222)/(a
2
21 + a222 + c221 + c222 + e221 + e222 + b22). In order to see how much of the

variance is accounted for by genes associated with cognitive ability, the numerator needs to be adjusted:
h2
ca = (a221)/(a

2
21 + a222 + c221 + c222 + e221 + e222 + b22). In order to see how much of the heritability is

accounted for by genes associated with cognitive ability, one needs to calculate: ph
2

ca = a221/h
2
tot.
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cognitive ability (100∗0.046/(0.046+0.223)), while genes independent of cognitive ability

explain the remaining 83% of the heritability. Therefore, while a substantial part of the

genetic influence on secondary school track can be explained by genes associated with

cognitive ability, most of the genetic influences are accounted for by traits different than

cognitive ability. With respect to the shared and non-shared environmental influences,

the largest part is explained by factors independent of cognitive ability.

Figure 3: Decomposition of the variance of the educational outcomes based on the bivari-
ate twin model conditional on age and sex. ACE components associated with cognitive
ability (A1, C1, E1) and independent of cognitive ability (A2, C2, E2) can be distin-
guished. See footnote 9 for an explanation of the calculation.

For the older cohort, again the ACE and SES effects effects on cognitive ability remain

stable compared to the full univariate model. Again, the genetic effect can be decomposed

into the effect of genes associated with cognitive ability indicating ability-driven gene-

environment transactions also for tertiary enrolment (a21 = 0.43, p < 0.001) and the

effect of genes independent of cognitive ability (a22 = 0.63, p < 0.001) indicating gene-

environment transactions driven by other traits. This is reflected in the heritability

estimates shown in Fig. 3: 32% of the heritability of tertiary enrolment is accounted for

by genes associated with cognitive ability, while the remaining 68% is accounted for by

genes independent of cognitive ability. While again most of the genetic influences is due to

factors different than cognitive ability, the effect of genes associated with cognitive ability

is stronger than for the younger cohort. Also most of the non-shared environmental effects

are due to factors independent of cognitive ability and there are no shared environmental
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influences independent of cognitive ability as the parameter c22 can be fixed to zero.

However, while the shared environmental influences on cognitive ability are completely

accounted for by parental education (like in the full univariate model), there are some

shared environmental effects on tertiary enrolment that remain unexplained.

To sum up, according to the bivariate analysis, in line with previous reports in the

behavioral genetics literature (e.g. Bartels et al. 2002; Calvin et al. 2012; Johnson et al.

2009; Krapohl et al. 2014), a considerable part of the genetic effect on both educational

outcomes can be explained by genes associated with cognitive ability, thus confirming

hypothesis H1. However, especially for the younger cohort most of the genetic influences

are due to genes independent of cognitive ability. Comparing the results between cohorts,

shows that the effect of genes associated with cognitive ability is stronger for the older

cohort suggesting stronger ability-driven gene-environment transactions.

5.3 Moderation Analysis

The third analysis step addresses the following questions: Does the realization of the

genetic endowment for the educational outcomes depend on SES? If so, can the G×SES

be explained by SES differences in the effect of genes associated with cognitive ability

or is it accounted for by SES differences in the effect of genes independent of cognitive

ability? The results of the moderated bivariate models are shown in Tab. 4 with the

results for the younger cohort in the left panel and the results for the older cohort in the

right panel. All G×SES are also visualized in prediction plots that are shown in Fig. 4

for the younger cohort and in Fig. 5 for the older cohort.

As can be seen in the left panel of Tab. 4, for the younger cohort all moderating paths

of the genetic effects can be fixed to zero. There is only a negative moderation of the

non-shared environmental effect on cognitive ability (be11 = −0.03, p < 0.05), meaning

that a higher parental education is associated with a smaller non-shared environmental

effect on cognitive ability. The main effects of the ACE components are comparable to

those of the unmoderated bivariate twin model. So, there is no G×SES for the younger

cohort - neither for cognitive ability nor for the secondary school track - which is reflected
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Sec. Educ. Tert. Enrol.

Est. SE Est. SE

a11 0.56∗∗∗ 0.05 0.72∗∗∗ 0.02

c11 0.24∗ 0.10 0 -

e11 0.52∗∗∗ 0.02 0.47∗∗∗ 0.01

ba11 0 - -0.13∗∗∗ 0.02

bc11 0 - 0 -

be11 -0.03∗ 0.01 0 -

a21 0.22∗∗ 0.07 0.44∗∗∗ 0.05

c21 0.28+ 0.17 0.33∗ 0.14

e21 0.07∗∗ 0.02 0.07∗ 0.03

ba21 0 - -0.14∗∗ 0.05

bc21 0 - 0 -

be21 0 - 0 -

a22 0.50∗∗∗ 0.05 0.66∗∗∗ 0.09

c22 0.62∗∗∗ 0.08 0 -

e22 0.26∗∗∗ 0.02 0.38∗∗∗ 0.03

ba22 0 - -0.09+ 0.06

bc22 0 - 0 -

be22 0 - 0 -

b1 0.31∗∗∗ 0.02 0.28∗∗∗ 0.02

b2 0.53∗∗∗ 0.04 0.49∗∗∗ 0.05

N 1039 979

-2LL 7859.36 7385.28

Table 4: Results of the moderated bivariate models. Significance: p < 0.001 :∗∗∗; p <
0.01 :∗∗; p < 0.05 :∗; p < 0.10 :+. Est = Parameter estimate; SE = Standard Error. Note:
Estimates of 0 without standard error (-) refer to parameters fixed to zero. Effects of
covariates sex and age and intercept are not shown.

in the prediction plots shown in Fig. 4 where the constant SES gap in the predicted

cognitive ability and liability of the secondary school track reflects the main effect of

parental education. This SES gap, however, does not vary over the distribution of the

genetic endowments associated with cognitive ability (A1) and independent of cognitive

ability (A2) which would be the case with a G×SES. Therefore, for the younger cohort

both G×SES-hypotheses, the SRH (H2) and the CAH (H3) need to be rejected: For

the secondary school track, there are no SES differences in the realization of the genetic
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endowment.

Figure 4: Prediction plots of the G×SES interactions for the younger cohort. A1 rep-
resents genes associated with cognitive ability, while A2 refers to genes independent of
cognitive ability (see Fig. 1).

The right panel of Tab. 4 shows the results of the best fitting moderated bivariate

model for the older cohort with tertiary enrolment as the educational outcome. There is

a consistent negative moderation of all genetic effects in line with the CAH. For cognitive

ability, the genetic effect for individuals with average educated parents (a11) is about 0.72

(p < 0.001) and is reduced by about 0.13 (p < 0.001) with an increase of the parental

education of 1 SD as indicated by the interaction effect ba11. For tertiary enrolment, for

individuals with parents with an average level of education, the effect of genes associated

with cognitive ability (a21) is 0.44 (p < 0.001) and the significant interaction effect (ba21)

suggests that an increase of the parental education of 1 SD is associated with a decrease

of the genetic effect by 0.14 (p < 0.01). Finally, for individuals with average educated

parents the effect of genes independent of cognitive ability (a22) is 0.66 (p < 0.001) and

the interaction effect ba22 indicates a slight decrease of the genetic effect of about 0.09

(p < 0.1) for an increased parental education of 1 SD. However, since this interaction effect

is only significant on a 10% level it has to be interpreted cautiously. Nevertheless, the

results show that there is a G×SES for tertiary enrolment which can be decomposed into

a (stronger) moderation of the effect of genetic endowments associated with cognitive

ability and a (weaker) moderation of the effect of genetic endowments independent of

cognitive ability.

The G×SES interactions for the older cohort are visualized in Fig. 5. Here, the com-

24



Figure 5: Prediction plots of the G×SES interactions for the older cohort. A1 represents
genes associated with cognitive ability, while A2 refers to genes independent of cognitive
ability (see Fig. 1).

pensatory pattern of the G×SES becomes clearly visible: high-SES parents compensate

for a low genetic endowment associated cognitive ability (A1) which results in a greater

SES gap in the predicted cognitive ability as well as the predicted liability of tertiary

enrolment among individuals with a low genetic endowment for cognitive ability (see the

left and middle part of Fig. 5). In other words, for individuals with a high SES, hav-

ing a low genetic endowment associated with cognitive ability is less detrimental for the

cognitive development and tertiary enrolment level than for individuals with a low SES.

At the same time, there is some evidence that high-SES parents compensate for disad-

vantageous genes independent of cognitive ability (A2) which results in a greater SES

gap in the predicted liability of tertiary enrolment among individuals with a low genetic

endowment independent of cognitive ability (see the right part of Fig. 5). Therefore, for

the older cohort, the hypothesis the SRH (H2) needs to be rejected, while the results are

in line with the CAH (H3).

6 Discussion

While sociological research often reports high levels of intergenerational transmission of

educational advantage (e.g. Breen and Jonsson 2005; Jackson 2013), the mechanisms

leading to this result often remain unclear. In this article, I combined sociological and

behavioral genetics perspectives in order to investigate whether high-SES families ensure
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the educational success of their offspring by enhancing the realization of a high genetic

endowment for education as suggested by the SRH (Rowe et al. 1999; Scarr-Salapatek

1971) or by compensating for a low genetic endowment for education as predicted by the

CAH (Bernardi 2014).

Conceptually, this article contributes to the literature of G×SES for education by

investigating the mechanisms of G×SES for secondary school track and tertiary enrolment

as two central educational outcomes along the educational career. Using cognitive ability

as a candidate driving force for the gene-environment transactions relevant for education,

I provide a more detailed picture of the mechanisms through which a G×SES for education

may arise. In particular, I follow the approach by Tucker-Drob and Harden (2012a,b)

and calculate moderated bivariate twin models that allow to decompose a G×SES for

education into a moderation of the effect of genes associated with cognitive ability and a

moderation of the effect of genes independent of cognitive ability.

What are the empirical main results of this article? First, in line with previous

research (see Bartels et al. 2002; Calvin et al. 2012; Johnson et al. 2009; Krapohl et

al. 2014), the bivariate twin models showed that genes associated with cognitive ability

account for a substantial part of the genetic influences on secondary school track and

tertiary enrolment suggesting that ability-driven gene-environment transactions play a

central part in the realization of the genetic endowment for both educational outcomes.

This means that part of the heritability of the educational outcomes can be explained

by individuals selecting themselves into educational relevant environments (e.g., more or

less challenging course work, more or less cognitively stimulating activities like reading)

based on their genetically influenced cognitive ability, thus translating differences in the

genetic endowment for cognitive ability into phenotypic educational differences. At the

same time, results show that genes associated with cognitive ability account only for 17%

of the heritability of the secondary school track and 32% of the heritability of tertiary

enrolment, suggesting that the largest part of the genetic influences of the educational

outcomes is accounted for by genes independent of cognitive ability (see e.g. Krapohl et

al. 2014).

26



Second, the moderated bivariate twin models show that there is no G×SES for the

secondary school track, while the genetic effects on tertiary enrolment are negatively

moderated by SES. Decomposing the genetic pathway on tertiary enrolment into the

effect of genes associated with cognitive ability and the effect of genes independent of

cognitive ability allowed a more detailed picture of the mechanisms of this G×SES. I

found a consistently negative moderation of the genes associated with cognitive ability,

suggesting that high-SES parents compensate for a low genetic endowment for cognitive

ability. This results in a G×SES for cognitive ability, but also explains the greatest part

of the G×SES for tertiary enrolment. Therefore, cognitive ability is not only a central

mediator of the additive genetic effect on education, but also of the G×SES for edu-

cation. Thus, the G×SES results for the older cohort are in line with the CAH and

can be understood in terms of SES differences in the possibility for ability-driven gene-

environment transactions: In order to avoid social downward mobility (Bernardi 2014;

Breen and Goldthorpe 1997), high-SES parents constrain the risk for their less gifted

offspring to select themselves into environments or evoke environmental responses based

on their cognitive ability that have negative consequences for the tertiary enrolment. For

instance, they prevent their children from selecting a less demanding coursework or drop-

ping out of school and they may successfully intervene into the decisions of educational

gatekeepers like teachers, e.g. in order to prevent bad grades (Lareau 2011). At the same

time, high-SES parents may buffer the negative consequences of an educational harmful

experience already made, e.g. by supporting their less endowed children to continue their

academic degree despite of a poor initial performance.

Third, the SES differences in the effect of genes associated with cognitive ability on

education don’t completely account for the G×SES for tertiary enrolment. There is also

some evidence for SES differences in the effect of genes independent of cognitive ability

on tertiary enrolment. However, this finding has to be interpreted cautiously due to the

significance level of α = 0.10. Nevertheless, it can be used as a point of departure for

future research to identify the particular traits and behaviors that are associated with

these genes independent of cognitive ability in order to provide a better understanding
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of the driving forces of a G×SES for education.

Another interesting result are the different results across cohorts, especially that I

found a G×SES for tertiary enrolment but not for the secondary school track. How

can these differences be explained? Clearly, with the cross-sectional data at hand, it

is empirically impossible to answer this question since cohort or age effects cannot be

differentiated. However, there are reasons to explain the differences from a life-course

perspective. First, the birth years of the two cohorts are not so far apart that one might

expect the differences in the results to be due to cohort-specific experiences. Second,

rising genetic effects over the life course are a well documented phenomenon in behavioral

genetics research for a range of educational relevant traits (Bartels et al. 2002; Bergen et

al. 2007; Briley and Tucker-Drob 2013; Kandler and Papendick 2017; Petrill et al. 2004;

Plomin et al. 1988; Zheng et al. 2019) which is commonly explained from a life course

perspective: As individuals grow older and become more independent, they increasingly

select themselves into environmental niches and evoke environmental responses based

on genetically influences traits (Scarr and McCartney 1983) so that genetic differences

become increasingly important over the life course. So, the differences in the G×SES

results could be explained from a life-course perspective: As in younger ages genes play

only a minor role, SES differences in the realization of the genetic endowments may also

play a minor role. But when individuals grow older and increasingly make environmental

experiences relevant for education based on genetically influenced traits and behaviors,

the relevance of genes increases and SES differences in the realization of the genetic

endowment also become more visible, leading more pronounced G×SES interactions in the

later educational life course. However, as already meantioned, although this conclusion

may be backed by empirical and theoretical arguments, it is not possible to test them with

the data at hand and future research may test for a life-course graded G×SES pattern

more explicitly.

This study has also some limitations: First, with cognitive ability I only consider

one candidate driving force of the gene-environment transactions relevant for education.

However, the results suggest that there is a substantial effect of genes independent of
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cognitive ability and also a part of the G×SES for tertiary enrolment can be attributed

to SES differences in the effect of genes independent of cognitive ability. Future research

could investigate these unmeasured driving forces. Previous research suggests that dif-

ferent non-cognitive skills and personality traits may be promising candidates (Krapohl

et al. 2014; Tucker-Drob and Harden 2012a,b) Second, with parental education I used

a general proxy of overall SES which is not informative about the concrete mechanisms

through which SES constrains the realization of the genetic endowments. Future research

could investigate this part of the G×SES in more detail.

All in all, this study suggests that one mechanism of the intergenerational transmission

of educational advantage is the ability of high-SES families to constrain unfavorable

gene-environment transactions for their less endowed offspring so that their low genetic

endowment for cognitive ability does not lower their probabilities of educational success.
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A Appendix

A.1 Measuring the secondary school track

In the German educational system, traditionally three school tracks are differentiated:

The upper secondary track (“Gymnasium”), the intermediate track (“Realschule”) and

the lower track (“Hauptschule”). However, comprehensive schools (“Gesamtschule”) that

integrate all three traditional tracks became increasingly popular. However, there are at

least two reasons to rank the comprehensive school between the upper and intermedi-

ate track in the assumed ordinality of the measurement of secondary track (upper >

comprehensive > intermediate > lower): 1) A reason for the ordinality assumption

of upper > comprehensive is that the upper secondary school (“Gymnasium”) is still

linked with a higher prestige (Meulemann and Relikowski 2016, p. 450). 2) A reason

for the ordinality assumption of upper > comprehensive > intermediate is the proba-

bility of obtaining the highest school degree (“Abitur”) conditional on the visited track.
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While it is not possible to obtain the Abitur in the intermediate track, in 2018 25%

graduated from the comprehensive school with an Abitur, while 85% graduated from the

upper track with an Abitur (Autorengruppe Bildungsberichterstattung 2020), therefore:

P (Abitur|Upper) > P (Abitur|Comprehensive) > P (Abitur(Intermediate).

A.2 Model assumptions

The identification of the biometric twin model rests on the following assumptions (Rijs-

dijk 2002, pp. 129 sqq.): 1) The equal environment assumption (EEA) states that the

environmentally caused similarity is the same for MZ and DZ twins. This assumption

is the reason why the correlations between the shared environmental factors of the same

trait is fixed to 1 for both MZ and DZ twins (CorMZ(C1, C2) = CorDZ(C1, C2) = 1). A

violation of the EEA in the form of a more similar treatment of MZ twins would lead

to an overestimation of the genetic effects and an underestimation of the shared envi-

ronmental effects. The assumption has been tested for various traits and seems to be

reasonable (Knopik et al. 2017, p. 86) and there is also accumulating evidence that the

results of the twin models are quite robust against a violation of the EEA since it does

not change the parameter estimates substantially (see e.g. Conley et al. 2013; Mönkediek

et al. 2020). 2) There is no assortative mating with respect to the studied phenotypes.

Research suggests that there is substantial assortative assortative mating for education

and cognitive ability (Gualtieri 2013; Schwartz 2013), which is why this assumption is

likely violated leading to an underestimation of the genetic effects (Rijsdijk 2002, p. 130).

Therefore, the estimates of the genetic effects should be considered as lower bounds or

“conservative” estimates.

Further, it is assumed that 3) there are no gene-environment interactions or correla-

tions. A unmodelled A×C would inflate the genetic effects, while an unmodelled A×E

would act like E. A correlation between A and C acts like C and between A and E like

E (Purcell 2002). However, since I conduct a G×E analysis I explicitly test for the as-

sumption of no G×E and per design I control for rGE between the predictor and the

educational outcomes and by controlling for the main effect of the moderator, I also
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control for rGE between parental education and both variables in the model.

Finally, it is assumed that 4) there are only additive genetic effects and thus no

interactions of alleles of the same gene locus (dominance) or different gene loci (epistasis).

One indicator for non-additive genetic effects is a DZ correlation being smaller than half

the MZ correlation (CorDZ(X1, X2) < 0.5 ∗ CorMZ(X1, X2)) (cf. Bleidorn et al. 2018,

pp. 222 sq.). As displayed in the next section, the DZ correlations are not smaller than

half the MZ correlations for any of the variables studied.

A.3 Twin correlations

Younger Cohort Older Cohort

MZ DZ MZ DZ

Cogn. Abil. 0.63∗∗∗ 0.41∗∗∗ 0.63∗∗∗ 0.38∗∗∗

Sec. Educ. 0.93∗∗∗ 0.77∗∗∗ - -

Tert. Enrol. - - 0.84∗∗∗ 0.59∗∗∗

Table 5: Twin correlations for cognitive ability and the educational outcomes. Signifi-
cance: p < 0.001 :∗∗∗; p < 0.01 :∗∗; p < 0.05 :∗; p < 0.10 :+. For secondary school track
and tertiary enrolment, polychoric correlations are shown. For cognitive ability Pearson
correlations are shown.

A.4 Model comparisons

A.4.1 Baseline univariate twin models

For the baseline univariate twin models, no model comparisons were needed since there

were no non-significant parameters in the full model.

A.4.2 Full univariate twin models

For the full univariate twin models, only the model of cognitive ability for the older cohort

contained non-significant parameters. Here the shared environmental effect is eliminated:

A.4.3 Bivariate twin models

For the bivariate models, in the younger cohort no model comparisons were needed since

there were no non-significant parameters in the full model. The following table refers to
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Baseline Comparison No. Par. -2LL df AIC ∆ 2-LL p
Full ACE - 7 4559.58 1938 4573.58 - -
Full ACE Drop c11 6 4559.58 1939 4571.58 0 p = 1

Table 6: Model comparisons: Full univariate twin model for cognitive ability in the older
cohort

the older cohort:

Baseline Comparison No. Par. -2LL df AIC ∆ 2-LL p
Baseline - 17 7431.84 3727 7465.84 - -
Baseline Drop c11, c22 15 7432.22 3729 7462.22 0.38 p = 0.83

Table 7: Model comparisons: Bivariate twin model of older cohort

A.4.4 Moderated bivariate twin models

Baseline Comparison No. Par. -2LL df AIC ∆ 2-LL p
Full ACE - 27 7850.20 3968 7904.20 - -
Full ACE Drop bc11, bc21, bc22 24 7853.27 3971 7901.27 3.06 p = 0.38
Drop bc11, bc21, bc22 Drop ba11, ba21, ba22 21 7857.33 3974 7899.33 4.06 p = 0.25
Drop ba11, ba21, ba22 Drop be21, be22 19 7859.36 3976 7897.36 2.04 p = 0.36

Table 8: Model comparisons: Moderated bivariate twin model of younger cohort

Baseline Comparison No. Par. -2LL df AIC ∆ 2-LL p
Full ACE - 26 7381.54 3718 7433.54 - -
Full ACE Drop bc11, bc21, bc22 23 7382.40 3721 7428.40 0.86 p = 0.83
Drop bc11, bc21, bc22 Drop be11, be21, be22 20 7385.25 3724 7425.25 2.85 p = 0.42
Drop be11, be21, be22 Drop c11, c22 18 7385.28 3726 7421.28 0.03 p = 0.98

Table 9: Model comparisons: Moderated bivariate twin model of older cohort
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A.5 Robustness check

Baseline Comparison No. Par. -2LL df AIC ∆ 2-LL p
Full ACE - 26 7517.73 3969 7569.73 - -
Full ACE Drop bc11, bc21, bc22 23 7521.91 3972 7567.91 4.18 p = 0.24
Drop bc11, bc21, bc22 Drop ba11, ba21, ba22 20 7526.08 3975 7566.08 4.17 p = 0.24
Drop ba11, ba21, ba22 Drop be21, be22, c21 17 7530.38 3978 7564.38 4.3 p = 0.23

Table 10: Model comparisons: Moderated bivariate twin model of younger cohort (Ro-
bustness check)

Secondary School Track

Est. SE

a11 0.57∗∗∗ 0.05

c11 0.20+ 0.12

e11 0.52∗∗∗ 0.02

ba11 0 -

bc11 0 -

be11 -0.03∗ 0.01

a21 0.33∗∗∗ 0.05

c21 0 -

e21 0.05∗ 0.02

ba21 0 -

bc21 0 -

be21 0 -

a22 0.45∗∗∗ 0.06

c22 0.68∗∗∗ 0.06

e22 0.22∗∗∗ 0.02

ba22 0 -

bc22 0 -

be22 0 -

b1 0.31∗∗∗ 0.02

b2 0.53∗∗∗ 0.04

N 1039

-2LL 7530.38

Table 11: Results of the best fitting moderated bivariate twin models for the robustness
check. Significance: p < 0.001 :∗∗∗; p < 0.01 :∗∗; p < 0.05 :∗; p < 0.10 :+. Est = Point
estimate of parameter; SE = Standard Error. Note: Estimates of 0 without standard
error (-) indicates parameters fixed to zero. Effects of covariates sex and age are not
shown.
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