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Abstract 

Running studies with high statistical power, while effect size estimates in psychology are 

often inaccurate, leads to a practical challenge when designing an experiment. This challenge 

can be addressed by performing sequential analyses while the data collection is still in 

progress. At an interim analysis, data collection can be stopped whenever the results are 

convincing enough to conclude an effect is present, more data can be collected, or the study 

can be terminated whenever it is extremely unlikely the predicted effect will be observed if 

data collection would be continued. Such interim analyses can be performed while 

controlling the Type 1 error rate. Sequential analyses can greatly improve the efficiency with 

which data is collected. Additional flexibility is provided by adaptive designs where sample 

sizes are increased based on the observed effect size. The need for pre-registration, ways to 

prevent experimenter bias, and a comparison between Bayesian approaches and NHST are 

discussed. Sequential analyses, which are widely used in large scale medical trials, provide an 

efficient way to perform high-powered informative experiments. I hope this introduction will 

provide a practical primer that allows researchers to incorporate sequential analyses in their 

research. 
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Repeatedly analyzing results while data collection is in progress has many 

advantages. Researchers can stop the data collection when observed differences reach a 

desired confidence level, or when unexpected data patterns occur that warrant a 

reconsideration of the aims of the study. When, after an interim analysis, the effect is smaller 

than expected, researchers might decide to collect more data, or even stop collecting data for 

specific conditions. One could easily argue that psychological researchers have an ethical 

obligation to repeatedly analyze accumulating data, given that continuing data collection 

whenever the desired level of confidence is reached, or whenever it is sufficiently clear the 

expected effects are not present, is a waste of the time of participants and the money provided 

by tax-payers. In addition to this ethical argument, designing studies that make use of 

sequential analyses are more efficient compared to not performing sequential analyses. 

Incorporating sequential analyses into the study design can easily reduce the sample size of 

studies by 30% or more. 

In psychology, sequential analyses are rarely, if ever, used. In recent years researchers 

have been reminded of the fact that repeatedly analyzing data, and continuing the data 

collection when results are not significant, increases the likelihood of a Type 1 error, or a 

significant test result in absence of any differences in the population (e.g., Simmons, Nelson, 

& Simonsohn, 2011). Flexibility in data collection does not lead to an inevitable increase in 

Type 1 errors. It is possible to repeatedly analyze data, and decide whether to continue or end 

the data collection based on the significance levels of the accumulated data, while controlling 

the Type 1 error rate. Such interim analyses are common practice in large medical trials, 

where the continued data collection can be a matter of life and death when a treatment has 

unexpected negative consequences. The basic idea of sequential analyses has been developed 

in the twentieth century (e.g., Armitage, McPherson, & Rowe, 1969; Dodge & Romig, 1929), 

and advances in these techniques over the last decennia have provided statistical procedures 
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for sequential analyses that allow great flexibility while carefully controlling Type 1 error 

rates. Accessible mathematical introductions to sequential analyses for clinical trials can be 

found in books by Proschan, Lan, and Wittes (2006), Chow, Shao, and Wang, (2003), and 

Jennison and Turnbull (2000), among others. 

I believe sequential analyses are relevant for psychological science. There is an 

increasing awareness that underpowered studies in combination with publication bias (the 

tendency to only accept manuscripts for publication that reveal statistically significant 

findings) yield a scientific literature that potentially consists of a large number of Type 1 

errors (e.g., Button et al., 2013; Ioannides, 2005; Lakens & Evers, 2014). There are several 

ways to increase the statistical power of a study (or the probability a significant effect will be 

observed in a sample if the effect truly exists in the population) but the way that is easiest to 

control by researchers is to increase the sample size of their studies.  

Researchers have started to realize that especially in between-subject designs a much 

larger number of participants has to be collected than psychologists were accustomed to if 

they desire to perform high-powered studies. Some researchers have suggested a minimum of 

20 participants per condition (e.g., Simmons et al., 2011, later increased to a minimum of 50 

participants per condition, Simmons, Nelson, & Simonsohn, 2013), but such well-intended 

suggestions are bad advice. Sample sizes should be determined based on either the expected 

size of the effect, the desired power, and the planned alpha-level of the statistical test, or on 

the desired width of the confidence interval surrounding the effect size estimate. An 

important question is how we are going to be able to increase sample sizes without greatly 

reducing the number of experiments one can perform. Sequential analyses provide a partial 

solution to this problem. 

Practical Issues When Designing an Adequately Powered Study 
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One problem with planning the sample size based on the size of an effect (as is done 

in an a-priori power analysis) is that the effect size is precisely the information that the 

researcher is trying to uncover by performing the experiment. As a consequence, there is 

always some uncertainty regarding the required sample size needed to observe a statistically 

significant effect. Nevertheless, a-priori power analyses are often recommended when 

designing studies to provide at least some indication of the required sample size (e.g., Lakens, 

2013), and researchers therefore need to estimate the expected effect size when designing a 

study. One approach to get an effect size estimate is to perform a pilot study. To provide a 

reasonably accurate effect size estimate, a pilot study must already be quite large (e.g., 

Lakens & Evers, 2014), somewhat surpassing their usefulness. A second approach is to base 

the effect size estimate on an effect size observed in a highly related study, while 

acknowledging that effect sizes might vary considerably due to differences between the 

studies. Regardless of how effect sizes are estimated, estimated effect sizes have their own 

confidence intervals (as any other sample statistic) and should be expected to vary between 

the lower and upper confidence limit across studies. 

Because statistical power is a function that increases concave down (especially for 

larger effect sizes, see Figure 1), improving the power of a study from .8 to .9 requires a 

larger increase in same size than is needed to improve the power of a study from .4 to .5. 

Reducing the Type 2 error (not observing a statistically significant effect in a sample, when 

the effect exists in the population) becomes increasingly costly the higher the desired power 

and the smaller the expected effect size. A widely used recommendation is to aim for a 

minimum power of .8 (Cohen, 1988). This still leaves a one in five chance of not finding an 

effect that actually exists, so a higher power (e.g., .9 or .95) is often desirable. Whenever the 

sample size recommended by an a-priori power analysis has been collected, and the 

performed statistical test reveals a non-significant result (due to an underestimation of the 
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effect size, random variation of the effect size, or both), the researcher is faced with a 

dilemma. The researcher could replicate the study (which requires substantial resources), and 

report a small scale meta-analysis (e.g., Cumming, 2012). Alternatively, the researcher might 

be tempted to continue the data collection, which increases the Type 1 error rate (Simmons et 

al., 2011). Sequential analyses give a researcher more flexibility to continue the data 

collection, and stop when an interim analysis reveals a significant difference.  

Because the power function increases concave downwards (see Figure 1) there is a 

reasonably high chance (often > 50%) to observe a significant effect after collecting only half 

the number of participants suggested by an a-priori power analysis. Using sequential analyses 

thus often allows researchers to terminate the data collection before the sample size 

recommended by an a-priori power analysis is reached, and is therefore more efficient when 

designing studies with the goal to demonstrate a statistically significant effect. 

The idea that we need to collect large amounts of data without any flexibility worries 

researchers, and some researchers have argued against a fixation on Type 1 error control. 

Ellemers (2013, p. 3) argues ‘we are at risk of becoming methodological fetishists’ which 

‘would reverse the means and the ends of doing research and stifles the creativity that is 

essential to the advancement of science’. Although flexibility in the generation of hypotheses 

is, in principle, completely orthogonal to how strict these hypotheses are tested empirically, 

there is a real risk that researchers will become more conservative in the ideas they test. If 

researchers believe they should perform high-powered experiments with large samples 

without looking at the data until all participants have been collected, they might not pursue 

hypotheses that initially seem more unlikely. 

Murayama, Pekrun, and Fiedler (2013) discuss the practice of adding additional 

observations to a study, based on the observed p-value, and warn against jumping to the 

extreme conclusion that continuing data collection after analyzing the data should be banned. 
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They examine what happens when researchers collect additional observations only when an 

analysis reveals a p-value between .05 and .10. Such a practice, they show, would lead to a 

modest increase in Type 1 error rates (as long as the number of times additional data is 

collected is limited). Although this is important to realize, underpowered studies will often 

yield p-values higher than .10 when there is a real effect in the population. Because using 

sequential analyses is not very complex, it is preferable to know and use procedures that 

control Type 1 error rate while performing interim analyses. In the remainder of this article, I 

will explain how Type 1 error control is possible, and provide a practical primer on how to 

perform sequential analyses. 

Type 1 Error Control While Performing Interim Analyses 

Statistical procedures to perform sequential interim analyses while data collection is 

still in progress have been available for a long time (e.g., Armitage et al., 1969, Dodge & 

Romig, 1929). The main idea is straightforward. In a study without interim analyses, a 

statistical test is performed when all the data has been collected. With a symmetrical two-

sided test, and an α = .05, this test should yield a Z-value larger than 1.96 (or smaller than -

1.96) for the observed effect to be considered significant (which has a probability smaller 

than .025 for each tail, assuming the null-hypothesis is true). When using sequential analyses 

with a single planned interim analysis, and a final analysis when all data is collected, one test 

is performed after n (e.g., 80) of the planned N (e.g., 160) observations have been collected, 

and another test is performed after all N observations are collected. This means a researcher 

plans to reject the null hypothesis either when after n observations Zn is sufficiently high (or 

low), or when after N observations ZN is sufficiently high (or low). As Leifer and Geller 

(2012) explain, this means that to control the probability of a Type 1 error under the null 

hypothesis, we need to select boundary critical Z-values c1 and c2 (for the first and the second 

analysis) such that (for the upper boundary) the probability (Pr) that the null-hypothesis is 
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rejected either when in the first analysis Zn ≥ c1, or (when Zn < c1 in the first analysis) ZN ≥ c2 

in the second analysis. In formal terms: 

 Pr{Zn ≥ c1} + Pr{Zn < c1, ZN ≥ c2} = 0.025 (1) 

One-sided tests or asymmetric boundaries are sometimes used (see Proschan et al., 

2006), and with more than one interim analysis, additional critical values have to be 

determined following the same rationale. There are different ways in which these critical 

values can be established. The Pocock boundary (Pocock, 1977) increases the critical value 

(or lowers the alpha level) to the same value for each interim analysis such that the overall 

alpha level remains .05. For example, for two planned analyses (one interim and one after all 

data is collected), the p-value would become .0294 for each analysis. The O’Brien-Fleming 

procedure differs from the Pocock boundary in that it sets a high critical value for the first 

interim analysis, when the variability in the data is relatively large, but sets a critical value for 

the final analysis that is closer to a study without interim looks. One limitation of the Pocock 

and O’Brien-Fleming boundaries is that they require that the number of interim analyses is 

planned in advance, and that these analyses are performed with an equal number of 

observations between each look.  

This lack of flexibility is impractical in medical settings, where data and safety 

monitoring boards meet at fixed times each year, and it is not always feasible to control the 

number of patients between these meetings. In psychological research, it might be difficult to 

pause an experiment after a predefined number of observations has been collected, and wait 

for the data analysis to be performed. Lan and DeMets (1983) developed the idea of a 

spending function that specifies how much alpha to use at which time in the trial. Spending 

functions do not require the number of interim analyses to be specified in advance (as long as 

the Z-value at one interim analysis does not determine the time until the following analysis). 

Pocock-like and O’Brien-Fleming-like alpha spending functions, which are continuous 
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approximations of the Pocock and O’Brien-Fleming boundaries, can be calculated using a 

freeware program called WinDL created by Reboussin, DeMets, Kim, and Lan (2000), the 

GroupSeq package in R, or commercial software packages such as PASS. In addition to the 

Pocock and O’Brien-Fleming functions, a linear spending function (a power family function, 

see Jennison & Turnbull, 2000) is often used, which lies between the Pocock and O’Brien-

Fleming boundaries and spends the alpha-level continuously over the interim analyses. 

Stopping a trial early has clear benefits, such as saving time and money when the 

available data is considered convincing, but also has disadvantages, as noted by Pocock 

(1992). Effect size estimates from small studies are sometimes still ‘sailing the seas of chaos’ 

(Lakens & Evers, 2014), and the large variation in effect size estimates makes results from 

small studies less convincing, because the study might have stopped at a ‘random high’. 

Obviously, this argument holds for any small study, regardless of whether sequential analyses 

were used, and because sequential analyses are performed with a lower alpha level, and effect 

size estimates are adjusted for bias when the data collection is terminated early, sequential 

analyses provide more reliable effect size estimates than traditional small-scale studies. 

Another disadvantage is that small samples typically yield effect size estimates with 

extremely wide confidence intervals, which is generally undesirable. These issues are 

inherent limitations of null-hypothesis significance testing (see Discussion). It is therefore 

recommended to use sequential analyses and significance testing to identify which effects in 

a line of research hold promise. Follow-up studies with larger sample sizes, or meta-analyses, 

can be used to provide more accurate effect size estimates. 

It is also possible that the effect size estimate at an interim analysis is (close to) zero, 

which indicates the effect is non-existent or very small. Since the chance of observing a 

statistically significant difference is very small or would require huge sample sizes, 

researchers can decide to terminate the data collection early for futility to spare time and 
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resources. Obviously, researchers might want to continue a study even when the conditional 

or predictive power after an interim analysis is very low, for example when they are also 

interested in demonstrating there are no effects in a study. In many situations the decision to 

stop a study for futility will be more complex, and I will return to this issue when discussing 

how to define a smallest effect size of interest. 

An Illustrative Example When a Reliable Effect Size Estimate Exists 

As an example of how sequential analyses can be used, suppose a researcher is 

interested in whether a relatively well-established effect in The Netherlands can also be 

observed in Japan. A meta-analysis of the studies performed in The Netherlands has yielded a 

meta-analytic effect size estimate of Cohen’s d = .5, and she expects the effect should 

generalize to the Japanese population. Due to practical constraints, the researcher determines 

she is willing to collect a maximum of 180 observations, which means the study has a power 

of .92 to observe an effect of dpop = 0.5 in a single statistical test performed after all 

participants are collected. Although she is willing to collect up to 180 observations, she 

would prefer to stop earlier if the available data provides clear support for her hypothesis, and 

she would also prefer to stop earlier if it seems unlikely the effect is larger than d = 0.4. 

The researcher decides to perform two-sided interim analyses after collecting 60, 120, 

and 180 participants. Using a linear spending function (in WinDL indicated by the Power 

Family function with a Phi of 1, in PASS indicated by the (Alpha)(Time) spending function, 

and in GroupSeq indicated by the alpha*t^phi function) we can calculate alpha boundaries for 

the 3 analyses (two interim, and one final) of .017, .022, and .028, or Z boundaries of 2.394, 

2.294, and 2.200. A detailed step-by-step guide to calculating the boundaries using the 

GroupSeq package in R or the WinDL software by Reboussin et al. (2000) is provided in the 

supplementary materials available at http://osf.io/uygrs/files/. Let’s assume that after 

collecting 30 participants in each condition, the first interim analysis reveals a Cohen’s ds = 

https://osf.io/uygrs/files/
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0.51, 95% CI [-0.004, 1.025], t(58) = 1.985, p = .052.1 The effect does not fall below the 

boundary value of .017, and the researcher continues the data collection. After 60 participants 

in each condition, the second interim analysis reveals a Cohen’s ds = 0.46, 95% CI [0.09, 

0.82], t(118) = 2.49, p = .014. This falls below the significance level of 0.22, and the data 

collection is terminated.  

The use of sequential analyses reduces the statistical power of the study to .89. In 

32.37% of the studies the researcher would find an effect after collecting 60 participants, in 

36.70% of the studies she would find an effect after 120 participants, and in 19.94% of the 

studies she would find an effect after 180 participants (for a total power of .89). In 10.99% of 

the studies, on average, she would not find an effect, even though it exists. In 100 studies, this 

researcher would need to collect an average of 11940 participants (60 participants in 32 

successful studies, 120 participants in 37 successful studies, 180 participants in 20 successful 

studies, and 180 participants in 11 studies that yield a Type 2 error). Let’s compare this with 

non-sequential procedures. The study without interim analyses will not suffer the reduction in 

power due to sequential testing, so that the same level of power (.89) can be achieved by 

collecting 166 participants in each of the 100 studies, for a total of (100 times 166) 16600 

participants. Despite the slightly lower sample size to achieve the same level of statistical 

power in a study that does not make use of sequential analyses compared to a study that uses 

sequential analyses, the use of sequential analyses allows researchers to perform well-

powered experiments while collecting approximately 28% fewer participants due to the 

possibility to terminate the data collection earlier. 

One might have thought that given the availability of a reasonably accurate effect size 

estimate, and the reduction in power by incorporating interim analyses in the study design, 

the researcher should just perform a well-powered study without interim analyses. However, 

because power increases in a concave downwards function (see Figure 1), there is a 
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reasonably high chance a researcher can terminate the data collection before the sample size 

recommended by an a-priori power analysis is reached. Although a power of .50 would not 

be satisfactory for the final analysis that is performed in a study, having a power of .5 at an 

interim analysis means there is a 50% chance to observe an expected effect and terminate the 

data collection. Using sequential analyses, a researcher benefits from the possibility to 

terminate the data collection early, while at the same time being able to continue the data 

collection when the data is not yet statistically significant.  

As an example, Table 1 displays the average sample sizes for studies examining true 

effects using 4 sequential analyses (which takes into account the reduction in the required 

sample size due to early stopping) using a linear spending function, compared to the required 

sample size for a study that does not use sequential analyses, both designed to achieve either 

a power of .80 or .90 (alpha = .05), for a range of five effect sizes (Cohen’s dpop = 0.2, 0.3, 

0.43, 0.5, and 0.8). The average reduction in the number of participants required to yield a 

statistically significant result using sequential analyses compared to non-sequential analyses 

is around 20% for studies designed to achieve a power of .8, and around 30% higher for 

studies designed to achieve a power of .9. The exact efficiency benefit will differ depending 

on the number and timing of the interim analyses, and the goal to design an efficient study 

should be less important than designing a study with a high informational value. For example, 

researchers might not want to perform an interim analysis after 25% of the planned sample is 

collected, when the sample size will often be too low to yield reliable inferences. 

Nevertheless, sequential analyses will be more efficient in practically all situations. 

An Illustrative Example When No Reliable Effect Size Estimate Exists 

When examining a completely novel hypothesis, a researcher might not have a precise 

idea of the expected effect size. In such situations sequential analyses are especially useful. 

Let’s imagine a researcher who wants to examine the novel idea that people who speak in a 
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louder voice do so to compensate for feelings of insecurity. She manipulates feelings of 

insecurity by asking participants in the experimental group to think back to a time they felt 

very insecure about themselves (while participants in the control group think back to a time 

when they were watching television), and then asks participants to read a piece of text out 

loud. She expects that the manipulation will make participants in the experimental group feel 

less secure about themselves, and speak in a louder voice when reading the text out loud. 

Without any idea of the effect size to expect in this novel line of research, she decides she is 

willing to collect at most 400 participants, if the effect reliably exists. However, she would 

prefer to stop collecting data when the effect is reliably observed, or when it seems 

reasonably certain the effect does not exist. She decides to terminate the data collection if the 

effect size estimate is lower than 0.30 during an interim analysis, for which she has .85 power 

in a non-sequential analysis given the sample size of 400 participants, and .80 power for 3 

sequential analyses using a Pocock spending function. 

Since there is no way to know the true effect size, let’s imagine what might happen if 

the effect is small (d = 0.3), medium (d = 0.5), or large (d = 0.8) when the researcher 

performs interim analyses after n = 100, n = 200, and N = 400 participants (remember that the 

times at which the analyses are performed do not have to be evenly spaced when using an 

alpha spending function, as in this example where analyses are performed at time = .25, .50, 

and 1). Table 2 summarizes the expected power of the test (and the nominal alpha level for 

the test using the Pocock spending function) depending on the size of the effect. The Pocock 

spending function is used because it distributes the alpha level evenly over all interim 

analyses, which is a justifiable choice given the uncertainty about the expected effect size. 

Acceptable levels of power (> .80) are reached at the first look for large effects, at the second 

look for medium effects, and at the final look for small effects. Let’s assume that after 

collecting 50 participants in each condition, the first interim analyses reveals a Cohen’s ds = 
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0.55, 95% CI [0.15, 0.95], t(98) = 2.76, p = .007. Even though the effect size estimate is 

inaccurate (as indicated by the large confidence interval), the p-value is lower than the alpha 

boundary of 0.018 (see Table 2), which indicates the data provide support for the hypothesis, 

and the data collection can be terminated.  

Alternatively, let’s assume the first interim analysis reveals a Cohen’s ds = 0.14, 95% 

CI [-0.25, 0.54], t(98) = 0.71, p = .477. It is still possible that the true effect size is larger than 

d = .30, but based on the current data, it is more likely to be lower. The researcher can 

therefore choose to terminate the data collection (and accept the risk she is making a Type 2 

error, given the uncertainty around the effect size estimate due to the relatively low sample 

size). The researcher may also decide to postpone the decision to terminate the experiment to 

the second interim analysis, because more data always yields more accurate inferences. 

Whereas the benefit of sequential analyses to design more efficient studies when the effect is 

true was highlighted earlier (see Table 1), sequential analyses are also more efficient when 

examining hypotheses that are not true, or when examining effects that are too small to be of 

interest to a researcher. Researchers should be aware that accurate effect size estimates 

require large samples, especially for small effect sizes, and early stopping often means it 

remains relatively probable that a small effect exists. Researchers should therefore not be 

tempted to conclude there is no effect when terminating the data collection at an early interim 

analysis, and instead interpret their non-significant data as indicating the effect size is likely 

to be smaller than the effect size of interest to the researcher. 

Adjustments When Reporting Test Statistics 

Sequential analysis allow us to conclude whether a statistically significant effect is 

present or not, but in addition to this conclusion, researchers often want to report test 

statistics, such as a p-value, an effect size, and confidence intervals around the difference. In 

non-sequential analyses these test statistics all follow from the same theory, but this is not 
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true for sequential analyses. A p-value is the probability of observing a result at least as 

extreme as the result that was observed, given that the null hypothesis is true. When using 

sequential analyses, more than one analysis is performed, and the definition of a result ‘at 

least as extreme’ needs to be redefined. The recommended procedure to determine what ‘at 

least as extreme’ means is to order the outcomes of a series of sequential analyses in terms of 

the stage at which the study was stopped, where earlier stopping is more extreme than later 

stopping, and where studies with higher Z-values are more extreme, when different studies 

are stopped at the same time (see Proschan et al., 2006). This is referred to as stagewise 

ordering. Finally, the effect size estimate needs to be corrected for bias when stopping early, 

because the observed effect size at the moment the study is stopped could be an 

overestimation of the true effect size. Although procedures to control for bias have been 

developed, there is still a lot of discussion about the interpretation of such effect sizes, and 

studies using non-adaptive designs, followed by a meta-analysis, might be needed if an 

accurate effect size estimate is paramount. 

Let’s continue the earlier example where an effect is examined in a Japanese 

population. After collecting 60 participants, the researcher performs an independent t-test and 

finds a non-significant difference in the expected direction, t(58) = 1.26, p = .21. At the 

second interim analyses after 120 participants the difference is statistically significant, t(118) 

= 2.65, p = .009. Because the p-value at the second analysis is lower than the alpha boundary 

of .022, the researcher terminates the data collection. To calculate the p-value corrected for 

sequential analyses, we have to report the probability of observing a specific alpha level (as 

in a normal statistical test), while not observing a significant difference at earlier interim 

analyses. In this case, we report the probability that the Z boundary was not crossed at 

interim analysis 1 (when the boundary was Z = 2.394, see the first illustrative example), and 

that we observed the Z-value associated with the observed p-value in the second interim 
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analysis. We can again use WinDL or the GroupSeq package in R to calculate a p-value, 

which yields and adjusted p = .023. Step-by-step guides for WinDL and R (including 

screenshots and a spreadsheet that can be used to perform additional calculations) are 

available as supplementary material from http://osf.io/uygrs/files/, and can also be used to 

calculate adjusted mean differences, Cohen’s d, and 95% CI for the observed difference. 

Internal Pilot Studies, Conditional Power, and Adaptive Designs 

During an interim analysis, the observed results can be used to adapt the study design, 

for example by increasing the total sample size that will be collected. According to the 

European Medicines Agency (2006): “a study design is ‘adaptive’ if statistical methodology 

allows the modification of a design element (e.g., sample-size, randomization ratio, number 

of treatment arms) at an interim analysis with full control of Type I error rate.” With interim 

analyses, it becomes possible to use data collected early in a study as an internal pilot study 

(Wittes & Brittain, 1990), and use the effect size estimate from an interim analysis to 

determine the sample size for the full study. Small adaptations of the planned sample size 

might be based on differences in nuisance parameters, which are not the main parameters of 

interest in a study. For example, an interim analysis might reveal a difference between the 

expected standard deviation of a dependent variable, and the observed standard deviation in 

the sample. If the observed standard deviation in the sample is larger than expected, more 

participants will be needed to maintain the desired statistical power of the test. 

Whenever the observed effect size is lower than expected, it is also possible to change 

the final sample size based on the effect size observed in an interim analysis. In medical 

sciences, such adaptive designs are controversial (see Chow & Chang, 2008), because they 

can lead to a statistically significant result without any practical significance, and thus a new 

treatment can claim to be ‘better’ without having a practical benefit. Therefore, Proschan and 

colleagues (2006) conclude that ‘Sample size methods based on the treatment effect are like 

http://osf.io/uygrs/files/
http://osf.io/uygrs/files/
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antidepressants: it is best not to need them, but if you do, they work reasonably well.’ In 

psychology, there is also a risk to publish statistically significant but practically meaningless 

effects, but the lack of accurate effect size estimates (e.g., due to publication bias) is a much 

greater problem. This makes adaptive designs useful for researchers who want to perform 

studies with sufficient statistical power when effect sizes turn out to be lower than expected 

based on the published literature, while controlling Type 1 error levels. 

When a study is designed with the goal to observe a statistically significant effect 

researchers need to perform an a-priori power analysis, which requires an estimate of the 

expected effect size. In sequential analyses, this is referred to as the unconditional power of a 

study. If researchers use an adaptive design, interim analyses allow researchers to calculate 

conditional power, which is the conditional probability of a statistically significant benefit at 

the end of a study, given the data collected so far. After an interim analyses, different 

predictions can be made about the likelihood of observing a statistically significant effect at 

the end of the trial by assuming the trend observed in the data collected so far continues, or 

by assuming the remaining data will yield an effect size equal to the estimated effect size 

used in the unconditional power analysis. Researchers should keep in mind that effect sizes 

calculated from small sample sizes have large confidence intervals, and conditional power 

analyses based on small samples should not be given too much weight. A recent simulation 

by Schönbrodt and Perugini (2013) provides useful recommendations of the required sample 

size to yield reasonably stable effect sizes estimates that do not change considerably when 

additional participants are collected, and suggests a minimum sample size of 55 in each 

condition for the average effect size in psychology (d = .43). Researchers thus might want to 

use these recommendations as a guide to determine when to perform a conditional power 

analysis. 
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Researchers should decide whether they want to use an adaptive design, or whether 

they want to plan for a large sample size, and rely on interim analyses to stop the data 

collection when a convincing level of significance has been observed (for a discussion, see 

Tsiatis & Mehta, 2003). A useful recommendation is to use sequential analyses based on a 

reasonable effect size estimate, but include the possibility of an adaptive design if the effect 

size is lower, but still of interest to the researcher. Instead of conditional power, researchers 

can also use predictive power, a Bayesian alternative to conditional power (Spiegelhalter, 

Freedman, & Blackburn, 1986). 

Defining the Smallest Effect Size of Interest (SESOI) 

If researchers want to terminate the data collection early when an effect size estimate 

is smaller than a minimum value, it is important to define what the smallest effect size of 

interest (SESOI) is. In applied research, practical limitations of the SESOI can often be 

determined based on a cost-benefit analysis. For example, if an intervention costs more 

money than it saves, the effect size is too small to be of practical significance. In theoretical 

research, the SESOI might be determined by a theoretical model that is detailed enough to 

make falsifiable predictions about the hypothesized size of effects. Such theoretical models 

are rare, and therefore researchers often state they are interested in any effect size that is 

reliably different from zero. Even so, because you can only reliably examine an effect that 

your study is adequately powered to observe, researchers are always limited by the practical 

limitation of the number of participants that are willing to participate in their experiment, or 

the number of observations they have the resources to collect. 

Whether your choice for a smallest effect size of interest is based on a real life effect 

that is desirable, the effect size predicted by a theoretical model, or simply based on practical 

limitations with respect to the number of participants you can or are willing to collect, it is 

always possible to define a smallest effect size of interest. For example, I would personally, 
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and in general, consider a sample size of 500 participants for a lab experiment consisting of 

individual sessions too much effort to be worthwhile. As a consequence, assuming a lower 

limit of statistical power of 0.80 (or .90), the SESOI would be Cohen’s ds = .25 (or Cohen’s 

ds = .29) for a between subjects t-test with an alpha of .05. The SESOI for a paired-samples t-

test would be Cohen’s dz = .13 (or Cohen’s dz = .15). Moving beyond the rather hollow 

statement that researchers are in principal interested in an effect of any size that is reliably 

different from zero is useful because it allows a researcher to stop the data collection because 

of futility whenever an effect size is smaller than the SESOI. 

In some designs, for example with a dichotomous dependent variable, it is possible 

that the outcome of the experiment will yield a significant difference, regardless of the 

remaining data that a researcher has planned to collect. In these situations, a study can be 

stopped because the statistical significance of the outcome is completely determined. This is 

referred to as curtailment. In other situations, the observed effect size might be too small to 

be reliably observed given the maximum number of observations a researcher is willing or 

able to collect. Lan and Trost (1997) suggest researchers stop for futility when conditional 

power drops below a lower limit, continue with the study when the conditional power is 

above an upper limit, and whenever it lies between the lower and upper limit, extend the 

study (i.e., increase the planned sample size) to achieve conditional power that equals the 

upper limit.  

When such an approach is used for replication studies, researchers can prevent 

inconclusive outcomes in situations where effect sizes might be reliably different from zero, 

but the planned sample size was too small to yield a statistically significant effect. As such, 

sequential analyses might prove to be a preferable alternative to recent suggestions to 

perform replication studies using 2.5 times the sample size of the original experiment 

(Simonsohn, 2014), which could still result in an inconclusive outcome. Sequential analyses, 
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on the other hand, can be continued until a statistically significant result has been observed, 

the effect size estimate is reliably lower than a minimum value, or the 95% confidence 

interval around the effect size has a desired width that still includes zero. Although sequential 

analyses lead to more conclusive outcomes, they can also put a high burden on researchers 

who perform replications because they need to collect large sample sizes (e.g., Donnellan, 

Lucas, & Cesario, in press). 

Discussion 

When researchers perform studies, they should aim to spend the time of participants 

and the money they receive from taxes as efficiently as possible. Given the increasing 

awareness that well-powered studies in psychological research require larger sample sizes 

than researchers were accustomed to, the general uncertainty around effect size estimates in 

most research domains, and the risk of inflated Type 1 error rates when results are analyzed 

repeatedly, an important question is how well-powered experiments should be designed. To 

do research efficiently, researchers should collect no more data than needed, either because 

the collected data is sufficiently convincing that the predicted effect exists, or because it is 

unlikely that continued data collection will yield the predicted effect. 

This article discussed procedures developed in medical sciences that allow researchers 

to perform interim analyses while the data collection is still in progress, without inflating the 

Type 1 error rate. These interim analyses can be used to plan adaptive designs, where 

conditional power analyses are used to determine the final sample size of a study. The 

flexibility provided by these statistical procedures makes it possible to collect larger samples 

more efficiently, and reduce the risk of performing studies where the outcome remains 

inconclusive due to a lack of statistical power. Researchers should determine the rules they 

rely on to terminate the data collection or extend the sample size in advance, and preferably 

pre-register these stopping rules such that they can be presented during peer review. 
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Researchers interested in performing studies that use adaptive designs where conditions are 

dropped, or where the main dependent variable is changed, might want to involve a statistical 

consultant who guides the researcher through the design process, and helps to interpret the 

outcome of the analyses. 

Some Remarks on Null-Hypothesis Significance Testing 

Although Type 1 errors are the alpha of statistical inferences, they are not its alpha 

and omega. The goal of research is not to control Type 1 error rates, but to discover what is 

likely to be true. This article discussed procedures how to control Type 1 error rates, and plan 

the size of a sample based on the likelihood that a statistically significant finding will be 

observed when the data collection is terminated. Throughout this discussion, I hope 

researchers will remember that inferences from data are only one aspect of the empirical 

cycle, and good theory and methodology are equally essential for scientific progress. 

Null hypothesis significance testing remains a strong tradition in psychological 

research, but it is only one approach that can be used to draw conclusions from studies. The 

reliance on statistical significance as a guide to interpret the outcomes of studies, and more 

specifically its importance in deciding whether results should be published or not, is a major 

shortcoming of current practices in some research domains within psychology. There are 

situations where statistical significance addresses the question a researcher is interested in, 

such as when a carefully controlled experiment aims to examine the novel theoretical 

prediction that an effect exists. However, researchers are also interested in how likely it is a 

finding will replicate, which is not easily predicted within a NHST framework (Miller & 

Schwarz, 2011). Another important goal of research is to provide an accurate estimation of 

the value of parameters such as the effect size, which is not the same as observing a statically 

significant finding (Cumming, 2008, Lakens & Evers, 2014). 
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Using sequential analyses will inevitably lead towards a more Bayesian approach of 

thinking about what to believe in. Sequential analyses have been considered the ‘front line’ in 

the debate between Bayesian and frequentist approaches to statistical inference 

(Spiegelhalter, Abrams, & Miles, 2004), and researchers who embrace sequential analyses 

will slowly ease into the idea of updating the probability that an hypothesis is true as 

additional evidence is acquired, which will be a positive development in the long run. 

Because most researchers use significance tests, and not Bayesian statistics, the goal of this 

article was to explain how sequential analyses can be used to improve current statistical 

practices.  

Previous articles in which sequential analyses were discussed in light of the 

fundamental shortcomings of p-values gave the impression that sequential analyses 

procedures are themselves deeply flawed (Wagenmakers, 2007). However, there is no reason 

why the sequential analyses procedures that have been developed in medical sciences should 

not be useful for psychological research. Significance tests in sequential analyses will 

generally lead to similar conclusions about the evidence in favor of the alternative hypothesis 

as Bayesian analyses would have yielded, and a Bayesian approach to evaluate accumulating 

data while an experiment is in progress will in practice lead to boundaries to terminate the 

experiment that lie between the Pocock boundaries and O’Brien-Fleming boundaries, if a 

skeptical prior is chosen with a mean effect of 0 (for a detailed discussion, see Proschan et al., 

2006). A Bayesian approach could differ from analyses within a NHST framework when a 

prior is chosen that puts a high probability on the alternative hypothesis. However, since the 

choice of the prior will lead to a different conclusion about the same data, anything else than 

a skeptical prior is controversial. Besides this difficulty, Bayesian analyses have additional 

benefits, in that they are more flexible, and allow researchers to perform interim analyses 
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after every observation, which in a NHST framework would lead to high costs in terms of 

error rates or statistical power. 

Data Monitoring and Experimenter Bias 

In large medical trials, tasks such as data collection and statistical analysis are often 

assigned to different individuals, and it is considered good practice to have a data and safety 

monitoring board that is involved in planning the experiment and overseeing any interim 

analyses. In psychology such a division of labor is rare, and it is much more common that 

researchers work in isolation. The number of times data is analyzed matters for the Type 1 

error level in a NHST framework, and the planned final sample size matters for the adjusted 

p-value, effect size, and 95% confidence intervals calculated when the data collection is 

terminated. As a consequence, it is essential that sequential analyses are reported when they 

are performed.  

The best approach to guarantee this is to pre-register the study design. Researchers 

should specify the planned sample size (or in adaptive designs, the criteria on which the final 

sample size will be determined), the number of interim analyses, as well as the rules that will 

be used to terminate the data collection, in addition to the number of different conditions, 

dependent variables, and other relevant aspects of the study. Whenever an experiment is 

submitted for publication, researchers can link to the pre-registration document, and 

reviewers can check whether the data collection and analysis adhered to the predefined plan 

(see Nosek & Lakens, 2014). Note that although pre-registration is important for science, 

there is often no immediate benefit for the individual researcher to pre-register studies. 

Because sequential analyses do offer an immediate benefit (such as a reducing the required 

sample size for well-powered studies with at least 20-30%), and sequential analyses should 

be pre-registered, embracing sequential analyses might also increase the prevalence of pre-

registered experiments. 
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As an example of a pre-registered sequential analysis, researchers could state:  

Based on an expected effect size of Cohen’s d = 0.43, a power analysis indicated that 

for a two-sided test with an alpha of .05, a desired statistical power of .9, and two 

looks using a linear spending function, a total of 244 participants are needed. If the 

expected difference is significant at the first interim analysis (after 100 participants or 

time = .41, with an alpha boundary of .0205) the data collection will be terminated. 

The data collection will also be terminated when the observed effect size is smaller 

than the SESOI, which is set at d = 0.29 based on the researcher’s willingness to 

collect at most 400 participants for this study, and the fact that with one interim 

analysis 400 participants provide .8 power to detect an effect of d = 0.29. If the 

interim analysis reveals an effect size larger than 0.43 (while p > .0205), the data 

collection will be continued until 244 participants have been collected. If the effect 

size lies between the SESOI (d = 0.29) and the expected effect size (d = 0.43), the 

planned sample size will be increased based on a conditional power analysis to 

achieve a power of .9 (or to a maximum of 400 participants in total). The second 

analysis is performed at an alpha boundary of .0358. 

A benefit of sequential and adaptive designs is that they allow a lot of flexibility, 

while controlling the level of Type 1 errors, and researchers can pre-register much more 

flexible designs. After an interim analysis, researchers can decide to terminate an experiment, 

increase the sample size based on a conditional power analysis performed when enough 

participants have been collected to yield a stable effect size estimate (Schönbrodt & Perugini, 

2013), or even stop collecting data for specific conditions (referred to as drop-the-losers 

designs, see Chow & Chang, 2008) while continuing data collection for the remaining 

conditions (Bauer & Köhne, 1994), all while keeping the Type 1 error below a desired level. 

Note that the current discussion of sequential analyses assumes a single dependent variable is 
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analyzed in a confirmatory fashion. If researchers want to examine multiple dependent 

variables, Bonferroni corrections can be applied. Furthermore, exploratory analyses remain 

possible and could prove interesting, although due to the unknown increase in alpha level, 

such findings are preferably replicated before taken too seriously. 

One might feel that Type 1 error control is not necessary, and that everything is 

allowed, as long as people clearly report what they have done. This idea assumes that 

reviewers can decide whether the results of a study provide convincing support for a 

hypothesis or not. However, since people are notoriously bad at thinking about probabilities, 

and specifically bad at thinking about conditional probabilities such as p-values, letting 

reviewers decide whether a chosen procedure leads to a result that is convincing might be 

asking for trouble. Instead, an approach where researchers clearly specify the flexibility they 

desire in advance, and control the overall alpha level, is a more objective procedure to 

determine how convincing the data are. 

Experimenter bias is important to consider when performing a study under normal 

circumstances (e.g., Klein et al., 2012), but becomes even more important to consider when 

the experimenter has performed an interim analysis. The risk of subtle changes in procedures 

or differences in the way participants are treated may increase if the experimenter has 

knowledge of the effects the manipulation has had on previous participants. The experimenter 

needs to be blind to conditions and ideally to the hypothesis. In situations where a researcher 

is interested in the difference between two groups regardless of the direction of this 

difference (i.e., the study is deemed worthwhile regardless of whether X1 > X2 or X1 < X2), 

the researcher might ask someone else to perform the interim analysis, such that when the 

outcome of the interim analysis indicates data collection should be continued until a specific 

number of participants has been collected, the experimenter remains blind to the direction of 

the effect. 
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Conclusion 

Sequential analyses provide potentially important benefits for psychological science, 

because they allow researchers to perform well-powered studies more efficiently. It is 

surprising that the statistical procedures discussed here have not been used, or even 

considered, by psychologists, especially in light of recent work on ways to improve the 

reliability of psychological research. I hope this brief introduction, together with the 

supplementary materials, will provide researchers interested in sequential analyses with an 

easy to follow explanation of how these procedures can be incorporated into their research. 
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Figures 

Figure 1. Statistical power as a function of the effect size (Cohen’s δ) and sample size per 

condition. 
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Tables 

Table 1. Average sample size for sequential (four analyses, linear spending function) and 

non-sequential studies designed to achieve a power of .80 or .90 (alpha = .05) for five effect 

sizes, and the reduction in the average number of collected observations for an independent t-

test. 

 
80% power 90% power 

  Sequential N Non-Sequential N Reduction Sequential N Non-Sequential N Reduction 
δ = 0.8 39.17 52 24.67% 45.91 68 32.49% 
δ = 0.5 100.82 128 21.23% 117.88 172 31.47% 
δ = 0.43 135.73 172 21.09% 158.82 230 30.95% 
δ = 0.3 278.38 352 20.91% 326.33 470 30.57% 
δ = 0.2 625.09 788 20.67% 733.30 1054 30.43% 
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Table 2: Alpha level and power as a function of sample size and effect size (δ) for sequential 

and non-sequential tests. 

Sequential Tests 

Sample size Nominal Alpha Power (δ = 0.3) Power (δ = 0.5) Power (δ = 0.8) 

100 0.018 0.193 0.552 0.949 

200 0.018 0.435 0.889 1.000 

400 0.026 0.800 0.998 1.000 

Non-Sequential Tests 

Sample size Nominal Alpha Power (δ = 0.3) Power (δ = 0.5) Power (δ = 0.8) 

100 0.050 0.318 0.697 0.977 

200 0.050 0.560 0.940 1.000 

400 0.050 0.849 0.999 1.000 
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Footnotes 

1 We can also consider a scenario where the interim analysis returns a p-value that 

falls between the traditional significance level (0.05) and the boundary value for sequential 

analyses (e.g., 0.017). After observing a p-value of 0.048, a researcher might regret having 

decided to use sequential analyses. Nevertheless, sequential analyses are on average more 

efficient, p-values above .03 never very strong support for an hypothesis (Lakens & Evers, 

2014), and the researcher can perhaps find solace in the knowledge that collecting more data 

always increases the informational value of studies. 

2 This can be done in Excel using: =NORMSINV(1-(p-value)/2). A conversion 

spreadsheet is available from: http://osf.io/uygrs/files/  

http://osf.io/uygrs/files/
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