Main content

Contributors:

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Discussions of model selection in the psychological literature typically frame the issues as a question of statistical inference, with the goal being to determine which model makes the best predictions about data. Within this setting, advocates of leave-one-out cross-validation and Bayes factors disagree on precisely which prediction problem model selection questions should aim to answer. In this comment, I discuss some of these issues from a scientific perspective. What goal does model selection serve when all models are known to be systematically wrong? How might "toy problems" tell a misleading story? How does the scientific goal of explanation align with (or differ from) traditional statistical concerns? I do not offer answers to these questions, but hope to highlight the reasons why psychological researchers cannot avoid asking them.

Files | Discussion Wiki | Discussion | Discussion
default Loading...

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.