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Abstract 

The use of Bayes Factors is becoming increasingly common in psychological sciences. Thus, it is 

important that researchers understand the logic behind the Bayes Factor in order to correctly interpret 

it, and the strengths of weaknesses of the Bayesian approach. As education for psychological 

scientists focuses on Frequentist statistics, resources are needed for researchers and students who want 

to learn more about this alternative approach. The aim of the current article is to provide such an 

overview to a psychological researcher. We cover the general logic behind Bayesian statistics, explain 

how the Bayes Factor is calculated, how to set the priors in popular software packages, to reflect the 

prior beliefs of the researcher, and finally provide a set of recommendations and caveats for 

interpreting Bayes Factors. 
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What is a Bayes Factor? 
 
A note on reading this article:  
Reading an article about statistics is very different from reading an article about psychological 
sciences. When reading a psychology article, most experienced psychological scientists can read it 
once and understand its contents. Simply reading the paper is often not sufficient for understanding 
statistics articles, which can be frustrating. We suggest to first read this paper to get the general ideas 
behind it (if necessary, skipping the more maths-heavy sections - we flag the sections which can be 
skipped without compromising on the understanding of the general concepts). After a consolidation 
period, re-reading the paper more thoroughly may be helpful, and the reader may want to spend time 
on understanding the details: scrutinise the formulae, try to understand where each term comes from, 
and compute some additional examples (e.g., for Figure 1, calculating the posterior probabilities for 
different prior probabilities, power parameters, and alpha-levels). 
 
The most common statistical tool for making inferences in psychological sciences is the p-value. The 
p-value has been criticised (e.g., Cumming, 2014; Wagenmakers, 2007), and its (mis)use has received 
some of the blame for the replication crisis in psychology (Dienes, 2016; Halsey et al., 2015; Open 
Science Collaboration, 2015; for a thorough discussion about p-values, see special issue on this topic 
in the American Statistician, e.g., Wasserstein & Lazar, 2016). As an alternative to p-values, some 
researchers have proposed to switch to Bayesian statistics for inference (Dienes, 2011; Rouder et al., 
2009; Wagenmakers, 2007). Bayesian statistics follow a different philosophy compared to p-values, 
which are derived from a Frequentist framework, and may be a valuable addition to the tools in a 
psychological scientist’s repertoire. An often-cited advantage of Bayes Factor analyses over 
significance testing is that the Bayes Factor allows us to provide evidence for the null hypothesis, 
rather than only being able to reject it (but see also Harms & Lakens, 2018; Lakens, 2017). However, 
using Bayesian statistics without a thorough understanding is likely to result in the inheritance of one 
of the main issues with p-values: the application of a statistical ritual, which may lead to suboptimal 
decisions about how to analyse the data, and which conclusion one can draw from them (Gigerenzer, 
2004). In the case of Bayesian statistics, the danger of the analysis turning into a ritual is exacerbated, 
compared to Frequentist statistics, because most researchers and current psychology students have 
covered the latter extensively throughout their studies.  
 
Using Bayes Factors requires the explicit specification of parameters that are not necessary for 
calculating a p-value (e.g., prior distributions); thus, arguably, greater familiarity with the logic 
underlying these analyses is required to make informed decisions about the parameter choices. The 
current paper therefore aims to bridge a gap in the literature on statistical tools, by explaining 
Bayesian statistics, and in particular the Bayes Factor, to a researcher or student who has received 
only the basic statistics education that is standard as part of a psychology degree (see also Colling & 
Szűcs, 2018; Kruschke & Liddell, 2018; Tendeiro & Kiers, 2019, for texts with a similar aim but on a 
more advanced level). To be clear, the current paper does not aim to convert researchers to using 
Bayes Factors for inference, but rather to provide them with a minimum amount of knowledge that is 
necessary to interpret a Bayes Factor, should they decide to use it or come across it in another 
manuscript.  
 
What do Bayesian statistics mean? An introduction to Bayes’ Theorem 
Bayesian statistics cover a range of procedures, though the most popular one in psychological science 
is the Bayes Factor (Dienes, 2014; Mulder & Wagenmakers, 2016; Rouder et al., 2007). Their best-



4 

known property is likely to be the fact that they are susceptible to priors: the prior belief that a 
researcher has about the hypothesis before collecting data or conducting the analysis can be explicitly 
included in the statistical model (see glossary and section “What is a Bayes Factor” for a more 
detailed definition and explanation of different types of priors). This feature derives from the origin of 
the term “Bayesian statistics”, namely Bayes’ Theorem. A description of the theorem and its 
implication for making inferences follows; however, a reader who aims to get only a first-pass 
conceptual understanding may skip to the “Interim summary and discussion” subsection without 
compromising their understanding of the subsequent sections.  
 
Bayes’ Theorem describes the conditional probability of an event, P(A|B) (reads as “probability of A 
given B”). Conditional probability is an important concept not just for Bayesian statistics but also for 
properly understanding Frequentist statistics: it is the probability of an event (A), under the condition 
of a different event (B), such as the probability of a person having a disease (A) under the condition 
that they have scored positively on a test designed to diagnose it (B).  
 
Bayes’ Theorem has the following mathematical form: 
 

𝑃(𝐴|𝐵) 	= 	
𝑃(𝐴) 	 ⋅ 𝑃(𝐵|𝐴)	

𝑃(𝐵)
 

 
To illustrate the meaning of this equation with an example: We would like to get the conditional 
probability that a patient has a disease (A), given they tested positive on some diagnostic test (B). In 
order to calculate this, we need to know both the probability that this patient has the disease (P(A)) 
and the conditional probability that the test would detect this disease, under the assumption that the 
patient has it (P(B|A), or the true positive rate). P(B), in the denominator, refers to the overall 
probability that a person chosen at random will get a positive test, regardless of whether they are 
affected or not. P(A) is the prior probability; in this case one can substitute the prevalence of the 
disorder. If a disorder is extremely rare (e.g., the Black Plague), it is intuitive that, even if someone 
tested positive on a test that is supposed to detect it, the probability of the patient actually having it 
continues to be low. The term P(A) is multiplied by the ratio of positive test rates, which reflects the 
intuitive point that, all else kept equal, a low prior probability (or, as P(A) → 0) will lead to a low 
posterior probability (P(A|B) → 0).  
 
Bayes’ Theorem can be used to demonstrate the concept of applying prior knowledge in a formal 
calculation, though it does not directly translate to the way in which Bayesian statistics such as the 
Bayes Factor are calculated. After introducing the logic behind Bayes’ Theorem, we can apply it to a 
statistical null hypothesis test. Let’s say we obtain an observation B, such as running an experiment 
and obtaining a p-value smaller than 0.05. For example, a psychological researcher may be  keen to 
gain insights into whether a treatment is effective. We can write this as A: the probability that the null 
hypothesis of no treatment effect (H0) is wrong (A = P(!H0), where ! is the logical negation sign; note 
that the probability of H0 being wrong is not equivalent to the probability of the alternative hypothesis 
being true). Applying these variables to Bayes’ Theorem, we get the following:  
 

𝑃(!𝐻!|𝑝 < 0.05) 	=
𝑃(! 𝐻!	) 	 ⋅ 	𝑃(𝑝 < 0.05|! 𝐻!)

𝑃(𝑝 < 0.05)
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P(p<0.05|!H0) is the statistical power, because statistical power is defined as the conditional 
probability of a significant p-value, given that the null hypothesis is false. If power is 80%, then 
P(p<0.05|!H0), also known as the true positive rate, is 0.80. So far, these are concepts that most 
readers will be familiar with from their use of Frequentist statistics.  
 
The novel concept in this equation is the probability of the hypothesis (P(H0)) or rather its inverse, 
P(!H0). We also need to calculate P(p<0.05), the overall probability of a significant p-value. How this 
is calculated can be derived intuitively from Figure 1. For now, we focus on the P(!H0)-term in the 
numerator. We can plug in the values for the standardly assumed case of 80% power and alpha-level 
of 0.05, and assuming that we observed a significant p-value in an experiment: 
 

𝑃(!𝐻!|𝑝 < 0.05) 	= 	
𝑃(! 𝐻!) 	 ⋅ 	0.80

0.80	 ⋅ 𝑃(! 𝐻!) 	+ 	0.05	 ⋅ 𝑃(𝐻!)
 

 
For the probability of the null hypothesis being false (P(!H0)), the researcher needs to apply some 
informed judgement. Putting this into a concrete example, let’s say, our null hypothesis is that 
precognition is not real: humans cannot foresee the future. To test this hypothesis, we recruit 
undergraduate students and ask them to predict, in an alternative-forced-choice experiment, which 
words they will see in a word list which will be presented to them afterwards (Bem, 2011). Most 
researchers will have a very strong prior that precognition is not real: we could put a number on this 
by saying that, in this case, our prior belief in the null hypothesis is 99%. In this case, the probability 
of the null hypothesis (H0) is 0.99, and the probability of !H0 is 0.01. If we run the experiment and 
find that undergraduate students are significantly above chance level (with p < 0.05, i.e., the standard 
significance threshold), we can substitute the following:  
 

𝑃(!𝐻!|𝑝 < 0.05) 	= 	
0.01	 ⋅ 	0.80	

	0.80	 ⋅ 0.01	 + 	0.05	 ⋅ 0.99
 

 
This calculation gives us a value of 𝑃(!𝐻!|𝑝 < 0.05)≈ 0.14: Even after observing a significant p-
value, given the parameters described above and a strong prior belief that precognition is not real, the 
probability of the null hypothesis remains approximately 86%. Figure 1 depicts Bayes’ Theorem, and 
the steps for calculating the conditional probabilities, P(!H0|p<0.05), using frequency counts rather 
than percentages, under two different assumptions: 50% confidence about the null hypothesis being 
true, or 99% confidence about the null hypothesis being true.  
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Figure 1. Calculation of the posterior probability of the null hypothesis not being true after 
observing a significant effect (p < 0.05), under the assumption of 80% power, alpha = 0.05, and (1) 
50% of all experiments being conducted are on cases where the null hypothesis is true (upper panel), 
and (2) when 99% of all experiments being conducted are on cases where the null hypothesis is true 
(lower panel).   

 
It is noteworthy that Figure 1 and the in-text description of the application of Bayes’ Theorem to 
calculate P(!H0|p<0.05) rely on different definitions of probability (see Chapter 8 of Spiegelhalter, 
2019, for a description and summary of different definitions of probability). In the text, we described 
the percentage, which we plugged in as the prior probability, as the “prior belief” associated with one 
particular hypothesis. This is in line with a Bayesian approach. Here, the outcome of a hypothesis test 
serves to shift the prior belief of a given hypothesis to a posterior belief, which incorporates incoming 
evidence. In contrast, in Figure 1, we take a large number of different possible hypotheses, and the 
prior is the percentage of possible hypotheses where H0 is true. We do not assign a probability to a 
specific hypothesis, but rather calculate what would happen with the posterior probability in the long 
run (i.e., if we repeat the procedure frequently - giving rise to the term “Frequentist statistics”), under 
different assumptions. Most types of data can be analysed with either Bayesian or Frequentist 
methods: there is nothing inherent to a dataset that makes it “Frequentist” or “Bayesian” or 
specifically suitable for these approaches.  
 
The reason why Figure 1 shows Bayes’ Theorem in terms of frequencies rather than probabilities is to 
facilitate the understanding of the underlying concepts, as studies have shown that most people find 
natural frequencies more intuitive than probabilities (reviewed in Gigerenzer et al., 2007). The 
presentation of natural frequencies is in line with a Frequentist approach: despite the use of Bayes’ 
Theorem, the processes are described by making assumptions about what happens in the long run 
(e.g., about the percentage of hypotheses where H0 is true). The probability of a single hypothesis 
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being true or false cannot be assigned in the Frequentist framework, because the long-run behaviour 
does not allow for inferences about a single event.  
 
Interim summary and discussion 
The section above aims to introduce the concepts of prior and posterior beliefs, and to explain the 
workings behind Bayes’ Theorem. These are important concepts for Bayesian statistics, but it is 
important to stress that the calculations are not directly relevant to computing and interpreting a Bayes 
Factor, which we will introduce in the next section.  Bayes’ Theorem illustrates the intuitive idea that, 
if a hypothesis is highly unlikely, it remains unlikely (though slightly less so) even after we collect 
data that is consistent with it. Let’s say we conduct two experiments: one on precognition (testing 
whether participants can foresee the future; Bem, 2011) and one on the Stroop effect (testing whether 
it takes longer to name the colour of the font when a colour word is written in a colour which is 
incongruent with it compared to when it is congruent; MacLeod, 1991). For both experiments, we 
happen to observe a p-value of p = 0.026. A naïve user of statistics may conclude that the identical p-
values suggest that both effects are true. A Bayesian approach gives us a more intuitive justification 
for remaining more sceptical about precognition than about the Stroop effect (although theoretical and 
methodological justifications may be more pertinent).  
 
An important point demonstrated in the calculations above is that we cannot calculate the posterior 
probability of a hypothesis without the prior, which can be conceptualised as the researcher’s belief 
that a given hypothesis (e.g., the null hypothesis) is correct. The p-value gives us the conditional 
probability of the observed data (or more extreme observations), given the null hypothesis 
(P(Data|Null Hypothesis)): whenever we want to get from P(B|A) to P(A|B) (i.e., to calculate P(Null 
Hypothesis|Data)), we need to use Bayes’ Theorem. Calculating the posterior probability of the 
hypothesis, given some data, is not possible without making some assumptions about its a priori 
probability. 
 
Compared to using the p-value for Frequentist inference, Bayesian statistics follow two principles 
which we have discussed so far: (1) They take into account the prior probability to calculate a 
posterior probability, and (2) they can describe the probability of a single hypothesis, as opposed to 
the long-term behaviour under a set of assumptions. Both of these principles are important to bear in 
mind when we aim to understand how Bayesian statistics such as the Bayes Factor can be used for 
inference.  
 
What is the Bayes Factor? 
So far, we have focused on one hypothesis only: The null hypothesis. If we imagine any research 
question that we have been thinking about lately, and we describe the statistical hypothesis in words, 
it might go something like this: “According to my theory, there should be a difference between two 
conditions, where one group should have higher scores than the other. The difference probably won’t 
be too big, but neither too small. If my theory is incorrect, there will be no difference.”1 A sensible 
way to draw this theory-driven hypothesis is depicted in Figure 2, panel A (the plots in Figure 2 are 
generated from code provided by Rouder, 2016). The y-axis shows the density, which is proportional 
to the probability of a given effect size for the alternative hypothesis. 
 

 
1 This seems to be a typical way in which psychological scientists formulate a hypothesis, and it is a reasonable 
approach if the researcher has little information about the possible effect size, and if there is no practical or 
theoretical reason for specifying a smallest effect of interest. 



8 

A. A theoretical model of sensible priors.  B. Prediction densities for the same model. 

  

C. Adding observed data: d = 0.4 D. Adding observed data: d = -0.1 

  

Figure 2. How to generate a set of sensible priors for the null and alternative (Panels A and B), and 
to incorporate incoming data (C and D). 

 
Our theoretical null model is that there will be no effect: the difference between the conditions will be 
exactly zero. This gives us the point prediction, drawn as the blue arrow. An effect which is not too 
big, not too small, could be described as Cohen’s d = 0.5 (Lakens, 2013). However, we do not want to 
confine the model by saying that any values that are slightly bigger or slightly smaller are 
incompatible with our alternative hypothesis: we consider a medium-sized effect to be most likely, but 
also values around it would also be compatible with our theory. Getting from the model descriptions 
in Panel A to a distribution describing the predictions for an experimental outcome requires a 
mathematical procedure (described by Rouder, 2016). In Panel B, the point prediction of the null 
hypothesis has been changed to a distribution where observed values close to zero are considered to 
be most likely under the null hypothesis. For the alternative hypothesis, we apply a transformation 
which makes the prior distribution broader: We are less certain that the observed effect will be close 
to d = 0.5 than about the population parameter δ, because in a given experiment, sampling error might 
shift the data away from δ in a random manner. With this, we have designed a set of sensible priors 
for the null and alternative models, and we are ready to collect data. 
 
Once we have collected the data, we can calculate the size of our effect of interest. In Panel C, our 
observed effect size is d = 0.4 (depicted by the red dashed line). This value is to some extent likely 
both under the null and under the alternative model, as the probability at this point is not zero under 
either model. However, if we follow the intersection of the red line and the two hypotheses (marked 
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by black dots) and look at the corresponding density values on the y axis, we get the following: The 
intersection of the red line with the null hypothesis (blue line) gives us a predictive density of 
approximately 0.04. The intersection with the alternative hypothesis (green line), gives us a predictive 
density of approximately 0.21. The Bayes Factor is the ratio between these two densities2. In this case, 
0.21/0.04 gives us a Bayes Factor of 5.25. Thus, the Bayes Factor is 5.25 in favour of the alternative 
hypothesis: the data are approximately 5 times more likely under the alternative than the null3.  
 
Panel D shows what happens when our observed effect size is -0.1. Again, due to sampling error, we 
might observe a negative effect size even under the alternative hypothesis of a positive effect. 
However, the density under the null happens to be 0.34, and under the alternative it is 0.03, which 
gives us a Bayes Factor of 11.3 in favour of the null hypothesis.  
 
What we have shown so far is the formulation of the Bayes Factor, in terms of the described models 
(M1 and M2) and the observed data (D) as: 
 

𝐵𝐹	 = 	
𝑃(𝐷|𝑀#)
𝑃(𝐷|𝑀$)

 

 
The attentive reader will have noticed that we are comparing the conditional probability of the data 
under the model. Getting from the conditional probabilities of the data to the conditional probabilities 
of the model can be achieved by applying Bayes’ Theorem. Using Bayes’ Theorem, we can express 
the posterior odds of the two models. This requires some algebraic manipulations, which a reader may 
skip for a first-pass reading. First, we express the Bayes Factor with the P(D|M) term replaced by 
Bayes’ Formula, which gives us:   
 

𝐵𝐹	 = 	

𝑃(𝐷|𝑀#) 	 ⋅ 𝑃(𝐷)
𝑃(𝑀#)

𝑃(𝐷|𝑀$) 	 ⋅ 𝑃(𝐷)
𝑃(𝑀$)

	= 	
𝑃(𝑀#|𝐷) 	 ⋅ 𝑃(𝑀$)
𝑃(𝑀$|𝐷) 	 ⋅ 𝑃(𝑀#)

 

Instead of expressing the Bayes Factor as the product of the posterior probability (P(M|D)) and a prior 
(P(M)), we can rearrange the information above to derive the posterior odds of the two models, or the 
ratio of the conditional probabilities of the models given the data. This can be obtained by multiplying 
the Bayes Factor by the models’ prior probabilities: 
 

	%('"|))	
%('#|))	

	= 	 %()|'")	⋅	%('")	
%()|'#)	⋅	%('#)

  
In words, we can paraphrase this as:  
 

Posterior odds = Bayes Factor x prior odds 
 

 
2 Density is not the same as probability. However, here, it is proportional to probability: hence, if we 
divide the two density values we get a value which is equal to the ratio of the two probabilities.   
3 This method of dividing the densities can only be used under the following special conditions: 
known distribution parameters and the assumption of a point hypothesis (Wagenmakers et al., 2010). 
The aim of this section is not to give a tutorial of a method that can be applied without further 
consideration, but to illustrate the logic behind the Bayes Factor. 
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Thus, to derive the posterior odds, we need to multiply the Bayes Factor with our prior belief about 
how plausible each model is: for example, we might weigh the alternative hypothesis as more 
probable if we are conducting an experiment on the Stroop task than on precognition. The Bayes 
Factor does not take into account this prior probability of each model, and is therefore distinct from 
the posterior odds (though the posterior odds are equivalent to the Bayes Factor in the special case 
that the two models are equally likely). Instead, to calculate the Bayes Factor, the prior knowledge or 
beliefs are instead incorporated in the way in which the alternative hypothesis is constructed.  
 
Interim summary and discussion 
Getting from data to posterior odds requires two stages where a researcher needs to make a decision: 
First, they need to decide on the models that specify the two hypotheses, which is required for the 
calculation of a Bayes Factor. Second, the Bayes Factor can be multiplied by the researcher by the 
strength of the prior belief in a model, which gives the relative posterior probability of the models 
given the data. Both stages require informed and sometimes subjective decisions from the part of the 
user, and are here collectively referred to as “priors”. The first step, a consideration of the plausibility 
of the model specification, is of vital importance to the interpretation of a Bayes Factor. To date, 
psychological researchers seem to rely solely on the Bayes Factor for inference, without taking the 
second step of calculating the posterior odds. This second step provides a more direct answer to the 
question: How much more likely is Model 1 compared to Model 2? These posterior odds are not 
generally reported in articles; for any reader, it is simple to calculate their own posterior odds by 
multiplying the Bayes Factor by their own prior beliefs (Tendeiro &  Kiers, 2019). For formal 
inference, posterior odds should be reported with caution, and preferably only if the a priori 
probability of each model has been pre-specified before the Bayes Factor has been calculated; 
otherwise, finding a value for the strength of a priori belief that would allow the researcher to 
“provide support” for a favourite hypothesis becomes a trivial algebraic exercise. 
 
To calculate the Bayes Factor, we first need to construct two hypotheses: Commonly, a null model 
and an alternative model. Theoretically, we could compare any two hypotheses against each other, 
such as the hypothesis that an effect is negative versus the hypothesis that an effect is positive (if this 
makes sense in light of a research question). The models can often be derived directly from a verbal 
theory, though mathematical transformations are required for which psychologists may want to rely 
on statistical software packages. 
 
Once we construct the models, we assess whether the data are more likely under one model than the 
other, by calculating the ratio between the two probabilities. The Bayes Factor can be interpreted as 
the degree of evidence for one model over another. The degree of evidence is always for the model in 
the numerator: if the probability relating to the alternative hypothesis is in the numerator and the 
Bayes Factor is large, it provides evidence in favour of the alternative hypothesis. Which of the 
models should be put in the numerator is a matter of convention. Some researchers prefer to always 
have the more complex model in the numerator, such that a large Bayes Factor corresponds to 
evidence for an alternative, and a small Bayes Factor to evidence for the null model. The Bayes Factor 
in favour of the alternative hypothesis is conventionally denoted B10 (Love et al., 2019). Other 
researchers put their hypothesis of interest in the numerator: if they aim to show that the null 
hypothesis is true, they put it in the numerator, and large values correspond to evidence for this null 
hypothesis (B01). Thus, whenever a Bayes Factor is reported, it should always be stated if large 
numbers provide evidence for the null or the alternative model.  
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A Bayes Factor value of 1 suggests that the data is equally likely under either model. Bayes Factors 
are continuous, as they can take any value between 0 and infinity; the interpretation of different 
magnitudes is a matter of convention. Bayes Factors larger than 3 are generally taken as some 
evidence for the model in the numerator, values larger than 10 as strong evidence, and values larger 
than 30 as very strong evidence (e.g., Rouder et al., 2009). The inverse of these cut-offs (values < ⅓, 
1/10, and 1/30, respectively) provide evidence for the model in the denominator. The correct 
interpretation of the Bayes Factor is as a continuous scale, and the extent to which one model is more 
likely than the other. An intuitive way to interpret a given Bayes Factor value is: How much would I 
be willing to bet that this result would replicate? Odds of 30:1 (BF = 30, very strong evidence), would 
elicit different decisions than odds of 3:1 (BF = 3, moderate evidence).  
 
How do I decide on the priors and interpret the Bayes Factor? 
When submitting a paper with Bayes Factors for publication, it is likely that the reviewers will ask the 
authors to justify their priors. The above section provides the reader with the tools to create their own 
priors for a simple design, especially in conjunction with the R script provided by Rouder (2016). 
However, most researchers calculate Bayes Factors using software, such as JASP (Love et al., 2019). 
This calls for a need to understand default priors, and what it means to change them. Here, we focus 
on t-tests, as the aim is to provide an understanding about how the priors work, rather than a manual 
for using JASP. For more complex designs, choosing a well-informed prior becomes increasingly 
more difficult, which is a reason for repeating the recommendation that an experimental design should 
be kept as simple as possible (Cohen, 1990). What follows is a technical explanation: a reader aiming 
to get a first-pass conceptual understanding may skip to the “Interim summary and discussion” 
section.  
 
Software such as JASP and the R package BayesFactor (Morey et al., 2018) rely on the Cauchy 
distribution as a prior for many of the analyses. A Cauchy distribution looks similar to the well-known 
normal distribution: it is symmetrical and bell-shaped. The two parameters that define the shape of the 
Cauchy distribution are the location parameter and the scale (width) parameter: with these two values, 
the exact shape of this prior distribution can be deduced. The location parameter defines where the 
centre of the distribution lies. The width parameter (ω) defines how thick or slim this distribution is. If 
we increase the width parameter, we consider a wider range of effect sizes to be more highly 
plausible. If we decrease the width parameter, we indicate increased confidence that the effect size is 
close to what we predict. Figure 3 shows the Cauchy distribution, always with the same location 
parameter (0), but with varying width parameters: as the width parameter increases, values close to 
the centre become less likely, while the tails become thicker.  
 
By default, the Cauchy distribution in JASP and in the BayesFactor package is centred around zero. 
At first, this may seem counter-intuitive, because this is the prior parameter for the alternative 
hypothesis. The reason for the centring is that it allows us to test a non-directional hypothesis. Given 
that the prior distribution is symmetrical and centred around zero, effect sizes of, say, greater than 0.5 
or smaller than -0.5 are equally likely. The bell-shape of the Cauchy distribution further indicates a 
belief that smaller effect sizes are more likely than larger effect sizes. When we increase the width 
parameter (ω), we increase the a priori probability of large effect sizes (though small effect sizes will 
continue to be more likely).  
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Figure 3. The Cauchy distribution, centred around zero, with different width parameters.  

 
Interim summary and discussion  
Software programmes such as JASP have a default prior. The default prior for the alternative 
hypothesis of a t-test is a Cauchy distribution (see Figure 3), which is centred around zero and has a 
width parameter of ω = 0.707. It is a common misconception that the width parameter is the expected 
effect size. Changing the width parameter does not shift the mode towards the most likely effect size 
values. Instead, it changes the relative probability with which larger effect sizes are proposed to occur: 
a wide distribution corresponds to a relatively higher probability of larger effect sizes (see Figure 3). 
Thus, while a large width parameter does correspond to the expectation of larger effect sizes, 
interpreting a width parameter as the expected effect size is incorrect. 
 
The question is then how to translate the width parameter to the expected range of effect sizes. Here, it 
is important to bear in mind that the point of the Cauchy prior is not to predict a single effect size, but 
instead to specify a range of plausible effects. The width parameter of the Cauchy distribution (ω) 
corresponds to the bounds of the range of effect sizes which are proposed (by the researcher) to occur 
with a 50% probability. Thus, when we specify the width parameter as ω = 1, we do not put the 
heaviest weight on the effect size d = 1, but rather we make the statement: “We are 50% confident 
that the effect size lies somewhere between d = -1 and d = 1”. The default prior, with the width 
parameter ω = 0.707, therefore, makes the claim: “We are 50% confident that the effect size lies 
somewhere between d = -0.707 and d = 0.707”. Thus, for the special case that we are 50% confident 
about an effect size range, the width parameter of the Cauchy distribution translates directly to the 
upper bound (see Table 1). If the researcher wants to choose a different level of confidence (e.g., we 
may be only 20% confident, or even 80% confident), the width parameter no longer corresponds to 
the bounds. In this case, some calculation is required. For a researcher who is 80% confident in their 
range of expected effect sizes, Table 1 provides a range of width parameters and effect size ranges 
that correspond to them.  
 
 



13 

Table 1: Required JASP width (scale) parameters for different effect size ranges, when the 
researcher is either 50% or 80% confident that the effect size lies within this given range 

Range of effect sizes 
(non-directional) 

Range of effect sizes 
(directional, halved 

Cauchy) 

JASP Scale 
parameter for 50% 

confidence 

JASP Scale 
parameter for 80% 

confidence 

-2 to 2 -2 to 0 or 0 to 2 2 0.65 

-1.5 to 1.5 -1.5 to 0 or 0 to 1.5 1.5 0.49 

-1.3 to 1.3 -1.3 to 0 or 0 to 1.3 1.3 0.42 

-1.1 to 1.1 -1.1 to 0 or 0 to 1.1 1.1 0.36 

-0.9 to 0.9 -0.9 to 0 or 0 to 0.9 0.9 0.29 

-0.7 to 0.7 -0.7 to 0 or 0 to 0.7 0.7 0.23 

-0.5 to 0.5 -0.5 to 0 or 0 to 0.5 0.5 0.16 

-0.3 to 0.3 -0.3 to 0 or 0 to 0.3 0.3 0.1 

 
The default width parameter, as explained above, is a non-directional prior. JASP allows us to test 
directional hypotheses in two different ways. The first is by specifying whether we expect Group 1 to 
have higher values than Group 2 (“Group 1 > Group 2”), or lower values (“Group 1 < Group 2”). The 
non-directional hypothesis is denoted as “Group 1 ≠ Group 2”. For the directional hypotheses, the 
Cauchy is simply cut in half. The interpretation of a truncated prior is quite similar to that for the non-
directional prior, as the width parameter translates to the upper bound of the range that we expect with 
50% probability. Thus, the default parameter (ω = 0.707), with a truncated Cauchy, expecting a 
positive effect size, should be described as follows: “We are 50% confident that the effect size lies 
somewhere between d = 0 and d = 0.707”. 
 
Newer versions of JASP also allow us to shift the location parameter. Here, the expected range (with 
50% confidence) can be calculated by adding the amount of the shift to the lower and upper bounds. 
When we keep the default width parameter (ω = 0.707), but change the location parameter to d = 0.5, 
the interpretation of the prior is: “We are 50% confident that the effect size lies somewhere between d 
= -0.207 and d = 1.207”.  
 
What misconceptions might affect the conclusions drawn from a Bayes Factor analysis? 
The above sections aim to explain to psychological scientists (both researchers and students) what 
Bayesian statistics is, how Bayes Factors are computed, and how to interpret Bayes Factors. We 
argued that such understanding is necessary to avoid Bayesian statistics inheriting the pitfalls of the p-
value: usage without a thorough understanding of what these statistics mean. The next question is 
what kind of misunderstandings may occur among researchers, and what negative consequences 
might be expected when researchers use Bayes Factors without a thorough understanding (see also 
Tendeiro & Kiers, 2019).  
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Misconception 1: When reporting the results, writing “Bayes Factor > 3” is convincing 
Figure 4 shows two plots which demonstrate how neither p-values nor Bayes Factors should be 
reported. Both plots are uninformative for various reasons. Specifically for the report of the Bayes 
Factor, the two main problems are: (1) no information about the priors, and (2) the use of the Bayes 
Factor as a cut-off for a dichotomous decision. 
 
Without context, neither the significant p-value, nor the Bayes Factor, exceeding the threshold of 3, 
can be interpreted. The p-value cannot be interpreted without knowing whether p-hacking may have 
taken place. For the Bayes Factor, more information about the priors would be needed. As we have 
seen, the Bayes Factor requires us to specify a prior distribution. Even if we use the default prior in 
JASP, there are some underlying assumptions which may or may not be reasonable for our particular 
research question, and using different priors may change the conclusions we will draw. Therefore, it is 
important that a Bayes Factor is always interpreted in light of the prior distributions that have been 
used.  

 

 
 

Figure 4. An example of how neither p-values nor Bayes Factors should be presented.  

 
A range of values greater than 3 encompasses a lot of possible values. The evidence for the hypothesis 
could range from barely above “anecdotal” (BF = 3.00001) to “overwhelming” (BF = 3,000,000). A 
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second reason why presenting the results of a Bayes Factor as in Figure 4 is not recommended is that 
it loses this information. Treating the Bayes Factor as a dichotomy or even trichotomy (H0 supported, 
H1 supported, inconclusive) would mean that it may inherit problems which are associated with the 
current use of p-values. Critically, the use of a single threshold may encourage researchers to try out 
different analysis strategies to get above this threshold, as is often done in the case of p-values (p-
hacking). If used as a continuous variable, this does not pose a substantial problem in terms of 
interpreting the degree of evidence, because B-hacking from, say, 2.7 to 3.2 by removing some 
inconvenient “outliers” would still provide a Bayes Factor in the correct order of magnitude (though 
such practices would lead to systematic over-estimations of the effect sizes). Values which are 
substantially higher are more difficult to produce by such questionable post-hoc procedures, and also 
for this reason (in addition to the natural interpretation of the Bayes Factor) should be taken to suggest 
stronger evidence. As Figure 4 would report a B-hacked value of 3.2 in an identical manner to a Bayes 
Factor of 3,000, it loses information that is crucial to a correct interpretation. This, in turn, increases 
the overall impact of B-hacking on the conclusions that are drawn about the presence or absence of an 
effect. 
 
In sum, recommendations about reporting Bayes Factors are as follows: First, if accompanied by a 
figure, the figure should strive to show the distribution of the values (e.g., a violin plot) or an 
indication of the variability (e.g., labelled error bars), rather than only the central tendency. Note that 
this is true for any analysis method. Second, whenever a Bayes Factor is presented, it should be clear 
which priors were used. The distribution (e.g., Cauchy or normal) should be stated, as well as its 
parameters (for a Cauchy, its location and width parameter; for a normal distribution, its mean and 
SD). At the very least, a statement that the default priors in JASP were used is essential. A 
justification for a prior would strongly increase the transparency. Third, rather than reporting the 
threshold which was exceeded by the Bayes Factor (BF > 3), reporting the actual obtained Bayes 
Factor (e.g., 3.24) will encourage a continuous interpretation from the side of the reader.  
 
Misconception 2: Any Bayes Factor should be taken at face value, regardless of how it was 
calculated, or: B-hacking is not a problem 
Adjusting priors opens the possibility of changing the priors in the hopes that, eventually, the Bayes 
Factor will provide evidence for the hypothesis that one really wants to be true. If done transparently, 
performing Bayes Factor analyses on the same data but with different priors does not constitute 
misconduct. In Frequentist analysis, such researcher degrees of freedom change the long-run 
probabilities of false and true positives and negatives, and thus render any results close to 
meaningless. As Bayesian inference is not based on these long-run probabilities, it is sometimes 
argued that a Bayes Factor value can be interpreted without a consideration of how many analyses 
were tried before the final model was decided on (Dienes, 2016).  
 
Changing the parameters and assessing how this affects the results is a form of sensitivity analysis (or 
robustness check), where the robustness of results can be verified. For example, when we expect a 
large effect size, but find evidence for the null hypothesis, it could be that there is an effect, but it is 
smaller than expected and therefore more in line with the null model than with a large-effect-size 
prior. In a set of simulations, Schönbrodt et al. (2017) showed that, when the effect is small (δ = 0.2), 
and using the default Cauchy prior (ω = 0.707) and the conventional threshold of BF < ⅓ to draw 
conclusions about the absence of an effect, the false negative rate approaches 80% (using an optional 
stopping approach, where participants are recruited until the threshold is met): therefore, with a high 
probability, the researcher will erroneously conclude that the effect is not there when, in reality, there 
is a true but small effect. Verifying that the evidence for the absence of an effect persists when the 
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prior is lowered would provide a stronger case. A sensitivity analysis can be conducted for a range of 
H1 priors that reflect effect sizes that the researcher judges to be practically or theoretically 
meaningful. 
 
Researchers are likely to overestimate the size of an effect when basing the effect size expectation on 
previous studies. This is because p-hacking and publication bias lead to overestimated effect sizes in 
the published literature (Gelman & Carlin, 2014). Thus, especially when we observe evidence for the 
null hypothesis with a relatively lax decision threshold, we might want to conduct a series of 
additional analyses, where we calculate the Bayes Factor for smaller width parameter values. JASP 
has an inbuilt robustness check, which provides a plot of the evidence for H1 or H0 for width 
parameters ranging from ω = 0 to ω = 1.5. In addition to the plot, it also provides a value denoted 
“max BF10”: this gives the Bayes Factor (for the alternative hypothesis) and the width parameter value 
(ω, denoted r in JASP) where the largest Bayes Factor is found. The appropriate way to interpret the 
results of this analysis is not to report only this largest Bayes Factor, but to provide the whole plot. In 
many cases, this might mean that we need to conclude that the hypothesis is supported only under a 
limited range of scenarios and that it may or may not exist. 
 
Thus, conducting numerous analyses and reporting only the “best” one is a problem both for 
Frequentist and Bayesian inference. Bayes Factors do not provide a solution to this problem. 
However, a shift towards reporting robustness analyses might be an effective step towards reducing 
the crisis in psychological sciences. First, it will raise awareness of the fragility of many results. 
Second, it will encourage caution in interpreting results, when appropriate. Note that this is not 
specific to Bayesian statistics: when using p-values, especially when post-hoc decisions (e.g., about 
outlier removal) are involved, it is advisable to report the results from all analyses, and not only those 
that give significant results. In fact, in Frequentist statistics, conducting many analyses until one 
observes a significant p-value, and then reporting only the significant p-value, is the definition of p-
hacking. In an ideal case, to avoid p-hacking, the data processing and analysis steps should be defined 
in advance (e.g., via preregistration), and whatever result is observed using the predefined methods 
should be the basis of the conclusions. In reality, however, the data often behaves in unexpected ways, 
which may give legitimate reasons for the researchers to decide, a posteriori, to change the analysis 
plan. In this case, transparency is the key, which could be considered as exploratory analyses 
appended to the original analysis plan. The recommendation of assessing the robustness of analyses 
and reporting them in a paper has been made by Steegen et al., (2016), who refer to this approach as a 
multiverse analysis.  
 
Reporting robustness or multiverse analyses would require a shift of mindset among authors, 
reviewers, and editors. The conclusion that the data might be equally likely under either model, 
because different analyses show different results, is often deemed unpublishable. However, making 
such data available is vitally important. First, even when individual studies yield inconclusive results, 
combining them in a meta-analysis should provide a more definite answer, in the long run. Second, 
selective reporting of studies with conclusive results - or, even worse, of analyses which yielded 
conclusive results even when other analyses of the same data did not show an effect - will distort the 
evidence for a given effect, by making it appear more robust than it actually is. Whether one is using a 
Bayesian or a Frequentist framework, the observed data is subject to the same error term: by 
publishing papers and analyses which give the best results, we change the random error term to a 
systematic one, where studies are more likely to be published when the error term increases the 
observed effect size compared to the population (i.e., where d > δ).  
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Misconception 3: The Bayes Factor is never wrong 
With the p-value, if the null hypothesis is true and we perform 10,000 experiments, we expect to get 
500 significant results (5% of all experiments if our threshold is p < 0.05). This is a feature, not a bug: 
The side of significance on which the p-value falls is sometimes incongruent with whether an effect is 
actually present in the population, but the p-value is designed in such a way that it is wrong in a fixed 
percentage of experiments, under the assumption of the null hypothesis.4 The Bayes Factor follows a 
different logic, and as such, concepts such as the false positive rate are not central to its interpretation. 
However, same as the p-value, it can sometimes provide evidence for a model which is different from 
the population parameters. It is important that researchers are aware of this: a cause for the replication 
crisis is likely to be an overreliance on significant p-values as an indicator for the presence of the 
effect, while forgetting that they can sometimes occur under the null hypothesis (especially if the null 
hypothesis is highly likely a priori; see Figure 1).  
 
The proportion of times a Bayes Factor gives the wrong conclusion depends on (1) the effect size, (2) 
the prior parameters, and (3) the threshold at which one draws a conclusion (e.g., BF > 3 or BF > 10). 
Schönbrodt et al. (2017; see their Table 1) conducted a series of simulations to estimate the 
percentage of erroneous conclusions for a wide range of these three parameters, assuming an approach 
where sample size is determined by testing participants until a BF threshold is hit. For an effect size of 
δ = 0, the default prior width parameter of ω = 0.707, and the standard threshold of BF > 3, the false 
positive rate is 7.5%. Per se, this is not a fatal blow for the use of Bayes Factor: as any statistic, it is 
susceptible to noise, and there will always be occasional data sets which seem to provide evidence for 
a wrong conclusion. However, it has implications for interpreting Bayes Factors.  
 
In particular, it is important to bear in mind that, if we conduct 10,000 studies where the null 
hypothesis is true and analyse them with the default Bayes Factor in JASP, we will have 750 Bayes 
Factors which are greater than 3. In practice, this will become problematic when researchers conduct 
multiple comparisons. A researcher might collect a series of variables from a number of participants, 
to maximise the utility of their sample. This might be common practice, for example, if a researcher 
tests a difficult-to-recruit sample: it is clear that, in these cases, there is a strong motivation to give the 
participants as many tests as the researcher can think of. If the variables are not correlated (Bishop & 
Thompson, 2016), a researcher who has given 7 different tests to the participants already has a >50% 
chance, in the long run, to find support for at least one alternative hypothesis, even if the null 
hypothesis is true in all cases (7 * 0.075 = 0.525). Same as with p-values, this becomes a problem 
with selective reporting of variables or HARKing (hypothesising after results are known; Kerr, 1998).  
 
Misconception 4: “Power” for Bayes Factor analyses 
When using Frequentist statistics, a power analysis is mostly required by editors of Registered 
Reports, by ethics committees, or for grant proposals. The rationale is that we want to maximise the 
chance of being able to draw meaningful conclusions after the completion of a study: finding a non-
significant p-value with a statistical power of 10% leaves us in the position where we learned very 
little about the posterior probability of the null hypothesis being true (the interested reader is 
encouraged to substitute a power of 0.1 to calculate a posterior probability of !H0, using Bayes’ 
Theorem introduced in section “What does Bayesian statistics mean?”). Thus, considering power is 
important, from a Frequentist perspective, to ensure an effective use of resources.  
 

 
4 p-hacking, by definition, invalidates this feature, and may increase the false positive rate to up to 60% 
(Simmons, Nelson, & Simonsohn, 2011). 
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When we conduct a Bayes Factor analysis, it is equally important that we maximise the chance to 
draw meaningful conclusions. However, the terminology “power” is defined from a Frequentist 
perspective, and as such does not directly apply to the Bayesian framework. This is because the power 
is a long-run probability, and therefore an inherently Frequentist concept. It is, however, possible to 
compute the long-run probabilities of false positives and false negatives. For Bayes Factor analyses, 
these depend, as in the Frequentist framework, on the population effect size δ (in the case of a false 
negative - for a false positive, by definition, δ = 0), but also on the prior parameters and the BF 
threshold which one takes as conclusive evidence. A table with false positive and false negative 
probabilities, for a wide range of scenarios, is presented by Schönbrodt et al. (2017). 
 
One can also ask the question: How many participants do I need to test if I want to have a high long-
run probability that I will obtain a Bayes Factor exceeding a certain threshold? Again, this depends on 
the population effect size δ, on the prior parameters, and on the decision threshold. Schönbrodt et al. 
(2017) provide the “average sample number”: the average number of simulated participants that were 
required before the Bayes Factor exceeded the threshold for a variety of effect sizes and prior 
parameters. These numbers are a very useful guideline to a researcher justifying their sample size and 
priors to an editor, funder, or ethics committee, and should be consulted while planning an experiment 
to maximise the probability of getting a meaningful result. However, given the continuous 
interpretation of a Bayes Factor, even inconclusive data might be useful in the long term. When the 
Bayes Factor provides only weak or anecdotal evidence, authors should refrain from drawing strong 
conclusions. However, researchers who have limited resources and cannot maximise their chance to 
draw strong conclusions can interpret a weak or anecdotal Bayes Factor and contribute to the 
literature by providing a data set which can be included in meta-analyses. 
 
Should we switch from p-values to Bayes Factors? 
An increasing number of publications recommend the use of Bayesian statistics instead of or in 
addition to Frequentist inference (e.g., Dienes, 2011, 2014, 2016; Rouder et al., 2009; Wagenmakers, 
2007). The desire for alternatives to the p-value is exacerbated by the crisis in psychological science, 
which resulted from a realisation that many results may not be true, even those that made it into 
undergraduate psychology textbooks (Open Science Collaboration, 2015). At the same time, the 
availability of easy-to-use software allows even researchers with little knowledge of Bayesian 
statistics to calculate Bayes Factors. While learning about novel analysis methods is always 
advantageous, it is important to ensure that the psychological science community is aware of the 
problems that can and cannot be addressed by Bayesian statistics.  
 
The premise of the current paper is that the researcher needs to understand the logic behind the test 
beyond knowing how to calculate it, no matter which statistical tool is used for inference (Gigerenzer, 
2004). The current paper aims to provide an introduction to the logic and pitfalls behind Bayes Factor 
to a psychology researcher or student with limited knowledge of probability and statistics. To our 
knowledge, it is the only introduction, aimed at psychological scientists without extensive statistical 
training which explains how Bayes Factors are calculated, what the priors mean, and which provides a 
set of intuitive guidelines for justifying the prior and sample size, based on the effect size estimation 
and certainty, while being sure to underline both the advantages of Bayes Factors and their 
limitations. For practical reasons, the current introduction is limited in terms of its 
comprehensiveness. The interested reader is encouraged to read further articles on Bayesian statistics 
to get a fuller understanding: an annotated reading list is provided by Etz et al. (2018).  
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What can Bayes Factors do that the p-value cannot? 
Compared to p-values, the Bayes Factor has several features that might allow for more appropriate 
inferences. First, the p-value is defined as a conditional probability for the case that the null 
hypothesis is true: it does not take the probability of the data under the alternative hypothesis into 
account. To calculate a Bayes Factor, the researcher needs to take into account an alternative 
hypothesis: as most psychological researchers are technically interested in an alternative hypothesis 
(e.g., the presence of a treatment effect), this arguably allows for a closer mapping between the 
researcher’s question and the statistical method. 
 
By taking into account both an H0 and H1 model, the Bayes Factor also allows us to quantify the 
degree of evidence for the H0 model, relative to the specified H1. This comes with the caveat that the 
conclusions might not prove robust under different H1 models, and thus, a sensitivity analysis with 
different priors is recommended to provide evidence for H0. Note that, when deciding whether there is 
a non-zero effect in the population or not, the probability of a wrong conclusion may also be 
substantially reduced by raising the threshold for concluding that there is evidence for or against an 
effect: a set of simulations showed that the false negative error rate of the Bayes Factor approaches 
zero when the threshold is BF > 30 (Schönbrodt et al., 2017). However, for most effect sizes in 
psychology, getting such strong evidence would require the testing of a large number of participants, 
which, given the current incentive system, is often not feasible.  
 
In the context of Frequentist statistics, the p-value is often treated as a tool to make a binary decision: 
if we want to fix the long-term false-positive rate at 5%, p < 0.05 means that we can reject the null 
hypothesis, while p ≥ 0.05 means that we cannot5. The Bayes Factor is often interpreted as a 
continuum: values above 1 provide “anecdotal evidence”; values about 3 “some evidence”, and values 
above 10 “strong evidence”. These labels might encourage researchers to interpret the strength of 
evidence, and to be more tentative about their conclusions with a BF > 3 than when they observe a BF 
> 3,000. This also applies to interpreting the evidence for effects in the published literature: when 
building on effects which are supported with relatively small Bayes Factor values the researcher may 
want to replicate the effect before building on it.  
 
What can Bayes Factors not do? 
p-values and Bayes Factors share some of their pitfalls. Neither should be applied without some 
understanding of the underlying principles. In the case of p-values, research has shown that a majority 
of researchers have misconceptions about p-values which lead to inappropriate data analysis and 
inferences (John, Loewenstein, & Prelec, 2012; Simmons et al., 2011). This continuing misuse of p-
values has contributed to a crisis of confidence in psychological science (Pashler & Wagenmakers, 
2012). Bayes Factors may prove more robust than p-values in the long term. However, this should not 
be taken for granted: simply switching from calculating p-values to calculating Bayes Factors without 
understanding how true or robust these results are may result in misunderstandings that potentially 
have systematic detrimental effects on the research literature. For example, as explained above, trying 
out different priors and reporting the analysis that gives the biggest Bayes Factor, in conjunction with 
publication bias, where inconclusive results are not published, will yield a literature with 

 
5 A continuous interpretation of the p-value as strength of evidence has been proposed by Fisher as “fiducial 
probability”. This interpretation is contentious, and incompatible with a Frequentist interpretation. Some 
researchers will, however, rely on the intuitive notion that p = 0.00001 should be treated differently from p = 
0.048, while simultaneously relying on the Frequentist framework (Gigerenzer, 2004).  
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overestimated effect sizes for true effects, and an erroneous idea that there is convincing evidence for 
or against a given effect.  
 
It has been argued that Bayes Factors are immune to some of the questionable research practices that, 
in many cases, make the p-value uninterpretable. Examples of such p-hacking practices are selective 
reporting of variables, optional stopping (testing a number of participants, calculating a p-value, and 
continuing to collect data if p > 0.05), or removing outliers conditional on p > 0.05. If Bayes Factors 
are interpreted as continuous degrees of evidence, such practices are not problematic (Dienes, 2016; 
Rouder, 2014). This interpretation, however, might be counterintuitive to a researcher who is used to 
thinking of statistical test results in terms of making a binary decision. The bigger the Bayes Factor, 
the smaller the probability of a false positive or false negative (Schönbrodt et al., 2017). However, if 
researchers treat both BF10 = 3.1 and BF10 = 31 as evidence for the alternative hypothesis, they might 
miss the point that a false positive is more likely when the former is observed. This is problematic 
when researchers analyse many variables and report only those that exceed a threshold. In an 
exploratory setting, a BF > 30 might be very rare unless there really is a true effect in the population, 
but one is likely to come across a BF > 3 even if the data consists of noise. Thus, selective reporting 
and multiple comparisons are likely to become problematic in cases when the Bayes Factors are 
relatively small. 
 
Both p-values and Bayes Factors are tools for hypothesis testing: they provide a means for selecting 
between two models. This is orthogonal to effect size estimation (Kruschke & Liddell, 2018, but see 
also Keirs & Tendeiro, 2019; Rouder, Haaf, & Vandekerckhove, 2018). Effect size estimation can 
occur either via a Frequentist or Bayesian framework: in the former case, this involves calculating the 
Maximum Likelihood Estimator (in most cases, the mean) and plotting 95% confidence intervals 
around it (Cumming, 2014). In the latter case, a posterior distribution is calculated by combining the 
prior distribution with incoming data (Kruschke & Liddell, 2018). The peak of this distribution is the 
estimate of the effect size, and the bounds encompassing 95% of the area constitute the 95% 
credibility interval.  
 
Hypothesis testing is likely to be more popular in psychological science than effect size estimation, 
because most hypotheses in psychology are only directional (Meehl, 1990): we predict that μ1 < μ2, 
but not by how much. Therefore, finding an effect size of d = 0.7 would not corroborate a theory any 
more or less than finding an effect size of d = 0.2. Note, however, that even if there is no theoretical 
prediction about the magnitude of an effect size, consideration of effect sizes is still required in 
practice for power calculations and required sample size estimations. Directional hypotheses make 
theories in psychological sciences difficult or even impossible to falsify (Meehl, 1990). Point 
hypotheses, in contrast, constrain the range of plausible values, such that showing that experimental 
results are inconsistent with the plausible range provides evidence against the theory. With an 
accumulating amount of data and use of computational models, point hypotheses should be possible 
for some research questions. For example, one might have a theory that predicts that an effect X 
should be smaller than a well-established effect Y but greater than zero. When the mechanisms are 
well-understood and the measurement error is relatively small, computational models of these 
mechanisms might be able to provide such estimation. 
 
Despite being suitable for testing directional hypotheses, both the p-value and the Bayes Factor 
require the researcher to think about the effect size: in the case of Frequentist statistics, for a power 
calculation, and in the case of the Bayes Factor, for the specification of the prior (Rouder et al., 2016). 
The need to specify the prior might further push researchers to think about effect sizes, which would 
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be a step towards thinking about point or range predictions rather than only testing the direction of an 
effect.  
 
If effect size estimation (e.g., in a meta-analysis) is the ultimate goal (Schmidt, 1996), questionable 
research practices might be problematic both for p-values and for Bayes Factors. With the example of 
optional stopping, we might test 20 participants; we observe a p-value of 0.07 or a Bayes Factor of 
2.6. We continue testing 5 participants at a time, after each batch of 5 participants we re-run the 
analyses and stop if the p-value or Bayes Factor exceed the threshold. In both cases, the decision to 
terminate data collection is conditional on exceeding this threshold. This can happen for one of two 
reasons: It is possible that the observed effect size approaches the non-zero population effect size, in 
which case having collected more data would have helped to converge to the correct answer. The 
other possibility is that we happened to have tested a batch of participants with particularly high 
observed effects due to the error term. If the error term had resulted in a lower effect size, or cancelled 
out across the five participants, the test statistic would be less likely to reach the threshold. Thus, 
while the error term is generally considered to be random, conditioning on exceeding a threshold, 
which corresponds to larger observed effect sizes, leads to a slight but systematic overestimation of 
the effect size, in the long run.   
 
Conclusion and final recommendations 
Bayes Factors, like p-values, come with a set of nuances and caveats. Using them effectively and 
convincingly requires an understanding of the basic concepts behind the Bayes Factor, the way in 
which the prior is calculated, as well as a series of basic probability concepts that affect both the 
interpretation of p-values and of Bayes Factors. The current paper aimed to provide an overview of 
such concepts to researchers or students with basic statistics knowledge. 
 
A shift from Frequentist to Bayesian statistics is unlikely to be sufficient to alleviate the symptoms of 
the replication crisis in psychology. The current article discusses the consideration of the a priori 
probability of a hypothesis, consideration of the expected effect sizes, and transparency. These are 
likely to be effective methods to increase the credibility of the literature in psychological sciences. 
Considering the a priori probability of a hypothesis involves building closely on theories and 
previous, credible work. This will reduce the a posteriori probability that a dataset, showing evidence 
for an effect, is not a false positive. The consideration of expected effect sizes will help researchers in 
planning an experiment, but it will also allow researchers to be sceptical about unrealistically big 
effect sizes reported in the literature (Gelman & Weaklim, 2009). One efficient way to encourage 
researchers to think about expected effect sizes is through the use of Registered Reports (Chambers et 
al., 2015). A Registered Report is a manuscript, consisting of an introduction, methods, and planned 
analysis section, that is submitted to a journal before data collection. As a Registered Reports requires 
the authors to outline the data processing and analysis plan, it will also increase transparency about 
the analyses that have been conducted. Changes to this plan may be required if the data behaves in 
unexpected ways, but these can be reported as exploratory analyses. To maximise the robustness of a 
paper, a sensitivity analysis is recommended. 
 
We do not conclude that one way of analysing the data is inherently better than the other, but that both 
approaches can lead to either appropriate or inappropriate conclusions, depending on the way which 
they are used. At the same time, we encourage any researcher or student who is curious about 
Bayesian statistics to learn more about them (recommended reading: Lambert, 2019; McElreath, 
2020; see also Etz, 2018). First, their use in psychological science is likely to increase due to the 
publicity and development of easy-to-use software, meaning that a researcher is likely to come across 



22 

an article which used Bayes Factors for inference. An understanding of the pitfalls will provide the 
researcher with the means to evaluate whether the conclusions are justified. Second, learning about 
Bayesian statistics is bound to also improve their understanding of Frequentist statistics and their 
pitfalls. Third, with this additional statistical tool, the researcher will increase the flexibility in 
addressing research questions: one clear advantage of the Bayes Factor is that it can be also used to 
provide evidence for the absence of an effect.  
 
 
Glossary box 

Terminology Definition 

B-hacking Misuse of the Bayes Factor, where different analyses are tried and the 
researcher selectively reports only the analyses with the biggest Bayes 
Factor. 

Bayes Factor A method of model selection which can be used for hypothesis testing 
and relies on quantifying the support for one model over another. 

Bayes’ Theorem The formula that allows us to invert a conditional probability, i.e., to get 
from P(A|B) to P(B|A). 

Bayesian statistics A philosophy underlying the concept of probability, where probability 
can be seen as a belief, which is obtained by combining prior knowledge 
with incoming evidence. 

Cauchy distribution A probability distribution, similar in shape to the normal (Gaussian) 
distribution, with two parameters defining its shape: a location parameter 
and width parameter (ω). This distribution is a popular choice for a prior 
for the computation of Bayes Factors. 

Cohen’s d  A standardised measure of effect size, where a mean difference between 
two conditions is divided by an estimate of the standard deviation.  

Conditional probability The probability of an event (E) under the assumption that a given 
condition (C) is true: for example, the true positive is a conditional 
probability describing the probability of the disease (E) only in the subset 
of people who test positive on this test (C), written as P(E|C). 

Frequentist statistics An inferential framework, where probabilities are defined as the 
proportion of times an event would happen, under specified assumptions, 
with infinitely repeated sampling.  

JASP An open-source software that has an intuitive user interface which allows 
researchers to calculate Bayes Factors as well as Frequentist statistics for 
a wide range of experimental designs. 

p-hacking Misuse of the p-value, where different analyses are tried and the 
researcher selectively reports only the analyses with the significant p-
values.  
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Model prior Prior belief of hypothesis, before data is acquired. 

Parameter prior Prior belief of the model parameters (e.g., effect size), before data is 
acquired. 

Posterior Posterior belief of the hypothesis in light of data. 
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