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Abstract

Meta-analyses in psychology often lack the power to adequately account for

between-studies heterogeneity. The number of studies on any topic is typically low,

because research is cost- and time-intensive. At the same time, a host of potential

moderators are introduced when similar research questions are examined in different

labs, sampling from different populations, using idiosyncratic methods and

instrumentation. Such between-studies heterogeneity presents a substantial challenge to

data aggregation in classic meta-analysis. When the causes for heterogeneity are known

a-priori, they can be accounted for using meta-regression. What is currently lacking,

however, is an exploratory approach, to be used when heterogeneity is suspected, but it

is not known which moderators most strongly influence the observed effect size.

Recently, weighted regression trees have been used to explore heterogeneity in

meta-analysis. Although this provides a promising first step, single trees have many

limitations, which can be overcome by using random forests: A powerful learning

algorithm, which is flexible, yet relatively robust to overfitting. The present paper

introduces MetaForest: An adaptation of random forests for meta-analysis. We present

two simulation studies, which illustrate that, in datasets as small as 20 cases,

MetaForest outperforms single trees, in terms of three metrics: 1) Predictive

performance; 2) power, as evidenced by the proportion of datasets in which the

algorithm achieved a positive R2cv; and 3) the ability to distinguish relevant

moderators from irrelevant moderators, using variable importance measures. We discuss

how MetaForest can enhance the exploration of between-studies heterogeneity when

conducting meta-analyses in diverse bodies of literature.
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MetaForest: Exploring heterogeneity in meta-analysis using random forests

In recent years, much attention has been devoted to the perceived “replicability

crisis” in psychology: The crisis of confidence over the reliability of published results in

our field (Maxwell, Lau, & Howard, 2015; Simmons, Nelson, & Simonsohn, 2011).

Several remedies have been proposed to derive knowledge that will stand the test of

time. One proposed solution to establish the reliability of published findings is

meta-analysis: Aggregating the findings of multiple studies by computing a summary

effect size across studies (Braver, Thoemmes, & Rosenthal, 2014; Laws, 2016). A

requirement of meta-analysis is that the studies being aggregated are conceptually

similar, and ideally, close replications (Fabrigar & Wegener, 2016; Higgins, Thompson,

& Spiegelhalter, 2009; Maxwell et al., 2015). However, in psychology and other fields,

there is often substantial heterogeneity between studies on the same topic. Similar

research questions are studied in different laboratories, using different methods,

instruments, and samples. These differences between studies are known as

“moderators”, and methods have been developed to account for their influence.

However, extant approaches lack the power to assess more than a handful of known

moderators, or to investigate interactions between moderators, and non-linear effects.

Heterogeneity between studies thus presents a non-trivial challenge to data aggregation

using classic meta-analytic methods. At the same time, it also offers an unexploited

opportunity to learn which differences between studies have an impact on the effect size

found, if adequate exploratory techniques can be developed. Recently, a first step

towards this end has been proposed: Meta-CART, a technique which uses a

classification/regression tree to group studies into clusters based on combinations of

study characteristics that jointly predict effect size, and then conducts subgroup

meta-analysis, using cluster membership as a moderator. Although this approach is

promising, single trees have several limitations. These can be overcome by using

random forests: A technique that grows many single trees, and aggregates their

predictions. The present paper introduces MetaForest, a new technique for

meta-analysis on heterogeneous bodies of literature. Using simulation studies, it is
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demonstrated that MetaForest overcomes the limitations of meta-CART, and has

substantial power to detect heterogeneity between studies.

Classic meta-analytic approaches

There are two classic approaches to meta-analysis. One is fixed-effects

meta-analysis, which assumes that each observed effect size is an estimate of an

underlying true effect size, and is subject to sampling error (Hedges & Vevea, 1998).

Thus, for a collection of k studies, the observed effect size yi of each individual study i

(for i = 1, 2, . . . k) is given by:

yi = θi + εi where εi ∼ N(0, σ2
i ) (1)

The second approach is random-effects meta-analysis, which assumes that the true

effect size follows a distribution, and consequently, that differences between observed

effect sizes arise from two sources of variance: Sampling error, and the deviation of each

study from the mean of a distribution of true effect sizes, or between-studies variance

(Borenstein, Hedges, Higgins, & Rothstein, 2009; Hedges & Vevea, 1998). The

random-effects model is thus given by:

yi = θi + εi where εi ∼ N(0, σ2
i )

θi = µ+ ζi where ζi ∼ N(0, τ 2)

 (2)

In both of these meta-analytic approaches, the summary effect is a weighted mean of

the observed effect sizes. The weights assigned to individual studies are based on the

sources of variance assumed to influence the observed effect size. Fixed-effects

meta-analysis assumes that the only source of variance affecting the observed effect sizes

is sampling error. This implies that studies with large sample sizes provide more

accurate estimates of their underlying true effect, and should contribute more to the

weighted mean than studies with a smaller sample. Thus, fixed-effect weights are

defined as the reciprocal of the effect size variances:

Wi = 1
σ2

i

(3)

If the additional assumption can be made that each study in the sample is assessing the

same underlying true effect (in other words, that θ1 = θ2 . . . θk), then the weighted
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average of a fixed-effects meta-analysis can be considered a point estimate of the true

effect size. If this assumption is not made, the weighted average should be considered a

summary of the observed effect sizes (Hedges & Vevea, 1998).

Random-effects meta-analysis instead assumes that the underlying true effect sizes

follow a distribution. Each study — even smaller ones — thus provides some

information about this distribution. Mathematically, this is implemented by

attenuating study weights relative to the estimated amount of between-study variance.

If the estimated amount of between-study variance is negligible, the weights are thus

identical to the fixed-effect weights. As the between-study variance increases, the

weights are increasingly attenuated, until they approach unity. In other words, the more

heterogeneous observed effect sizes are, the more equally each study contributes to the

weighted mean:

W ∗
i = 1

σ2
i + τ̂ 2 (4)

The summary effect in random-effects analysis is a point estimate of the true effect size

distribution’s mean.

It has been argued that the fixed effect model rarely holds in the social sciences.

Human behavior is notoriously complex (Earp & Trafimow, 2015), and consequently,

any psychological phenomenon is likely subject to a host of potential moderators

(Cesario, 2014). Studies examining the identical, or similar, research questions often

differ in terms of research populations, methodology, and instrumentation (Higgins et

al., 2009). Even replication studies, which are by definition designed to be equivalent,

typically display heterogeneity in effect sizes due to unforeseen moderators (Maxwell et

al., 2015; Simmons et al., 2011). Three approaches have been proposed to deal with

heterogeneity (Higgins et al., 2009): First, if studies are assumed to be different and

unrelated, they should not be meta-analyzed. Secondly, if studies can be assumed to be

similar, a random-effects model can be used to estimate the distribution of the true

effect size. Thirdly, if the moderators responsible for between-studies heterogeneity are

known a priori, their influences can be modeled using meta-regression. To this end, the

models described in Equations 1 and 2 are extended by specifying a linear model for the
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parameters θi, or µ, respectively. Thus, to account for heterogeneity introduced by

moderator x1 using random-effects meta-regression, one would specify that

µi = β0 + β1x1i. In meta-regression under the random-effects model, the error term ζi

captures residual heterogeneity after accounting for the moderators (Higgins et al.,

2009). What is lacking in the literature, however, is a feasible approach for situations

where between-studies heterogeneity is suspected, and moderators have been measured,

but the specific causes of heterogeneity are not known a priori. The present study

aimed to address this problem.

Software to conduct meta-analysis with multiple moderators is freely available,

and could readily be used to explain why different studies obtain different effects

(metafor; Viechtbauer, 2010). Nevertheless, published meta-analyses rarely account for

more than a few moderators, and some do not include moderators at all. One possible

explanation for this is, that the number of studies in meta-analyses is often too low to

obtain the power required to examine heterogeneity reliably (Riley, Higgins, & Deeks,

2011). Moreover, there is a paucity of theory regarding sources of heterogeneity to help

whittle the long list of potential moderators down to a manageable number (Thompson

& Higgins, 2002). Many meta-analysts are thus faced with what is known as the “curse

of dimensionality”: The problem that arises when the number of variables to be

considered is large, relative to the number of cases in the data. In meta-analysis, the

number of studies available is often low, because conducting research is cost- and

time-intensive, and yet there are many potential sources of heterogeneity, resulting in a

high number of moderators to be considered. Such cases do not fit comfortably into the

classic meta-analysis paradigm, which, like any regression-based approach, requires a

high number of cases per parameter. Instead, this problem calls for an exploratory

technique which can perform variable selection — indentifying which moderators most

strongly influence the observed effect size.

Recently, a method has been proposed to identify interactions between moderators

in meta-analysis. This technique, called “metaCART”, uses regression/classification

trees to identify which combinations of behavior change techniques jointly predict the
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effectiveness of treatment in meta-analyses of intervention studies. The

classification/regression tree algorithm works by splitting the dataset repeatedly into

ever more homogenous groups with regard to the outcome (effect size). Starting with

the full sample, it finds the moderator and splitting value which maximize the

homogeneity of the effect size in the two groups resulting from the split. The resulting

groups are split again recursively, until a pre-specified stopping criterion is reached:

Most commonly, when all of the resulting groups are perfectly homogenous, or when

one of the groups contains a pre-specified minimum number of observations (for an

accessible introduction, see Strobl, Malley, & Tutz, 2009). The key advantage of tree

models is that they have higher power than linear regression in situations where

moderators outnumber observations. Moreover, tree models perform variable selection:

Any variable unrelated to the outcome will not be chosen for a split. Another notable

advantage of trees is their ability to handle interactions between moderators, and

non-linear effects. Tree models thus have greater flexibility in modeling the complexity

of human behavior than linear models do (Earp & Trafimow, 2015). Real-data examples

and simulation studies suggest that metaCART might be useful for detecting

interactions between moderators in meta-analysis (Dusseldorp, van Genugten, van

Buuren, Verheijden, & van Empelen, 2014; Li, Dusseldorp, & Meulman, 2017). A

potentially more important application of tree-based approaches to meta-analysis,

however, relates to the larger problem of dealing with heterogeneity in meta-analysis.

Adapting single trees for meta-analysis is relatively straightforward: Just as with

classic meta-analysis, effect sizes can be weighted according to the reciprocal of their

variance (using either the fixed- or random-effects weights). However, whereas classic

meta-analysis calculate a weighted average effect size, tree models implement these

weights in the impurity function that is used to evaluate the homogeneity of the groups

resulting from a potential split. Studies with larger weights thus exert more influence in

determining what splits are made. MetaCART (Li et al., 2017) follows a two-step

approach: First, weighted classification/regression trees are used to group studies into

clusters with similar effect sizes. The resulting tree model can be visualized, and is
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interpreted as a visual representation of how moderators interact to predict effect size

(Dusseldorp et al., 2014; Li et al., 2017). In the second step, “cluster membership”, i.e.,

which of the tree’s terminal nodes a specific study ends up in, is used as a categorical

moderator in a mixed-effects subgroup meta-analysis. Mixed-effects subgroup analysis

is a type of meta-regression, which assumes random effects within groups, and a fixed

effect across groups. In other words, all differences in effect sizes between subgroups are

assumed to be explained by the subgroup membership, and any unexplained variance is

assumed to be sampling error. The subgroup analysis from the second step is then used

to test the significance of differences between the final groups.

Limitations of tree models

Although the tree-based aproach constitutes a promising first step towards

addressing the problem of heterogeneity in meta-analysis, several limitations remain.

First, although the apparent interpretability of tree models has undoubtedly

contributed to their popularity. However, this interpretability is, to some extent,

misleading. Tree models suffer from an inherent instability, in the sense that minor

variations in the data used to build the model can lead to major changes in tree

structure (Hastie, Tibshirani, & Friedman, 2009). The effect of this instability is

amplified, because trees are susceptible to order effects: Trees are hierarchical

structures, so if a different variable or value is selected for one split in the tree, this

influences all down-stream splits. Furthermore, because the algorithm can only makes

binary splits, it has difficulty capturing linear, additive effects. These, too, will be

represented as a sequence of “interactions”. Finally, variables’ recurrence in a single tree

cannot be taken as evidence for variable importance: Imagine two correlated moderator

variables, x1 and x2, both of which are associated with effect size. If x1 is selected in

one split, x2 is less likely to be selected downstream. This might lead a researcher to

conclude that x2 is unimportant, although — in reality — both variables are equally

important. These shortcomings imply that the true data-generating model may not be

evident from the tree structure (see also Strobl et al., 2009). To summarize, the tree

structure is readily interpretable in terms of how values of predictors are mapped to the
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predicted outcome, but it does not necessarily reflect the true data-generating model,

nor the importance of the variables used at each split.

Tree-based models are also very prone to overfitting (Hastie et al., 2009): The

problem that arises when a model learns too much from the data used to build the

model (training data), and ends up representing not only systematic patterns in the

data, but also its idiosyncrasies (random variation). An overfit model generalizes poorly

to new data (testing data), because its predictions are partly based on these

idiosyncrasies. Overfitting is commonly controlled by pruning the tree, typically to a

smaller tree that minimizes some form of cross-validation error. However, it is

important to note that, while this improves predictions in future data, it does not

improve the tree’s ability to uncover the true model. Pruned trees remain equally

susceptible to the aforementioned instability and order effects. One final caveat of using

single trees is the fact that they provide piecewise constant predictions: Each terminal

node of the tree predicts a specific constant value for the outcome. Predictions can thus

jump substantially for slight changes in the values of moderators, if this causes a study

to be assigned into a different group. This can lead to poor predictive performance

when the link between moderator and effect size is continuous.

MetaCART, like any technique based on a single tree, inherits the aforementioned

limitations. Moreover, the implications of metaCART’s two-step approach, where

cluster membership in the tree’s terminal nodes is used as a categorical moderator in a

subgroup meta-analysis, remain unexplored (as the authors rightly point out, Li et al.,

2017). Several specific concerns regarding this approach are noteworthy: First, by

treating cluster membership as an observed variable, metaCART ignores classification

uncertainty: The possibility that a given study might be a close match for more than

one of the tree’s terminal nodes. The assumption that cluster membership is measured

without error is untenable, because even slight changes in the unstable tree structure

could lead studies to be assigned to a different terminal node (Hastie et al., 2009).

Secondly, it is not clear that mixed-effects subgroup analysis is an appropriate model for

the heterogeneity within and between groups resulting from a tree-based classification.
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The mixed-effects model used by metaCART assumes heterogeneity to be normally

distributed, and assumes the amount of heterogeneity within all subgroups to be the

same (Viechtbauer & others, 2010). This is at odds with the fact that the

non-parametric tree algorithm merely tries to maximize the differences between these

clusters; it has no incentive to ensure that effect sizes within terminal nodes will be

normally distributed, nor to ensure equality of variance (homoscedasticity) across

terminal nodes. Thirdly, the mixed-effects subgroup analysis assumes a fixed effect

across groups. In many cases, however, the random-effects model is more appropriate to

model residual heterogeneity (Riley et al., 2011). Finally, using this subgroup analysis

for statistical inference violates the logic of null-hypothesis significance testing. Given

that the groups being compared are derived from a data-driven approach designed to

maximize differences between them, the null-hypothesis that there are no differences

between the groups is untenable. Conducting such a test is tautological at best (see:

the null ritual, Gigerenzer, Krauss, & Vitouch, 2004).

Random Forests

Many of the limitations of single trees are overcome by the ensemble learning

method “random forests” (Breiman, 2001). This aptly named technique grows many

(often hundreds or thousands) of individual trees on bootstrapped samples of the initial

dataset, which introduces variance between the trees. To increase this variance even

further, at each split, only a small random selection of moderators is considered as

splitting variables. The predictions of all these trees are then averaged. In doing so,

random forests turn the instability of individual trees into an advantage: First of all,

each variable has a chance to be included in at least some of the trees in the forest, and

order effects are perturbed across trees. This allows for the detection of correlated

predictors and smaller effects that would be washed out in a single tree. Secondly,

because each tree captures some of the systematic patterns in the data, plus some of the

idiosyncrasies present only in its bootstrap sample, overfitting tends to average out

across trees. Thirdly, because each tree returns slightly different predictions, random

forests capture continuous (curvi)linear relationships and complex interactions much
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better than the piecewise linear predictions of individual trees can. Consequently,

substantial gains in predictive accuracy can be achieved by using random forests rather

than individual trees (Bühlmann & Yu, 2002). Finally, the predictive ability of each

tree can be computed for the cases not part of that tree’s bootstrap sample. This yields

a measure of predictive accuracy known as out-of-bag (OOB) error, which closely

approximates the cross-validation error, and thus provides a good estimate of the

prediction accuracy in future samples (Boulesteix, Strobl, Augustin, & Daumer, 2008;

Hastie et al., 2009). Consequently, the R2
oob also approximates the cross-validated R2

cv.

In most random forests algorithms, weights are applied during bootstrap sampling,

which means that cases with larger weights are selected with greater probability. Once

studies are included in a bootstrap sample, however, each is weighted equally in the

splitting process.

Interpreting random forests

Although random forests lack the intuitive appeal of single trees, they yield a

useful metric for interpreting the overall importance of moderators, or “variable

importance”. The variable importance measure with the most desireable characteristics

that is also widely implemented is permutation importance (Breiman, 2001, for an

unbiased alternative see Altmann, Toloşi, Sander, & Lengauer, 2010). After growing the

random forest, each variable is randomly scrambled, one at a time, to remove any

association it may have had with the outcome. Permutation importance is then defined

as the difference in OOB prediction error before- and after permutation. A negative

permutation importance can be obtained when randomly permuting a variable leads to

a spurious improvement in predictions. An advantage of permutation importance is

that it takes into account the variable’s contribution individually, as well as in

interactions with other variables. Thus, if the permutation importance of a variable is

high, but it does not appear to have a main effect on the outcome, this might indicate

that the variable is relevant in interactions with other variables. The importance of all

variables is typically plotted to compare their relative contributions, and can be used to

identify and select important moderators. Secondly, random forests offer a way to
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visualize the marginal effects of individual moderators on effect size, and to probe

interactions. These so-called “partial dependence plots” display the predicted effect size

at different levels of a specific moderator, whilst averaging over all other moderators.

Because such plots can be easily visualized for one or two predictors, they lend

themselves to exploring the functional form of the bivariate relationship between a

moderator and effect size in a 2D plot, or to visualize the bivariate interaction between

two moderators in a 3D plot, or heat map.

Developing MetaForest

The goal of the present study was to develop a robust, tree-based method to

explore heterogeneity in meta-analysis. We aimed to overcome the limitations of single

trees by using random forests. To this end, we developed MetaForest: A technique that

applies random- or fixed-effects weights to random forests. We implemented MetaForest

in R (Team, 2017), as a wrapper around ranger (Wright & Ziegler, 2015), which is a

very fast implementation of the random forests algorithm with advanced features. The

efficient implementation of ranger was instrumental in conducting the large-scale

simulation studies presented. To optimize the speed of our simulation studies, we used a

very simple implementation of MetaForest. A user-friendly version of MetaForest has

been published in the R package metaforest, along with several functions to

summarize and plot the results of analyses.

Estimating residual heterogeneity

To obtain random-effects weights, the residual variance, τ 2, must be known or

estimated. In preliminary analyses, we considered three alternative approaches to this

problem. The first was based on Li et al. (2017), who simply passed the “known” values

of τ 2 used to generate the data to the metaCART function. A limitation of this

approach is that it does not take into account simulation variance induced when

random errors are drawn from a distribution with variance τ 2. Second, in their

suggestions for future research, Li and colleagues suggested first growing an unweighted

tree, and estimating τ 2 on the residuals of this analysis. Ostensibly, the goal of this

approach is to remove the “reducible” heterogeneity from the data, leaving only the
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“irreducible”, residual heterogeneity. It is not clear, however, that an unweighted tree

model can adequately account for the heterogeneity introduced by moderators. Finally,

a third approach is to estimate τ 2 on the raw data. Because the raw data incorporates

both residual heterogeneity, and heterogeneity introduced by the moderators, τ 2 will be

overestimated if there are significant moderators. In the simulation studies presented

below, we included all three of these estimates of τ 2. However, across both studies, the

third estimate, based on the raw data, had the best performance. Because the

differences between the three estimators were negligible, and because evaluating

different estimators of τ 2 was not the focus of the present paper, we report only the

results for this best-performing estimate. The full syntax for all analyses will be made

available on the Open Science Framework (OSF). We used the method of moments

(DerSimonian & Laird, 1986) for all estimates of residual heterogeneity, because it offers

a substantial computational advantage over other, iterative, estimators.

Study 1

This first simulation constitutes a partial replication of the simulation Li,

Dusseldorp, and Meulman (2017) conducted to determine which settings resulted in the

best performance for metaCART. We included three versions of MetaForest: 1)

random-effects weighted MetaForest, 2) fixed-effects weighted MetaForest, and 3)

unweighted MetaForest. We included the version of metaCART recommended by the

authors, which uses random-effects weights with a known value of τ 2, and controls

overfitting by pruning the tree until cross-validation error is within the minimum

cross-validation error plus 0.5SE. We evaluated three performance criteria: 1) The

algorithms’ predictive performance, 2) their power, and 3) their ability to perform

variable selection.

Performance criteria

Predictive performance. In order to examine the predictive performance of

the different algorithms, we had to depart from the original study design. Li and

colleagues simulated data using binary trees as the true data-generating models, and

then defined performance as metaCART’s ability to successfully retrieve these true
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models. This metric does not generalize to evaluating the performance of other models,

including random forests, nor to evaluating the performance of metaCART itself when

the data-generating model is not a binary tree. Since meta-analysis is generally defined

as a regression problem, we instead defined performance as prediction accuracy,

operationalized as the cross-validated R2
cv (Hastie et al., 2009). This is obtained by

estimating a model on a “training” dataset, and then using a second “testing” dataset

to calculate the fraction of variance explained by this model, relative to the variance

around the mean of the training dataset, which is the best prediction for testing data in

the absence of a model. Thus, for a testing dataset of n studies,

R2
cv = 1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − y)2 , (5)

where ŷi is the model prediction for study i, and y is the mean of the training dataset.

Power. Li and colleagues defined power as the algorithm’s ability to correctly

detect the presence of moderator effects. When an algorithm correctly detects

moderator effects, its cross-validated R2
cv is greater than 0. We thus defined power as

the proportion of datasets in which an algorithm had an R2
cv > 0.

Variable selection. Li and colleagues defined metaCART’s ability to perform

variable selection in terms of the algorithm’s ability to exactly recover the underlying

model. Again, this operationalization does not generalize to other algorithms which do

not yield binary trees. Instead, we defined variable selection in terms of the algorithms’

ability to assign positive variable importance values to relevant moderators. Both the

single trees used by metaCART, and the random forests underlying MetaForest, yield

variable importance measures, which capture the relative contribution of different

moderators. We extracted these variable importance measures, and rescaled them to

sum to 100 within each simulated dataset.

Design factors

Li and colleagues manipulated five design factors: the number of studies k (40, 80,

and 120), the average within-study sample size n (40, 80, and 160), the number of

moderators M (5, 10, and 20), the population effect size β (.5 and .8), and the residual
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heterogeneity τ 2 (0, .025, and .05). The authors report omitting two conditions from

the final paper, because metaCART displayed poor performance in a pilot simulation:

A condition where the number of studies k = 20, and a condition where the population

effect size β = .2. We chose to retain these conditions, to examine whether MetaForest

might offer an advantage in dealing with small samples and effect sizes. Finally, data

were simulated using a random-effects model (see Equation 2), based on five binary tree

models f(x): (a) a null-model without any moderators, i.e., µi = 0; (b) a main effect of

a single moderator, µi = βx1i; (c) a two-way interaction, µi = βx1ix2i; (d) two two-way

interactions, µi = βx1ix2i + β(1− x1i)x3i; and (e) a three-way interaction,

µi = βx1ix2ix3i. In the original study, the null-model (a) was included to examine the

metaCART’s tendency to build a tree model when the data consisted only of noise. In

the present study, such overfitting can be deduced from a negative R2
cv. When no true

model is present in the data, the best prediction an algorithm can make is the intercept

of the training data. If an algorithm instead overfits the noise in the data, this will, on

average, result in a negative R2
cv.

Simulation

For every possible combination of the design factors and models, 100

meta-analytic datasets were simulated. Each dataset consisted of two subsamples: A

training sample, with a number of studies equal to the design factor k, and a testing

sample of 100 studies. For each study i, the values of M binary moderators were

randomly drawn from a Bernoulli distribution with probability p = .5 (i.e., a series of

coin tosses), resulting in the vector of moderators xi. The dependent variable yi

represents Hedges’ g; an effect size commonly used in meta-analysis, which is an

estimator of the standardized mean difference between a treatment and control group.

For each study, we first sampled the true effect size θi from a normal distribution, with

a mean computed by evaluating the model f(x) for the value of β and the vector of

predictors xi, and with variance τ 2 (the between-studies variance). Sampling error was

introduced by varying the within-study sample size: Each study sample size ni was

drawn from a normal distribution with mean n, and standard deviation n/3
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(Viechtbauer, 2007). The observed effect size yi was then drawn from a non-central

t-distribution, assuming an equal number of cases in the treatment and control group

(Hedges, 1981; Li et al., 2017).

Hypotheses

Several hypotheses can be formulated about the influence of the design factors on

the predictive performance of the algorithms. Broadly speaking, each design factor can

be thought of as influencing either the “signal” in the data, or the “noise” that obscures

this signal. Any design factor that increases the signal should have a positive effect, and

any factor that increases the noise should have a negative effect on the variance

explained by different algorithms. The effect size β, for example, largely determines the

amount of signal in the data, and τ 2 determines the “noise” due to residual

heterogeneity. The model determines the relative influence of the effect size β and τ 2, so

these design factors are expected to interact with the model. The number of studies k

constitutes the data available to the algorithms, from which to reconstruct the signal.

The average n of these studies determines the quality of these data, as lower levels of n

incur greater noise due to sampling error. Finally, the number of moderators M

contributes indirectly to the noise in the data, because only a few of the moderators are

correlated with the outcome, and the rest are irrelevant. Single trees are generally able

to ignore uncorrelated predictors, and should thus incur little noise due to increasing M .

Random forests, on the other hand, are forced to learn from uncorrelated moderators

any time the random selection of variables available for a split does not include a

moderator associated with the outcome (Hastie et al., 2009). Thus, MetaForest should

be substantially more affected by uncorrelated moderators than metaCART.

We expected that MetaForest would demonstrate superior performance over

metaCART, because of random forests’ greater flexibility in learning from data. We

further hypothesized that random-effects MetaForest would outperform fixed-effects and

unweighted MetaForest, because the random-effects weights cause the algorithm to

learn more from more informative studies.
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Analyses

We examined the predictive performance of all algorithms, using ANOVAs to

assess the influence of the design factors and their two-way interactions on both

absolute and relative performance. Absolute performance was defined as the

cross-validated R2
cv. Relative performance was operationalized as the difference between

the R2
cv of random-effects MetaForest and that of the other algorithms, on the same

dataset. We conducted separate ANOVAs for model (a) and the other models, because

the predictors of overfitting should differ from the predictors of performance in the

presence of a true effect. Due to the large size of the dataset (162000 observations), all

effects were statistically significant, so we focus on effect size instead, in terms of the

partial η2. This measure reflects the proportion of the variance in the outcome

explained by each independent variable, after all other effects have been partialed out.

To examine the power of MetaForest versus metaCART, we examined the conditions

under which the best-performing version of MetaForest, and metaCART, achieved a

positive cross-validated R2
cv in at least 80% of datasets.

Results

The results are visually presented in greater detail in Supplementary Figures

S1-S5, which display the mean R2
cv by algorithm, paneled by the design factors.

Overfitting the null model. For model (a), which did not include any

predictors, the mean R2
cv was negative for all versions of MetaForest; random-effects

MetaForest M = −0.07, SD = 0.07, fixed-effects M = −0.07, SD = 0.07, unweighted

M = −0.08, SD = 0.08. This indicates that all versions of MetaForest were susceptible

to overfitting a null model. MetaCART on the other hand, which defaults to an

intercept-only random-effects meta-analysis when no tree structure is found, was much

less susceptible to overfiting (M = 0.00, SD = 0.05). According to ANOVA, two design

factors played minor roles in predicting overfiting. The number of moderators M had

an influence on all versions of MetaForest (η2
ps = .06); overfitting decreased with an

increasing number of moderators. In the absence of informative moderators, MetaForest

overfits because it is forced to learn from uninformative moderators instead. This
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finding suggests that, when there are more uninformative moderators to choose from at

each split, this effect is diluted. Secondly, the number of studies k had an effect on

overfitting for all algorithms (η2
ps ranged from .01 – .02), and overfitting decreased as k

increased.

Absolute performance. For the remaining models, the mean R2
cv was highest

for random-effects MetaForest (M = 0.18, SD = 0.21) and fixed-effects MetaForest

(M = 0.18, SD = 0.21), followed by unweighted MetaForest (M = 0.17, SD = 0.22),

and finally metaCART (M = 0.16, SD = 0.24). The partial η2s of the effects of design

factors on predictive performance are displayed in Table 1. Because many factors had

small, non-zero effects for some of the algorithms, we limit our discussion here to effects

with a partial η2 ≥ .10 for at least one of the algorithms.

Across algorithms, we found large effects of the effect size β, and the interaction

between β and the model (see Figure 1). These effects were strongest for the different

versions of MetaForest, and smaller for metaCART. Predictably, the positive effect of β

on predictive performance was lower for models in which β was multiplied with more

moderators. The residual variance τ 2 showed a main effect, but did not interact with

the model. This main effect indicated that increasing τ 2 diminished predictive

performance of MetaForest, and to a lesser extent, metaCART (Figure 6).

All algorithms showed substantial effects of the number of studies k. Moreover,

the interaction between k and β played a substantial role for metaCART, and a small

role for MetaForest (Figure 3). Specifically, adding additional studies had a stronger

effect on predictive performance when the effect size was greater. For metaCART only,

there was also a substantial interaction effect between k and the model (Figure 4),

which revealed that, as model complexity increases, metaCART needs a larger sample

size before it starts explaining any variance. The different versions of MetaForest did

not show this effect. There was also a substantial main effect of the average

within-study sample size: Greater n substantially improved predictive performance for

MetaForest, and to a lesser extent, for metaCART (Figure 5). This reflects the positive

influence of the information added by having large sample studies, which yield more
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precise observed effect sizes. Finally, the number of moderators M and its interaction

with β played a substantial role for MetaForest, but not for metaCART. As can be seen

in Figure 2, for MetaForest, the positive effect of β on predictive performance was

diminished by increasing the number of moderators. This reflects the fact that

MetaForest is forced to learn from irrelevant predictors, if these outnumber true

moderators.

Relative performance. On average, the mean performance difference between

random-effects MetaForest and metaCART was M = 0.02, SD = 0.16. The differences

with fixed-effects and unweighted MetaForest were M = 0.001, SD = 0.018 and

M = 0.01, SD = 0.03, respectively. These results indicate that random-effects

MetaForest has a small advantage over all other algorithms. None of the design factors

exerted notable influence on the performance difference between random-effects

MetaForest, and fixed-effects or unweighted MetaForest. These absolute performance

differences between the different versions of MetaForest thus appear to be relatively

constant with respect to the conditions of this simulation. Because these differences

were small and constant, we will focus only on the comparison between random-effects

MetaForest and metaCART going forward.

Several design factors exerted substantial influence on the difference between

random-effects MetaForest and metaCART. Table 1 shows the partial η2s of these

effects. Most relevant are two interaction effects: The interaction between k and the

effect size β, and the interaction between the number of studies k and the model.

Inspection of the interaction between k and β suggests that the effect of the number of

studies on the performance difference is greater at higher effect sizes (see Figure 3).

Specifically, MetaForest performs relatively well, even when sample size is as low as

k = 20, when the effect size is at least β = 0.5, but at larger sample sizes of k ≥ 80,

metaCART outperforms MetaForest. Inspection of the second interaction, between k

and the model (Figure 4), suggests that MetaForest already performs well at low levels

of k, and that metaCART needs k to surpass a certain threshold before it starts

performing well. This small-sample advantage of MetaForest increases with the
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complexity of the model.

Power. To determine the statistical power of random-effects MetaForest and

metaCART, we computed the proportion of cases for each cell of the design in which

each algorithm achieved a positive cross-validated R2
cv, that is, produced superior

predictions as compared to the mean of the training dataset. These results are reported

in full in supplementary Table S1. To determine practical guidelines for the power of

these algorithms, we focus here on the conditions under which the two algorithms

achieved a positive cross-validated R2
cv in at least 80% of datasets (see Figure 7). The

results reflect the influence of the design factors as discussed in the preceding

paragraphs, and demonstrate that random-effects MetaForest reaches sufficient power

at lower levels of k and n than metaCART. When the effect size is small (β = .2), both

algorithms have insufficient power across most conditions. Only for relatively simple

models (b, c, and d), and with relatively high levels of n and k, do the algorithms reach

acceptable power. For medium and large effect sizes (β ∈ {.5, .8}), MetaForest has

sufficient power even at the lowest levels of k (20) and n (40) for models b, c, and d,

and metaCART has sufficient power at higher levels of k (Li and colleagues recommend

at least k = 80). For the more complex model (e), both algorithms require higher levels

of k and n: Approximately k = 80 is required for MetaForest to reach sufficient power,

and k = 120 for metaCART.

Variable selection. We conducted ANOVAs to examine which design factors

predicted the standardized variable importance of a relevant moderator (we examined

x1). The most important design factors were effect size β (partial η2 .22 and .18 for

random-effects MetaForest and metaCART), the number of studies k (partial η2 .03 and

.18 for random-effects MetaForest and metaCART), and the interaction between these

design factors (partial η2 .02 and .13 for random-effects MetaForest and metaCART).

Figures 8 and 9 represent the distribution of the standardized variable importance for

the first 5 variables in the model (this includes all relevant moderators, and at least one

irrelevant moderator for comparison), paneled by β, k, and the model. Each segment of

a boxplot (whiskers and both halves of the box) represents 25% of scores. Thus, when a
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boxplot is raised above the x-axis, an algorithm identifies a specific variable as having

positive importance at least 75% of the time. Using this cutoff, it can be seen that

metaCART has adequate power for detecting relevant moderators only when the effect

sizes is at least β ≥ .5, and the number of studies is at least k ≥ 40 in model (b), k ≥ 80

in models c and d, and β = .8 and k = 120 for model (e). MetaForest, on the other

hand, had adequate power in all conditions for model (b). For models c and d,

MetaForest had sufficient power in all conditions if β > .2. When β = .2, MetaForest

required at least k ≥ 80 studies. For model (e), MetaForest had sufficient power if

β ≥ .5 and k ≥ 40. Thus, MetaForest displayed a clear advantage in detecting relevant

moderators in most conditions.

Discussion

Overall, random-effects MetaForest outperformed metaCART in terms of

predictive performance, power, and variable selection. This study yielded three

important insights regarding MetaForest: First, it revealed that the performance

advantage of random-effects MetaForest over the other versions of MetaForest was

negligible, reminiscent of the minimal difference between unweighted and random-effects

metaCART reported by Li, Dusseldorp, and Meulman (2017). Secondly, it illustrated

that MetaForest inherits the tendency of random forests to overfit in the absence of a

true model, and in the presence of many irrelevant moderators. This problem is

mitigated by the fact that MetaForest provides an estimate of the R2
oob, which indicates

when the model is overfitting by decreasing or becoming negative with the inclusion of

noise predictors. MetaCART did not suffer from the same sensitivity to irrelevant

moderators. Thirdly, it demonstrated MetaForest’s superior power, when compared

with metaCART, to detect small effects and complex models at smaller sample sizes.

Study 2

Li, Dusseldorp, and Meulman (2017) point out that future research is required to

examine metaCART’s performance in cases where the data-generating mechanism is not

a binary tree. This is a relevant question, because — except for the obvious example of

biological sex — true binary data-generating processes are exceedingly rare in the social
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sciences. Even when moderators are measured as binary variables, such as the presence

or absence of behavior change techniques that Li and colleagues examined, the

underlying distribution is often continuous: For example, interventions differ not merely

in terms of whether or not they included a specific behavior change technique, but also

in terms of the quality and quantity of implementation. In this second simulation study,

we thus made the more common assumption that moderators are continuous and

normally distributed. Normal distributions are ubiquitous in nature, and in the social

sciences, because they are the maximum entropy distribution out of all potential

distributions with mean µ and variance σ2, meaning that they require the least

assumptions about the underlying data-generating mechanism (Lyon, 2013). Secondly,

in most conditions of Study 1, the number of uncorrelated moderators outnumbered the

number of true moderators substantially. It is debatable whether it is realistic to

assume that researchers examining heterogeneity might include 20 irrelevant study

characteristics for every relevant one. At the very least, this problem can be avoided by

screening potential moderators before including them in the analysis. Thus, following

Higgins and Thompson (2004), we instead used a range of 1-5 uncorrelated moderators.

We kept the number of uncorrelated moderators constant across datasets by generating

the number of moderators required for the true model, plus the specified number of

uncorrelated moderators. Finally, the range of residual heterogeneity examined by Li

and colleagues (τ 2 ∈ [0, .05]) may have been slightly conservative. Other simulation

studies have used larger ranges, such as τ 2 ∈ [0, 1] (Viechtbauer, 2007), or even

τ 2 ∈ [0, 5] (Higgins & Thompson, 2004). A recent open-data study of 705 meta-analyses

published in Psychological Bulletin from 1990-2013 (Van Erp, Verhagen, Grasman, &

Wagenmakers, 2017) found that, for measures of mean differences, the reported

heterogeneity ranged from [0, 1]. However, as these data were extremely positively

skewed, we used the minimum, median, and 90th percentile of this distribution,

corresponding to the values 0, .04, and .28, to obtain a range of τ 2 as encountered in

practice.

The design factors of this second study were the number of studies k (40, 80, and
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120), the average within-study sample size n (40, 80, and 160), the number of

uncorrelated moderators M (1, 2, and 5), the population effect size β (.2, .5, and .8),

and the residual heterogeneity τ 2 (0, .5, and 1). Data were simulated using the

random-effects model (see Equation 2), based on five linear models f(x):

(a) main effect of one moderator, µi = βx1i

(b) two-way interaction, µi = βx1i + βx2i + βx1ix2i

(c) three-way interaction,

µi = βx1i + βx2i + βx3i + βx1ix2i + βx1ix3i + βx2ix3i + βx1ix2ix3i

(d) two two-way interactions, µi = βx1i + βx2i + βx3i + βx4i + βx1ix2i + βx3ix4i

(e) non-linear, cubic relationship, µi = βx1i + βx2
1i + βx3

1i.

Simulation and analyses

The simulation was identical to Study 1, with the exception that the moderators

for each simulated dataset (equal to M plus the number of moderators in the model)

were drawn from a standard normal distribution. The hypotheses and analyses were the

same as in Study 1.

Results

The results are visually presented in greater detail in Supplementary Figures

S6-S10, which display the mean R2
cv by algorithm, paneled by the design factors.

Absolute performance. The mean R2
cv was highest for random-effects

MetaForest (M = 0.38, SD = 0.22), followed by Uniform MetaForest

(M = 0.38, SD = 0.22), and fixed-effects MetaForest (M = 0.35, SD = 0.20), and

finally metaCART (M = 0.20, SD = 0.27). The partial η2s of the effects of design

factors on predictive performance are displayed in Table 2.

For all algorithms, we found large effects of β and τ 2. The interactions between β

and the model were much smaller than in Study 1 (see Figure 11). The interactions

between τ 2 and the model, however, were larger (see Figure 11). Specifically, predictive

performance increased with increasing effect size, and decreased with increasing τ 2, and
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the steepness of this change differed between models. All of these effects were strongest

for random-effects MetaForest, followed by unweighted MetaForest, and were much

smaller for metaCART.

The number of studies k also had a substantial effect on the performance of all

three algorithms. Moreover, for metaCART, and to a much smaller extent, for

MetaForest, the number of studies k interacted with the residual variance τ 2, and with

the model. The interaction between k and the residual variance (Figure 12) suggests

that metaCART, in particular, benefits less from additional studies k when the residual

heterogeneity is higher. The interaction between k and the model (Figure 13) revealed

that, for metaCART, a minimum number of studies was required before the model

started explaining variance, and this threshold differed between the different models.

The average within-study sample size n had a much smaller effects in this study,

compared to Study 1, all η2
p ≤ .06. Exploratory inspection of the marginal effect of n

revealed that, especially for random-effect and unweighted MetaForest, greater average

within-study sample sizes were associated with better predictive performance (see

Figure 14). The effect of the number of uncorrelated moderators M was smaller as well,

and revealed that a larger number of uncorrelated moderators still led to worse

performance (see Figure 15) for all versions of MetaForest, but not for metaCART. This

illustrates that MetaForest learns more from additional information than metaCART,

but remains vulnerable to the presence of irrelevant moderators.

Relative performance. On average, the mean performance difference between

random-effects MetaForest and metaCART was M = 0.18, SD = 0.19. The differences

with fixed-effects and unweighted MetaForest were M = 0.03, SD = 0.07 and

M = 0.001, SD = 0.034, respectively. These numbers suggest a substantial advantage of

random-effects MetaForest over metaCART, and a very small advantage of

random-effects MetaForest over fixed-effects and unweighted MetaForest. None of the

design factors predicted the performance difference between random-effects and

fixed-effects MetaForest, but several predicted the difference between random-effects

MetaForest, and unweighted MetaForest and metaCART. Table 2 shows the partial η2s
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of the effects of design factors on relative performance.

For the difference between random-effects and unweighted MetaForest, the most

important predictors were the model, effect size β, and the interaction between these

factors (see Figure 11). Inspection of this interaction revealed that random-effects

MetaForest slightly outperformed unweighted MetaForest, except when effect size was

large, in models with a single relevant moderator (models a and e). Smaller effects for

the number of studies k, and the interaction between k and the model, also suggested

that random-effects MetaForest slightly outperformed unweighted MetaForest, except

when the number of studies was large, in models with a single relevant moderator (see

Figure 13). Together, these findings suggests that, when the “signal” in the data is

strong (i.e., large effect size and/or number of studies), and the model is simple,

random-effects weighting stops being beneficial, and instead introduces unnecessary

noise.

Regarding the difference between random-effects MetaForest and metaCART, the

number of studies k, the model, and the interaction between these factors had

substantial effects (Figure 13). This interaction revealed that MetaForest already

performs well at low levels of k, whereas metaCART needs a minimum number of

studies before it starts performing well. This small-sample advantage of MetaForest was

especially notable for more complex models. Another relevant factor was the effect size

β (for example, see Figure 11): Compared to metaCART, the performance of

MetaForest improved more strongly with increasing β.

Power. The power of random-effects MetaForest and metaCART was

determined by computing the proportion of cases in which each algorithm achieved a

positive cross-validated R2
cv in each cell of the simulation design. These results are

reported in full in supplementary Table S2. To determine practical guidelines for the

statistical power of these algorithms, we examined the conditions under which

random-effects MetaForest and metaCART, achieved a positive cross-validated R2
cv in

at least 80% of datasets (see Figure 16). The results reflect the influence of the design

factors as discussed in the preceding paragraphs, and show that MetaForest had
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sufficient power in most conditions, even for as little as k = 20 studies, except when the

effect size was small (β = 0.2), and residual heterogeneity was high (τ 2 = 0.28).

MetaCART, by contrast, required upward of k = 40 studies for the univariate models a

and e, and upward of k = 80 for models with bivariate interactions, b and d.

The pattern of results was more nuanced when the effect size was small and

residual heterogeneity was high. In this case, neither algorithm reached sufficient power

for model (a). For models b and c, MetaForest required about k = 80 studies, and

metaCART did not reach sufficient power. For model (d), MetaForest required only

k = 20 studies in most cases, and metaCART did not reach sufficient power. For model

(e), MetaForest reached sufficient power at k = 20, and metaCART at k = 40.

Variable selection. We conducted ANOVAs to examine which design factors

predicted the standardized variable importance of a relevant moderator (we examined

x1). The most important design factors for MetaForest and metaCART were effect size

β (partial η2s .12 and .11, respectively), the model (partial η2s .19 and .17,

respectively), and the interaction between these factors (partial η2s .13 and .11,

respectively). The number of studies k was also relevant, particularly for metaCART

(partial η2s .02 and .13 for MetaForest and metaCART), and the interaction between k

and the model (partial η2s .02 and .12 for MetaForest and metaCART).

Figures 17 and 18 illustrate the distribution of the standardized variable

importance for the first 5 variables in the model (this includes all relevant moderators,

and at least one irrelevant moderator for comparison), paneled by β, k, and the model.

When a boxplot is raised above the x-axis, an algorithm identifies a specific variable as

having positive importance at least 75% of the time. Using this cutoff, it can be seen

that MetaForest has adequate power for detecting relevant moderators in all conditions,

except when k = 20. At the lowest level of k, MetaForest had adequate power for

univariate models a and e, low power when the effect size was small (β = 0.2) for models

b and d, with bivariate interactions, and low power across all effect sizes for model (c),

with a three-way interaction. MetaCART, on the other hand, never reached adequate

power to detect moderators at k = 20. For model (a), it reached adequate power if
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k ≥ 40 and β ≥ .5; for model (b), it reached sufficient power if k ≥ 80 and β ≥ .5, and

for all effect sizes if k = 120. For three-way interaction model (c), metaCART never

reached adequate power. For model (d), metaCART’s power was satisfactory if k ≥ 120

and β ≥ .5, or if k ≥ 80 and β = .8. Finally, for model (e), metaCART reached

adequate power in all conditions, if k ≥ 40. These results illustrate that, across the

board, MetaForest has greater power to detect moderators, and that the performance of

metaCART is more strongly affected by the different design factors.

Discussion

Overall, random-effects MetaForest demonstrated the best predictive performance,

closely followed by unweighted and fixed-effects MetaForest, and finally metaCART.

The performance difference between random-effects and unweighted MetaForest was

largely explained by the effect size and the model. Specifically, unweighted MetaForest

outperformed random-effects weighted MetaForest when the effect size was large, and

when the model included a single moderator. This lapse in performance is likely caused

by an overestimation of the residual variance. Recall that there are two sources of

between-studies heterogeneity in the data: On the one hand, heterogeneity is caused by

the true data-generating model, composed of the effect size and the model. On the

other hand, random, residual heterogeneity is added (τ 2). Because MetaForest

estimates residual heterogeneity from the raw data, without accounting for the influence

of the moderators, it will be overestimated. The more heterogeneity is introduced by

the true data-generating model, the larger this over-estimation.

Nevertheless, random-effects MetaForest demonstrated consistently high

predictive performance, and responded most flexibly to changes in the design factors. It

also substantially outperformed metaCART, especially when the number of studies was

low. Just as in Study 1, the performance of MetaForest still showed a slight decrease

when the number of irrelevant moderators increased, but this effect was small.

Moreover, random-effects MetaForest demonstrated superior power over metaCART in

terms of detecting reliable patterns in the data, and variable selection.
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General discussion

The present paper introduced MetaForest, a method for exploring heterogeneity in

meta-analysis using random forests. In two simulation studies, we examined the

predictive performance of random-effects, fixed-effects, and unweighted MetaForest, as

well as the single tree-based technique metaCART (Li et al., 2017). Across both

studies, random-effects MetaForest demonstrated superior predictive performance to

metaCART. In most conditions, random-effects MetaForest slightly outperformed

fixed-effects and unweighted MetaForest. These findings indicate that random-effects

MetaForest is a promising technique for exploring heterogeneity. Classic approaches to

meta-analysis are only suitable when all studies are similar, or when a limited number

of known moderators explains between-studies heterogeneity, and the ratio of studies to

moderators is high. MetaForest provides a solution when the number of potential

moderators to be considered is large relative to the number of studies, or when no clear

theory is available to limit the number of potential moderators. In such cases,

MetaForest has greater statistical power than the classic approaches, and can be used to

identify the most important moderators from a large number of candidates.

MetaForest demonstrated a performance advantage over metaCART in Study 1,

and more so in Study 2. The greater performance advantage in Study 2 appears to be a

consequence of two design choices: First, in Study 1, the data were generated from

binary tree models, which can be exactly reproduced by metaCART, but not by

MetaForest. Study 2 instead used continuous moderators. It is open to debate which

data-generating model more accurately represent realistic research scenarios, although

we have argued that normal distributions are likely a better approximation. Secondly,

Study 1 included large numbers of irrelevant moderators, which are known to cause

overfitting in random forests (Hastie et al., 2009). This illustrates that researchers

should be mindful not to include “everything but the kitchen sink” as a moderator in

MetaForest analyses. Even data-driven techniques require making informed decisions.

The danger of overfitting is mitigated, however, by the fact that MetaForest’s R2
oob

approximates the R2
cv (if the data are independent). When the addition of moderators
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leads to a decreasing or negative R2
oob, this suggests that some of the moderators

contribute nothing but noise, which the algorithm is overfitting. In this case, a

researcher might want to perform some type of preliminary feature selection (e.g.,

Svetnik, Liaw, Tong, & Wang, 2004).

The present study suggested that MetaForest has substantial power for identifying

relevant moderators. Assuming continuously distributed moderators, a mere 20 studies

sufficed for MetaForest to attain acceptable power under most conditions, except when

effect size was small, and residual heterogeneity was high. Researchers should be wary,

however, of including large numbers of potentially irrelevant moderators, because these

can undermine the algorithm’s performance. MetaForest also has several advantages

over single trees: It has greater power, is able to make smoother predictions, gives an

estimate of the cross-validation error through its OOB error, and yields useful measures

of variable importance and partial prediction plots. Although we used Hedges’ g as the

simulated effect size, the technique should generalize to other measures of effect size,

just like classic meta-analysis (Viechtbauer & others, 2010).

Strengths and future directions

The present paper has several strengths. First, we were able to demonstrate that

MetaForest had superior predictive performance and power over metaCART, even in a

close replication of the simulation study used to validate metaCART, whose design

factors placed MetaForest at a disadvantage. Secondly, we addressed one of the

directions for future research suggested by Li, Dusseldorp, and Meulman (2017) by

examining the performance of both algorithms in the presence of normally distributed

moderators. Moreover, this second simulation used realistic estimates of τ 2, based on

data from 705 published psychological meta-analyses (Van Erp et al., 2017).

Several limitations remain to be addressed in future research, however. The most

important issue is how to handle dependent data in MetaForest. Oftentimes, studies

report several effect sizes; for example, if a study examines the same research question

using two different outcome variables, this study offers two effect sizes for meta-analysis.

When such dependent effect sizes are more similar than effect sizes from independent
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studies, they can introduce bias in meta-analyses. In classic meta-analysis, this problem

arises because studies with several effect sizes incur more weight in the calculation of

the summary effect (Borenstein et al., 2009). In random forests, predictions for new

data are relatively robust against dependent data (Karpievitch, Hill, Leclerc, Dabney, &

Almeida, 2009), but bias is introduced when computing the OOB (out-of-bag)

prediction error. This bias extends to measures derived from the OOB error, such as

the model’s R2
OOB, and the permutation importance. Recall that trees are grown on

bootstrapped samples, and for each tree, the OOB error is calculated across cases not

included in this bootstrapped sample. If the OOB sample contains effect sizes from the

same studies included in the bootstrapped sample, the model will be able to predict

these dependent effect sizes better than independent effect sizes from new studies,

causing it to underestimate the OOB error. This problem becomes exacerbated if the

similarity of effect sizes within studies increases (Karpievitch et al., 2009).

There are some solutions to the problem of dependent data. The simplest solution

is to use only one effect size per study, either selected randomly, based on quality

criteria, or fit to the research question. The obvious downside is that this does not make

use of all available information. A second potential solution is to split the dataset into

two cross-validation samples by study, thus including all dependent effect sizes from

each study in the same cross-validation sample. Then, two random forests can be grown

on these cross-validation samples, and for each random forest, the other sample can be

used to calculate prediction error and variable importance (see Janitza, Celik, &

Boulesteix, 2016). We have implemented this functionality in MetaForest, and plan to

conduct a simulation study to evaluate this approach as a solution to the problem of

dependent data. Finally, a method has been develped to conduct “multilevel” random

forests (Hajjem, Bellavance, & Larocque, 2014). This might prove to be a very elegant

solution to the problem of dependent data, but the approach is still very new, and

additional research on this issue is required.

A second issue that might benefit from further exploration is the estimation of

residual heterogeneity. In preliminary analyses, we included three different estimates of
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residual heterogeneity: 1) The “known” value of τ 2 used for the simulation, which is

subject to simulation variance; 2) an estimate of τ 2, based on the residuals of an

unweighted MetaForest model; and 3) an estimate of τ 2 based on the raw data. We

found an overall advantage for this latter estimate, and used it for the analyses reported

in this paper. Although this was not a focus of the paper, we observed that the

“known” value of τ 2 performed the worst, possibly because this estimate does not take

simulation variance into account. The values estimates of τ 2 based on the residuals of

an unweighted MetaForest analysis substantially underestimated true residual

heterogeneity, which might suggest that this estimate is negatively biased. Finally, the

estimate based on the raw data displayed the best performance on average. However,

when the effect size was large, and the model involved a single predictor, unweighted

MetaForest demonstrated superior performance over random-effects MetaForest. As

mentioned before, this is likely due to an over-estimation of τ 2, which, when computed

on the raw data, is inflated by moderator-induced heterogeneity. Future research should

address the question of estimating τ 2 in tree-based meta-analysis more thoroughly.

It should also be noted that the performance differences between MetaForest’s

weighting schemes were minimal. One potential explanation for this might be that

MetaForest is already so efficient at identifying reliable patterns in the data, that the

additional advantages conferred by the different weighting schemes are marginal.

Intriguingly, Li and colleagues similarly reported that the performance difference

between the different weighting schemes was negligible for metaCART; evident only at

the third decimal place. It is unclear whether these findings are comparable to ours,

however, because Li and colleagues used a different performance metric than we did,

and because weights are implemented differently in metaCART and MetaForest: In

metaCART, weights are implemented in the impurity function used to evaluate the

homogeneity of the groups resulting from a potential split. The influence of weights on

model building is thus direct: Studies with smaller weights exert less influence in

determining what splits are made. In MetaForest, by contrast, weights are implemented

during bootstrap sampling. Studies with larger weights have a greater chance of being
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included in each bootstrap sample. Once these studies are included, however, their

influence on the splitting process is the same as that of any other study. Consequently,

in bootstrap weighting, the weights exert only indirect influence on the model building

process. Future research might implement both weighting approaches in MetaForest,

and examine whether impurity weights are more advantageous than weighted

bootstrapping.

There are also several minor limitations. For example, future studies might

develop the design of the simulation study further. Although we addressed an

important limitation of the prior literature by including continuous, rather than binary,

moderators, these moderators were uncorrelated. Future research should examine the

performance of tree-based approaches to meta-analysis in the presence of varying levels

of multicollinearity amongst moderators. Furthermore, the performance of random

forests is known to be responsive to two tuning parameters: The number of candidate

variables considered for each split, and the number of trees in the forest (Hastie et al.,

2009). Applied researchers are advised to evaluate the effects of varying these

parameters in their analyses (e.g., see Strobl et al., 2009).

Recommendations for applied research

As we mentioned in the introduction, MetaForest aims to address the issue that

arises when between-studies heterogeneity is suspected, but the specific moderators

responsible for heterogeneity are unknown. To help applied researchers get started with

this new technique, we have published the R package metaforest, and offer several

recommendations for its use. The first recommendation precedes analysis, and relates to

the design of the meta-analysis. When the search for moderators is exploratory,

researchers ought to be inclusive, but focus on moderators that are expected to be

relevant, including theoretically relevant moderators, as well as moderators pertaining

to the sample, methods, instruments, study quality, and publication type. In our

experience, many applied researchers code such study characteristics anyway, but omit

them from their analyses for lack of statistical power. Each moderator should be coded

either continuously or categorically. Secondly, missing data must be accounted for.
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Ideally, missing data should be avoided; for example, by contacting authors, or finding

the relevant information in other publications on the same dataset. Alternatively, single

imputation must be used, because no method currently exists for aggregating the

results of MetaForest models conducted on multiply imputed datasets. Finally, when all

data are collected, the effect sizes must be computed, and their variance estimated. The

R package metafor is well suited for this task (Viechtbauer & others, 2010). The

resulting effect sizes and their variances, as well as the moderators that are to be

included in the model, can then be passed to the MetaForest function.

With regard to data analysis, we recommend the use of random-effects weighted

MetaForest by default, because it demonstrated the best performance in most

conditions of our simulations. When reporting their results, researchers should

substantiate their decision to explore heterogeneity on both subjective and objective

grounds. The former can be achieved by simply ascertaining that the body of literature

to be meta-analyzed appears to be heterogeneous; the same rationale commonly used to

support the use of random-effects meta-analysis (Higgins et al., 2009). The latter can

be accomplished by conducting a random-effects meta-analysis without any moderators,

and reporting the estimated τ 2, or another estimate of heterogeneity. Cochran’s Q-test

for the significance of this heterogeneity can also be reported. It does not constitute

sufficient grounds, however, for deciding whether to explore or ignore heterogeneity,

because it is often underpowered when the number of studies is low, and overpowered

when it is high (see Higgins & Thompson, 2002). Researchers should report the R2
oob, to

determine whether the MetaForest model explains significant variance in the effect size.

To determine which moderators most strongly explain differences in effect size, variable

permutation importance can be plotted and reported. The marginal effects of these

moderators, and bivariate interactions between them, can be explored using partial

prediction plots. The R package metaforest provides convenient functions to generate

these statistics and plots.

Although MetaForest provides a wealth of fine-grained information about the

relationships between moderators and effect size, we understand that applied
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researchers are typically more comfortable with the regression-based paradigm of classic

meta-analysis. As we pointed out in the introduction, there are potential pitfalls to

consider when combining these two approaches. Nevertheless, we believe that a

compromise is possible. Researchers might wish to follow a MetaForest analysis with a

classic meta-regression analysis, to examine the effects of the most important

predictors. Meta-regression provides a much cruder model than MetaForest, because it

can only account for linear effects, whereas MetaForest can accommodate non-linear

effects and complex interactions. However, it is an empirical question how much

information is lost through this simplification. Researchers can do two things to

determine whether this simplification is acceptable: First, researchers should examine

partial prediction plots to determine whether the effects appear to be linear, or if

predictors should be transformed to create non-linear- and interaction terms, before

conducting meta-regression. Secondly, the cross-validated R2
cv of the meta-regression

model should be compared to the R2
oob of the MetaForest model. If the difference

between the two is not too large, the meta-regression model might serve as a viable and

readily interpretable approximation of the effects of the most important moderators on

effect size. As we pointed out in the introduction, one should be skeptical of statistical

inferences drawn from a meta-regression which was preceded by variable selection, and

focus on interpreting the direction and effect size of regression slopes, rather than

null-hypothesis significance testing.

We expect that researchers might also be interested in comparing the performance

of MetaForest and metaCART on their own data. To do so, we recommend using

cross-validation to compare the R2
cv for both algorithms. To evaluate the performance of

both algorithms on large datasets, researchers can simply set aside a random subsample

to compute the R2
cv, as we did in the present study. For smaller datasets, researchers

might instead prefer to use k-fold or leave-one-out cross-validation (Hastie et al., 2009).

The same logic we proposed for comparing MetaForest models to meta-regression

models applies here: As MetaForest is more flexible, its R2
cv should be higher, and can

serve as a benchmark for the performance that can be attained using metaCART. If the
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R2
cv of metaCART is only slightly lower, a single tree may be already be a relatively

good — albeit simplified — approximation of the underlying model. However, it is

important to keep in mind that the apparent interpretability of the structure of single

trees can be misleading with regard to variable importance, and the true model.

Variable importance measures should therefore be obtained using MetaForest, and

MetaForest’s partial prediction plots can be used to explore apparent interactions

gleaned from metaCART’s tree structure. Finally, it is important to keep in mind that

drawing inferences from a null-hypothesis significance test of the difference between

clusters derived from a data-driven procedure is problematic. When interpreting the

subgroup analysis, we therefore recommend focusing on the effect size of the difference

between clusters, rather than their significance.

Finally, with regards to publication, we highly recommend sharing the data and

syntax for the meta-analysis publicly, either as supplementary materials, or on OSF, or

by publishing the data (e.g., in the Journal of Open Psychology Data). This serves dual

purposes: First of all, transparancy is likely to inspire confidence in the use of new

techniques, which can be checked and replicated by readers and reviewers alike.

Secondly, MetaForest can be used by future researchers to obtain fine-grained

predictions of the expected effect size for a new study on the same topic, for example, in

order to conduct power analysis. To this end, researchers can simply enter their planned

design (or several alternative designs) as new lines of data, using the codebook of the

original meta-analysis, and use the published MetaForest model to calculate the

predicted effect size for a study with these specifications.

Conclusion

The present research has demonstrated that MetaForest is a powerful tool for

exploring heterogeneity in meta-analysis, with a number of advantages over alternative

tools. It can identify important moderators from a larger set of potential candidates,

even when the number of studies is low. If moderators are continuously distributed,

MetaForest often has sufficient power with as little as 20 studies. This is an appealing

quality, because many meta-analyses have small sample sizes. Moreover, MetaForest
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yields a measure of variable importance which can be used to identify important

moderators, and offers partial prediction plots to explore the shape of the marginal

relationship between moderators and effect size. Although tree-based approaches such

as MetaForest constitute a fully fledged, comprehensive paradigm for data analysis,

they can also be readily integrated in classical meta-analytic approaches: If MetaForest

is conducted as a primary analysis, classic meta-analysis can be used to quantify

heterogeneity, and to provide a simplified representation of the linear effects of

important predictors. Conversely, a theory-driven classical meta-analysis could be

complemented by MetaForest, as a final check to ensure that important moderators have

not been overlooked. We hope that this approach will be of use to applied researchers,

and that the availability of user-friendly R functions will facilitate its adoption.
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Table 1

Study 1: Partial η2 for the influence of design factors on R2
cv

MetaForest Fixed-effects Uniform metaCART ∆MF −F X ∆MF −UN ∆MF −CA

β 0.78 0.78 0.77 0.57 0.01 0.01 0.06

τ 2 0.19 0.19 0.16 0.08 0.00 0.00 0.00

k 0.29 0.29 0.28 0.53 0.00 0.00 0.25

n 0.34 0.33 0.33 0.15 0.00 0.00 0.01

M 0.18 0.18 0.16 0.00 0.00 0.00 0.08

Model 0.49 0.49 0.46 0.36 0.00 0.00 0.03

β:τ 2 0.02 0.02 0.02 0.01 0.00 0.00 0.00

β:k 0.11 0.11 0.09 0.38 0.00 0.00 0.21

β:n 0.08 0.08 0.07 0.05 0.00 0.00 0.00

β:M 0.12 0.12 0.11 0.00 0.00 0.00 0.06

β:Model 0.20 0.20 0.18 0.16 0.00 0.00 0.01

τ 2:k 0.01 0.01 0.01 0.03 0.00 0.00 0.02

τ 2:n 0.04 0.05 0.04 0.02 0.00 0.00 0.00

τ 2:M 0.01 0.01 0.01 0.00 0.00 0.00 0.01

τ 2:Model 0.01 0.01 0.01 0.00 0.00 0.00 0.00

k:n 0.02 0.02 0.01 0.08 0.00 0.00 0.03

k:M 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k:Model 0.01 0.01 0.01 0.24 0.00 0.00 0.23

n:M 0.02 0.02 0.02 0.00 0.00 0.00 0.01

n:Model 0.02 0.02 0.02 0.01 0.00 0.00 0.00

M:Model 0.02 0.02 0.02 0.00 0.00 0.00 0.01

Note. Abbreviations: Random-effects MetaForest (MF), fixed-effects (FX), Unweighted (UN), and

metaCART (CA).
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Table 2

Study 2: Partial η2 for the influence of design factors on R2
cv

MetaForest Fixed-effects Uniform metaCART ∆MF −UN ∆MF −F X ∆MF −CA

β 0.50 0.44 0.48 0.21 0.13 0.00 0.05

τ 2 0.27 0.29 0.25 0.08 0.00 0.00 0.02

k 0.47 0.46 0.46 0.51 0.04 0.00 0.09

n 0.06 0.06 0.05 0.01 0.00 0.00 0.01

M 0.10 0.12 0.09 0.00 0.00 0.00 0.05

Model 0.40 0.29 0.40 0.47 0.36 0.01 0.20

β:τ 2 0.06 0.06 0.05 0.01 0.00 0.00 0.01

β:k 0.03 0.02 0.03 0.10 0.01 0.00 0.04

β:n 0.01 0.01 0.01 0.00 0.00 0.00 0.00

β:M 0.01 0.01 0.01 0.00 0.00 0.00 0.00

β:Model 0.26 0.38 0.24 0.14 0.12 0.00 0.01

τ 2:k 0.01 0.01 0.01 0.03 0.00 0.00 0.01

τ 2:n 0.01 0.01 0.01 0.00 0.00 0.00 0.00

τ 2:M 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ 2:Model 0.10 0.12 0.09 0.05 0.00 0.00 0.00

k:n 0.00 0.00 0.00 0.01 0.00 0.00 0.00

k:M 0.00 0.00 0.00 0.00 0.00 0.00 0.00

k:Model 0.04 0.03 0.05 0.26 0.03 0.01 0.25

n:M 0.00 0.00 0.00 0.00 0.00 0.00 0.00

n:Model 0.02 0.02 0.02 0.01 0.00 0.00 0.00

M:Model 0.04 0.04 0.04 0.00 0.00 0.00 0.02

Note. Abbreviations: Random-effects MetaForest (MF), fixed-effects (FX), Unweighted (UN), and

metaCART (CA).
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Figure 1 . Study 1: Marginal R2
cv for the interaction between

effect size and model.



Pre-
pri

nt

RANDOM FORESTS META-ANALYSIS 44

●

●

●

●

●

●

●

●

●

Moderators: 5 Moderators: 10 Moderators: 20

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

0.0

0.1

0.2

0.3

β

R
2

Algorithm
● MetaForest

MetaForest FX

MetaForest UN

metaCART

Figure 2 . Study 1: Marginal R2
cv for the interaction between
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Figure 4 . Study 1: Marginal R2
cv for the interaction the

number of studies and the true model.
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Figure 5 . Study 1: Marginal R2
cv for the effect of n.
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Figure 6 . Study 1: Marginal R2
cv for the effect of τ 2.
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Figure 7 . Study 1: Conditions under which random-effects

MetaForest and metaCART reach 80% power.
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Figure 8 . Study 1: Boxplots indicate the proportion of cases

in which MetaForest assigned positive variable importance to

a variable.
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Figure 9 . Study 1: Boxplots indicate the proportion of cases

in which metaCART assigned positive variable importance to

a variable.
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Figure 10 . Study 2: Marginal R2
cv for the interaction between

effect size and the model.
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Figure 11 . Study 2: Marginal R2
cv for the interaction between

residual heterogeneity and the model.
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Figure 12 . Study 2: Marginal R2
cv for the interaction between

the number of studies and residual heterogeneity.
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Figure 13 . Study 2: Marginal R2
cv for the interaction between

the number of studies and the true model.
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Figure 14 . Study 2: Marginal R2
cv for the effect of the

average within-study sample size.
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Figure 15 . Study 2: Marginal R2
cv for the effect of the

number of irrelevant moderators.
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Figure 16 . Study 2: Conditions under which random-effects

MetaForest and metaCART reach 80% power.
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Figure 17 . Study 2: Boxplots indicate the proportion of cases

in which MetaForest assigned positive variable importance to

a variable.
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Figure 18 . Study 2: Boxplots indicate the proportion of cases

in which metaCART assigned positive variable importance to

a variable.
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