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Abstract 
The increasing adoption of brain imaging methods has greatly augmented our understanding of the neural 
underpinnings of communication processes. Enabled by recent advancements in mathematics and 
computational infrastructure, researchers have begun to move beyond traditional univariate analytic 
techniques in favor of methods that consider the brain in terms of evolving networks of interactions 
between brain regions. This network neuroscience approach is a potential boon to communication and 
media psychology research but also requires a careful look at the complications inherent in adopting a 
novel (and complex) methodological tool. In this manuscript, we provide an overview of network 
neuroscience in view of the needs of communication neuroscientists, discussing considerations that must 
be considered when constructing networks from neuroimaging data and conducting statistical tests on 
these networks. Throughout the manuscript, we highlight research domains in which network 
neuroscience is likely to be particularly useful for increasing theoretical clarity in communication and 
media psychology research.  

1. Introduction 

Communication scholars draw on a wide range of multidisciplinary methods to understand how humans 
create, transmit, and understand messages. The introduction of neuroimaging into communication 
research has produced notable advancements in how we research persuasion (Falk, Berkman, et al., 2010), 
flow (Harris et al., 2017; Huskey, Craighead, et al., 2018; Weber et al., 2009), attention/cognitive control 
(Huskey, Craighead, et al., 2018; Weber, Alicea, et al., 2018), political information processing (Falk et al., 
2012; Schmälzle et al., 2015), information sharing (Baek et al., 2017; C. Scholz et al., 2017), media violence 
(Mathiak & Weber, 2006; Weber et al., 2006), social media (Meshi et al., 2015, 2016), social interaction 
(Schilbach et al., 2006; Stephens et al., 2010), and interpersonal synchrony (Cacioppo et al., 2014; Hasson 
et al., 2012).  

These pioneering brain imaging studies in communication had two primary goals: First, researchers were 
interested in isolating the neural correlates of communication-relevant processes. Second, these studies 
sought to understand how activation in the brain during message processing precedes, mediates, or is the 
result of communication processes—most notably behavior and attitude change (Falk, Berkman, et al., 
2010; Falk, Rameson, et al., 2010; Huskey et al., 2017). This work revealed—among many other things—the 
central importance of reward processing regions like the medial prefrontal cortex (mPFC) and 
orbitofrontal cortex (OFC; Falk, Rameson, et al., 2010; Schultz et al., 1997) for message reception and 
valuation, the recruitment of regions associated with mentalizing and social information processing (like 
the temporoparietal junction (TPJ) and precuneus (Frith & Frith, 2006; Schilbach et al., 2008; J. Scholz et 
al., 2009) in perspective-taking and message sharing, the role of the anterior cingulate cortex (ACC; 
Huskey, Craighead, et al., 2018) for attention and flow during media use, and the involvement of the ACC 
and the amygdala during violent video game play (Mathiak & Weber, 2006; Weber et al., 2006). 
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This focus on univariate brain activation maps has catalyzed much progress in communication research. 
As such, these methods have been reviewed extensively within the literature (Falk, 2012; Hopp & Weber, 
2020; Schmälzle & Meshi, 2020; Turner et al., 2018; Weber, 2015; Weber, Fisher, et al., 2018). However, the 
relationship between brain activity and behavior is much more complex than can be described in terms 
of contiguous regions of activation on a cortical map (Huskey, 2016). Even relatively simple cognitive 
processes recruit many brain regions across broad swaths of cortical and subcortical space. Furthermore, 
the activation of any one region of the brain often cannot be understood without considering how other 
regions activate (or deactivate) in concert with it (Bassett & Gazzaniga, 2011). This is especially the case 
for communication processes, which are complex amalgamations of relatively simpler cognitive and 
emotional processes (Mathiak & Weber, 2006; Weber et al., 2008).  

In the last decade, neuroscience researchers have developed a collection of methods that push beyond 
univariate approaches to investigate how coordinated activity across multiple brain regions relates to 
human cognition and behavior. These methods have come to be collectively known as network neuroscience 
(Bassett & Sporns, 2017). Network neuroscience methods are a potential boon to communication and 
media psychology research but also require a careful look at the complications inherent in adopting a 
novel (and complex) methodological tool (Turner et al., 2018). In this manuscript, we provide an overview 
of network neuroscience in view of the needs of communication neuroscientists and the broader research 
community investigating brain activity during naturalistic tasks. We highlight the promise and potential 
pitfalls of these methods, discussing considerations that must be considered when constructing networks 
from neuroimaging data and conducting statistical tests on these networks. Throughout the manuscript, 
we highlight research domains in which network neuroscience is likely to be useful for increasing 
theoretical clarity and integrating across topic domains. 

2. Introduction to Network Neuroscience 

The brain has been described as a dynamic network of interconnected units since at least the 19th century 
(Cajal, 1911; Swanson & Lichtman, 2016), but only recently have advancements in mathematics and 
computing infrastructure allowed researchers to examine networks of activity in living human brains. In 
general, these networks are constructed using patterns of statistical covariance between different regions 
of the brain and analyzed using techniques developed from a branch of mathematics known as graph 
theory (Rubinov & Sporns, 2010). This research has facilitated increased empirical understanding of many 
complex cognitive processes (Bassett, Xia, et al., 2018; Bassett & Sporns, 2017; Medaglia et al., 2015) and 
of the systems-level neural mechanisms underlying human behavior (Bertolero & Bassett, 2019). The 
brain networks that are investigated using these methods can be grouped into two primary categories: 
intrinsic networks and task-evoked networks. 

2.1. Intrinsic Networks 

Large populations of neurons throughout the brain fire synchronously with one another, even in the 
absence of an external task or sensory input (Raichle et al., 200l; 2015). These synchronous response 
patterns comprise an intrinsic network with a structure that strongly reflects anatomical connections in 
the brain (Biswal et al., 2010; Honey et al., 2009). Intrinsic networks have a relatively stable architecture 
across individuals (Yeo et al., 2011) but also exhibit meaningful inter-individual variability (Gratton et al., 
2018). This “functional fingerprint” (Finn et al., 2015) is unique to an individual and seems to be both 
heritable and stable across the lifespan (Elliott et al., 2019; Horien et al., 2019).  

Individual differences in intrinsic connectivity predict variables that are often of interest to 
communication scholars, including age (Betzel et al., 2014; Cao et al., 2014), social network size (Bickart 
et al., 2012), willingness to share self-related information (Meshi et al., 2016), decisions to reciprocate in 
social interactions (Cáceda et al., 2015), executive functioning ability (Reineberg et al., 2015), and mental 
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disorders like ADHD (Elton et al., 2014; Konrad & Eickhoff, 2010; Yu-Feng et al., 2007), schizophrenia 
(Rashid et al., 2016; Su et al., 2016), and dementia (Rombouts et al., 2009). In addition, emerging work 
suggests that intrinsic network connectivity can be used to predict an individual’s responsiveness to 
health-related interventions (Gabrieli et al., 2015). As such, communication and media psychology theory 
stands to benefit from research paradigms that investigate how individual differences in intrinsic 
connectivity patterns relate to message processes and outcomes.  

2.2. Task-evoked Networks 

Task-evoked networks are constructed from patterns of statistical covariance that occur between different 
brain regions whenever the brain is engaged in a specific task, such as movie viewing, interpersonal 
communication, or learning. Network structure during a task predicts performance in a wide array of 
cognitive measures and highlights individual differences in brain activity that are not observable from 
intrinsic connectivity data alone (Finn et al., 2017; Vanderwal et al., 2017). Additionally, task-evoked 
networks have been shown to be more reliable than those observed at rest (Wang et al., 2017). As such, 
research paradigms relating task-evoked network structure to communication variables of interest are 
likely to be widely applicable for addressing questions relevant to communication researchers.  

Of special interest is the substantial body of literature investigating network connectivity during movie 
viewing and other naturalistic tasks (Bottenhorn et al., 2019; Hasson et al., 2008, 2012). Indeed, a rapidly 
growing body of work within communication and cognate fields has begun to investigate how task-evoked 
functional connectivity can provide additional insight into communication processes and effects. Task-
evoked connectivity while processing anti-smoking and anti-drug public service announcements has been 
shown to predict health-related behavior change (Cooper et al., 2017, 2018) and to be modulated by drug 
use risk (Huskey et al., 2017). Task-evoked networks have also been used to investigate flow experiences 
during video game play (Huskey, Wilcox, et al., 2018), interpersonal understanding and friendship 
(Parkinson et al., 2018; Wheatley et al., 2019), effective narrative processing in movies (Aly et al., 2018; 
Andric et al., 2016) and attention and comprehension within spoken/written stories (Regev et al., 2018; 
Simony et al., 2016). 

3. Communication Questions to Address with Network Neuroscience 
3.1. Understanding Individual Differences 

Network neuroscience methods can enable researchers to investigate how individual differences in 
communication processes and outcomes relate to individual differences in synchronized activity across 
multiple brain regions. A group of individuals watching the same message will, in general, produce quite 
similar patterns of brain activation (Hasson et al., 2008). Intersubject variation in these patterns 
corresponds with variation in the way the message is processed, including how it is comprehended and 
stored in memory (Simony et al., 2016) and whether it is persuasive to that individual (Cooper et al., 2018). 
For example, greater connection strength within the default mode network (DMN) during narrative 
processing is associated with increased memory for the narrative in follow-up tests. Furthermore, activity 
within this network varies in a manner dependent on the interpretive framework that is applied to the 
narrative (Yeshurun et al. 2017).  

In a similar way, individual differences in task-evoked brain networks may help us understand a number 
of other individual differences germane to communication and media psychology research. Connectivity 
metrics allow for a much richer characterization of an individual’s “functional fingerprint” (Finn et al., 
2015) than do univariate approaches, suggesting their utility for investigating long-standing questions. 
Indeed, network methods are already contributing to our understanding of individual differences in 
emotion (Kong et al., 2019; Pessoa et al., 2017), motivation (Di Domenico & Ryan, 2017), attention 
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(Rosenberg et al., 2017), persuasion (Cooper et al., 2017; Huskey et al., 2017), and aggression (Klasen et al., 
2013; Weber et al., 2006), among many others.   

3.2. Highlighting Biological Mechanisms  

Second, network neuroscience measures are likely to be useful for proposing candidate mechanisms to 
add explanatory power to communication concepts in light of dynamic neural processes. Communication 
scholars often call for a deeper study of the mechanisms that underlie communication phenomena 
(Valkenburg & Peter, 2013). At the same time, communication is a dynamic process concurrently involving 
multiple cognitive systems, making simple mechanistic explanations unlikely or even impossible. As has 
been demonstrated in related fields (Bertolero & Bassett, 2019), network methods uniquely exploit the 
properties that make a system complex, using these emergent properties to foster richer explanations and 
to compress information in a way that still maintains essential characteristics of the system (Rathkopf, 
2018), while avoiding the trap of overly simplistic, low-dimensional representations (Jolly & Chang, 2019).   

Incorporating networked processes in the brain as candidate mechanisms undergirding various facets of 
message processing can help us understand how temporal variation in brain networks relates to 
differences in message processing outcomes like memory, persuasion, and learning. Several examples of 
the utility of this approach can already be found within the communication literature. First, Huskey, 
Wilcox, and Weber (2018) highlight efficiency—the inverse of the average shortest path length between 
nodes—in task-evoked brain networks as a key factor in understanding how intrinsic reward relates to 
attention and cognitive control during video game play. Relatedly, work by Cooper and colleagues (2018) 
has demonstrated that the flexibility of nodes in default mode and frontoparietal networks while viewing 
anti-smoking images is associated with smoking reduction, suggesting that integration between these two 
networks may support persuasion and intention-change processes. Finally, a recent investigation by 
Weber and colleagues (2018) indicates that connectivity in attention-related brain networks is attenuated 
in a non-linear fashion in response to increasing distraction, hinting at a candidate mechanism 
undergirding the commonly-observed curvilinear relationship between attention and increasing 
cognitive demands. 

3.3. Bridging Sub-Domains 

Finally, network neuroscience approaches can provide a common analytic framework for bridging 
interesting questions at multiple scales, serving to integrate seemingly disparate research domains 
(Bassett & Sporns, 2017). Network neuroscience measures have allowed researchers in the neurosciences 
to develop a more thorough understanding of the rich landscape of factors involved in their phenomena 
of interest (Bertolero & Bassett, 2019), enabling convergence across fields that had historically operated 
in relative isolation from one another (Bassett, Zurn, et al., 2018; Betzel & Bassett, 2017). Network 
neuroscience measures hold similar promise for creating bridges across communication subfields (Craig, 
1993), and between communication science and the psychological and brain sciences (Weber et al., 2015).  

Indeed, network neuroscience tools are already enabling research at the intersection of message 
processing and social network analysis—two formerly disparate areas of communication and social 
psychological research. This work has revealed (among other things) that response inhibition in 
adolescents is moderated by both brain connectivity and social network structure (Tompson et al., 2018) 
and that social network positioning influences the neural underpinnings of message sharing decisions 
(O’Donnell et al., 2017; C. Scholz et al., 2017), feelings of social exclusion (Bayer et al., 2018; Schmälzle et 
al., 2017), and relational closeness (Parkinson et al., 2018). Although this research is still in its incipient 
stages, it has already produced notable advancements in our understanding of how social networks 
interact with brain networks to influence communication processes and predict responses to messages. 
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4. Building a Network 

As is clear from the preceding research, network neuroscience methods are increasingly being applied to 
problems of interest to scholars in communication and cognate fields. In this section, we provide an 
overview of the steps that are necessary for constructing a network from functional neuroimaging data 
and conducting basic statistical tests on brain networks. Space does not permit an exhaustive overview of 
the software tools that have been (and are being) developed to implement these techniques. As such, 
communication researchers interested in learning more about specific tools that may be useful in each of 
these steps may consult Abraham et al. (2014), Ciric et al. (2018), Nastase et al. (2019); Rubinov and Sporns 
(2011), and Sizemore and Bassett (2011). 

4.1. Preprocessing 

Like any fMRI method, network neuroscience research requires an extensive preprocessing pipeline 
before data may be subjected to statistical analysis. In addition to the standard preprocessing steps (as 
conducted using fMRIprep (Esteban et al., 2019) or another well-documented processing pipeline), 
network neuroscience analyses require extra consideration in two primary areas of preprocessing. The 
first of these involves dealing with the high levels of autocorrelation present in brain imaging data (Honari 
et al., 2019; Jo et al., 2010; Lund et al., 2006; Zarahn et al., 1997). Autocorrelation can artificially inflate 
connectivity estimates, contributing to statistical confounds that can cloud the relationship between 
observed connectivity patterns and variables of interest within an experimental design (Afyouni et al., 
2019). For this reason, pre-whitening (removing temporal autocorrelation) has been recommended before 
conducting network analysis of task-based brain imaging data (Bright et al., 2017; Honari et al., 2019; 
Liégeois et al., 2017).  

Another pertinent preprocessing step is the removal of motion artifacts (Power et al., 2012). Even very 
small movements like breathing, cardiac activity, and eye movements during fMRI scanning can create 
confounds in connectivity-based analyses (Van Dijk et al., 2012). In what is likely to be good news for 
communication and media researchers, a growing body of evidence suggests that fMRI paradigms 
involving movies and other naturalistic stimuli produce relatively fewer motion confounds compared to 
resting state or trial-based paradigms (Vanderwal et al., 2017; 2019). Even so, removal of motion confounds 
is critical in any preprocessing pipeline. A large body of work in recent years has sought to ascertain best 
practices for the removal of motion confounds (Ciric et al., 2017; Lydon-Staley et al., 2019). This has 
resulted in the recent release of the xcpEngine3 software package to conduct further denoising on data that 
have been preprocessed with fMRIprep. For most communication and media psychology scholars, these 
standardized pipelines are sufficient for preprocessing needs and carry with them the added benefit of 
increasing reproducibility and opportunities for data sharing.  

4.2. Defining Nodes 

Once brain imaging data have been preprocessed, a researcher must decide how to define the nodes in 
the network. For fMRI data, nodes are typically defined as either voxels4 or regions of interest (ROIs) 
spanning multiple voxels. Defining a node as a voxel (or an individual sensor in an EEG or MEG paradigm) 
has the advantage that it does not require further aggregation than is already inherent in the data by nature 
of its resolution. This reduces the number of assumptions as to how well the nodes in the network 
correspond to neuronal populations of interest. Unfortunately, creating nodes in a voxel-wise fashion also 
comes with a few disadvantages. First, the size of a voxel has nothing to do with the underlying neurons 
and everything to do with the resolution of the scanner that collected the data. As such, a relevant cluster 

 
3 https://xcpengine.readthedocs.io/  
4 A voxel is a "volume pixel", a 3-dimensional chunk of the brain usually measuring between 1mm3 and 3mm3. 
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of neurons may be split into multiple voxels, and one voxel may contain multiple clusters of neurons with 
varying functions and connectivity patterns (Eickhoff et al., 2018; Wig et al., 2011). Because fMRI measures 
index neuronal activation in terms of the flow of oxygenated blood, signals are often spread out across 
multiple voxels, creating artificial inflation of connectivity measures between neighboring voxel nodes 
(Power et al., 2011). Furthermore, spatial smoothing measures commonly employed in fMRI 
preprocessing pipelines have a non-trivial effect on network topology in networks in which nodes are 
defined in a voxel-wise fashion (Alakörkkö et al., 2017; Uğurbil, 2016). Finally, voxel-based networks often 
require enormous computing power (Loewe et al., 2016). Although researchers increasingly have access 
to cloud-based analysis platforms that can reduce barriers to entry,5 voxel-based connectivity analyses 
may still be computationally intractable for many researchers. For these reasons, many approaches 
designed to investigate task-evoked networks define nodes at the ROI level (for a conceptual schematic of 
the steps involved in creating a dynamic network from brain data, see Figure 1). 

ROIs are most often defined using structural or functional parcellation atlases of brain regions. These 
atlases are typically constructed and validated using high-resolution neuroimaging datasets. Structural 
parcellation atlases, which are based on anatomic divisions marked by hills (gyri) and valleys (sulci) in the 
brain, tend to perform quite poorly for constructing functional networks (Craddock et al., 2012). For this 
reason, functional atlases are often used to define nodes in task-evoked networks (Cole et al., 2014). These 
atlases divide the brain into a number of 3-dimensional brain areas based on differentiable patterns of 
brain activity at rest or during particular tasks. Of these, four of the most common are a 264-node atlas 
developed by Power and colleagues (Power et al., 2011), a 300-node atlas developed by Shen and colleagues 
(Shen et al., 2013), a 360-node atlas developed by Glasser and colleagues (Glasser et al., 2016) and a 
"multiresolution" atlas proposed by Craddock and colleagues (Craddock et al., 2012). 

Defining nodes at the ROI level greatly reduces the dimensionality of the resulting network—from 
thousands of nodes down to hundreds or fewer—but can affect the topology of the network and the 
replicability of findings (Eickhoff et al., 2018; Hayasaka & Laurienti, 2010). As the number of nodes in a 
network increases, the replicability of functional connectivity measures also tends to increase, but this 
often comes at the cost of interpretability (Craddock et al., 2012) and is severely limited by the 
computational infrastructure available to most researchers (Loewe et al., 2016). For this reason, it is 
important to consider the number of nodes that will likely be most beneficial for the chosen topic and 
analysis method. Although fine-grained analyses may seem more statistically reliable, the current 
resolution of functional brain imaging only permits interpretation of connectivity at a relatively coarse 
level (Wig et al., 2011). A "happy medium" on this continuum seems to be between 200 and 500 nodes (Shen 
et al., 2010), but best practices in this area are still actively developing, and there does not exist a 
parcellation scheme that adequately addresses all challenges (Arslan et al., 2018). For this reason, we 
recommend that communication scholars interested in conducting network analyses rely on well-
validated and widely-used atlases such as those provided by Power et al., (2011), Shen et al., (2010), 
Craddock et al., (2012), or Glasser et al., (2016). 

 

 

 

 

 

 
5 Promising entries in this domain include brainlife.io (https://brainlife.io), Flywheel (https://flywheel.io), and 

Google Colaboratory (https://colab.research.google.com). 
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4.3. Defining Edges 

Once the nodes of the network are defined, a researcher must decide how to define the connections 
between them. The most intuitive and interpretable approach is to consider anatomical connections—
known links between neurons as traced using invasive neurophysiological measures or using white matter 
pathways imaged through diffusion tensor imaging (DTI) or diffusion spectrum imaging (DSI; Fornito et 
al., 2016). Unfortunately, neither of these measures can non-invasively capture dynamic activation of 
functional networks in living human brains. As such, the most common approach is to consider edges as 
defined by statistical relationships between the activation time series of each node (Sporns, 2010; Wig et 
al., 2011). 

One widely used method to construct edges is a simple Pearson correlation (Power et al., 2011; Shen et al., 
2010; Zalesky et al., 2012). A time series of brain activity at one node is extracted and correlated with the 
time series of another node, resulting in an edge between the two nodes that is weighted by the correlation 
coefficient. This process is repeated for every possible pair of nodes in the network. The resulting 
correlations are typically entered into a matrix wherein rows and columns correspond to individual nodes, 
and cells of the matrix contain the correlation between the two nodes (Rubinov & Sporns, 2010; Zalesky et 
al., 2012). Lending credence to the biological validity of these networks, these correlation-based networks 

Figure 1: Conceptual schematic of the steps involved in creating a dynamic network from brain data. a) Acquiring 
imaging data using brain imaging techniques (EEG, fMRI, fNIRS, etc.). Functional data can be collected during a particular 
task (such as watching a movie or playing a video game), or when the participant is at rest.; b) parcellating brain imaging 
data into ROIs using a validated parcellation atlas (e.g. Craddock et al., 2012; Glasser et al., 2016; Power et al., 2011; Shen 
et al., 2010). If using a voxel-based approach, parcellation is not necessary; c) Extract time series from each ROI or voxel 
of interest. For a whole-brain analysis, the time series is extracted from all ROIs; d) if constructing a dynamic network, 
divide scanning run into chunks, or create a sliding window across all times; e) extract the statistical relationship (e.g., 
correlation) between each node and every other node in the network. These statistical dependencies can be analyzed in 
the form of a matrix, also called the network adjacency matrix, and visualized as a network. 
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have been shown to be highly reliable within individuals (Choe et al., 2017), even across different scan 
parameters (Abrol et al., 2017). 

Constructing edges between nodes based on single correlation coefficients has been shown to 
systematically bias certain network parameters (Afyouni et al., 2019; Zalesky et al., 2012). For this reason, 
some employ alternative measures for connectivity, including wavelet coherence, multivariate 
connectivity, and mutual information approaches (Anzellotti & Coutanche, 2018; Bressler & Menon, 2010; 
Bullmore & Sporns, 2009; Chang & Glover, 2010; Hutchison et al., 2013). These methods can correct some 
of the issues inherent in using Pearson correlation, but they come with their own complications and can 
add considerable complexity to analyses (Fornito et al., 2013; Jalili, 2016; Wig et al., 2011). It is worth 
emphasizing that all of these measures create undirected edges between two nodes. Those interested in 
examining causal influence processes in brain networks must use other methods, such as multivariate 
time series analysis combined with concepts that define fundamental principles of causal inferences (such 
as Granger causality; Eichler, 2013; Roebroeck et al., 2005), or other networked causality methods, 
although the usefulness of these methods in brain networks is still under active investigation (Bielczyk et 
al., 2018). 

4.4. Time-Varying Networks 

When creating a network from brain imaging data, one can calculate the statistical relationships between 
nodes averaged across the duration of a period of interest (e.g., a trial, a run, or an entire scan), generating 
a static snapshot of the statistical relationships between nodes observed during the period. Often, though, 
a researcher is interested in how networks evolve throughout the course of a task. The simplest way to 
construct a time-varying network is to break up the period of interest into intervals and calculate 
relationships between each node for each time interval (Zalesky et al., 2014). This can readily be done 
whenever an experiment lends itself to temporal chunking (such as when it consists of a number of trials 
presented in succession). This approach is often used to construct multilayer networks in which nodes in 
each time window are connected to the same node in adjacent time windows (Mucha et al., 2010). Many 
experiments, though, do not lend themselves to such a time-blocked approach. This is especially true for 
naturalistic stimuli of interest to communication scholars. Movies, video games, and interpersonal 
communication tasks usually evolve smoothly over time rather than in discrete chunks. For these sorts of 
paradigms, an approach is needed that can calculate how a network also smoothly evolves over time. 

One widely used method for creating a temporally evolving network is the sliding window method (Zalesky 
et al., 2014). In this approach, connectivity is calculated for all nodes within a time window. After this, the 
window is moved forward one time step, and connectivity is calculated again. This is repeated for all time 
points in the run. The width of the window and the offset parameter that are chosen can influence network 
measures of interest. Window widths that are too narrow carry with them the risk of observing spurious 
fluctuations in connectivity (Hutchison et al., 2013; Leonardi & Van De Ville, 2015; Zalesky & Breakspear, 
2015), whereas window lengths that are too long risk missing key variation in network topology that may 
be relevant for understanding the phenomenon investigated in the study (Preti et al., 2017). Although there 
is no universally accepted best practice for these values at this time, a window width between 30 and 60 
seconds (combined with a high-pass filter of 1 divided by the window length) has been suggested for 
optimal stability of functional connectivity estimates (Leonardi & Van De Ville, 2015). As with other 
network construction steps, the width of the time window should be set carefully in light of particular 
questions of interest (Shakil et al., 2016). For communication scholars, a time window could correspond 
to scenes in a movie, turns in a conversation, or other forms of natural temporal delineation within a 
message or conversation. One could also set the temporal window to the resolution of an associated 
content analysis, matching the temporal resolution of the neural data with the temporal resolution of the 
content-analytic data (see e.g., Weber, 2008). 
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More fundamentally, there exists an ongoing debate in the literature as to the extent to which dynamic 
fluctuations in connectivity are attributable to nuisance variables like head motion (Laumann et al., 2017; 
Shine & Poldrack, 2018), arousal (Tagliazucchi & Laufs, 2014), or natural variability associated with 
sampling error (Hindriks et al., 2016). Despite this, accumulating evidence provides support for the 
existence and replicability of dynamic functional connectivity measures (Abrol et al., 2017) and for their 
close correspondence with a wide range of behaviors (Bassett et al., 2011, 2015; Baum et al., 2017; Cole et 
al., 2014; Gonzalez-Castillo et al., 2015). This evidence emphasizes the role of behavior in observing and 
interpreting dynamic fluctuations in connectivity (Shine & Poldrack, 2018) and highlights the importance 
of reporting analytic decisions made throughout the processing pipeline.  

4.5. Thresholding 

All of the methods above produce a network that is fully connected, meaning that every node in the network 
has an edge with every other node. Fully connected graphs introduce numerous computational 
complexities to network analytic measures. Furthermore, mounting evidence suggests that low 
correlations between distant nodes are disproportionately likely to be the result of respiration and motion 
artifacts (Power et al., 2012; van den Heuvel & Fornito, 2014). As such, many network models of the brain 
assume sparse connectivity, meaning that every node in the network is only connected to a small 
proportion of other nodes at any given point in time (Sporns, 2010). As such, network neuroscience studies 
commonly employ sparsification techniques wherein only a subset of edges in the network are maintained 
in the final analysis. In order to sparsify a brain network, researchers most often rely on thresholding 
methods, winnowing away weak or inconsistent edges in the graph while maintaining strong or consistent 
edges. There are two primary approaches to thresholding employed in the literature: absolute 
thresholding and proportional thresholding. 

In absolute thresholding, all edges above a certain connection strength are maintained (and usually all set 
to a value of 1), and all edges below the cutoff are removed (van den Heuvel et al., 2017). Although this 
approach is simple and widely used, it can introduce confounds in comparative analyses (Garrison et al., 
2015). Most notably, this method can lead to differing network densities between studies and between 
experimental and control groups. This limits researchers' ability to compare networks between 
individuals or between conditions (Nichols et al., 2017; van Wijk et al., 2010). In contrast, proportional 
thresholding aims to keep the density of connections fixed across individuals and trials. In this method, 
connections are ranked from strongest to weakest, and a certain percentage of the weakest edges are 
discarded. This approach has also been quite widely used (Achard & Bullmore, 2007; Bassett et al., 2009; 
van den Heuvel et al., 2008) and is relatively computationally simple. 

In recent years, thresholding approaches have been criticized for their arbitrariness and for the fact that 
they binarize inherently continuous data (Bassett et al., 2011; Bassett & Bullmore, 2017; Tooley et al., 2020). 
Both absolute and proportional thresholding have been shown to introduce difficulties in comparing brain 
networks across groups—especially when overall network density may be a salient difference between the 
two groups (van den Heuvel et al., 2017). Furthermore, mounting evidence suggests that network 
measures are more robust in graphs that maintain edge weights than in thresholded graphs (Good et al., 
2010) and that thresholding may artificially introduce complexity even in relatively simple graphs 
(Cantwell et al., 2019). As such, it is likely advisable to avoid thresholding unless it is strictly 
computationally necessary. If thresholding is required, it is perhaps advisable to set multiple levels of 
thresholding for a particular analysis, comparing the results across thresholds. As with other network 
construction steps reviewed here, it is imperative that a researcher employ (and report) their network 
thresholding decisions in light of precedent set by other studies in the topic area. 
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4.6. Statistically Comparing Brain Networks 

Much can be gained from approaches that compare global network measures (such as centrality, average 
path length, or clustering coefficients) in certain groups or task conditions. This approach requires 
nothing more than standard hypothesis testing methods and requires the same statistical assumptions as 
are common in other domains (e.g., normality, homogeneity of variance, appropriate sample size). Often, 
though, a question of interest requires that statistical tests be performed for smaller subunits of a network 
(such as individual nodes or clusters). In this case, statistical inference using network models requires 
comparing a particular unit in an ensemble of observed networks with a matched unit in an ensemble of 
null models (Fornito et al., 2016; Zalesky et al., 2010). These analyses are complicated by the fact that the 
null distribution of a brain network adjacency matrix is unknown (Zalesky et al., 2012). As such, null 
networks must be generated using an algorithm that constructs a network matching the observed network 
on key characteristics (e.g., number of edges, connectivity patterns) while scrambling characteristics that 
have to do with the question of interest. 

Null networks can be created using random rewiring algorithms (Maslov & Sneppen, 2002). These 
approaches randomly rearrange all edges in the network, effectively destroying the connectivity patterns 
present in the network while maintaining the same number of nodes and edges. Although relatively widely 
used, this method is not without its issues. Most notably, random rewiring approaches destroy both the 
intrinsic topological structure of the brain network as well as the network structure within any given time 
window (Zalesky et al., 2012). Often, a researcher is interested in either the structure of the network across 
the whole task or how the network evolves during the task. Since these two forms of connectivity are tightly 
correlated with one another (Cole et al., 2014), the fact that random rewiring creates a null model that 
destroys both of these characteristics at once makes isolating the overall network structure from the 
structure of the network within any given time window impossible. 

One prominent approach that preserves the transitive structure of the correlation matrix is the 
Hirschberger-Qi-Steuer (H-Q-S) algorithm (Hirschberger et al., 2007). This algorithm randomly generates 
networks that are matched to the distribution of covariances observed in the test network. A brute force 
version of the H-Q-S algorithm is also widely used. This approach, although slower (i.e., more 
computationally expensive), is designed to create a more accurately matched set of correlation values in 
the null network (Zalesky et al., 2012). A final rewiring approach—introduced by Rubinov and Sporns 
(2011)—rewires edges in a manner that preserves both node degree and edge weights, reassigning edges 
based on an ordered list of node degrees and edge weights. A common approach that does not require 
rewiring the network is to randomize the time series data itself rather than the connections between 
nodes. In this approach, the time series at each node is subjected to a Fourier transform, which transforms 
the underlying time-series into a set of harmonic frequencies (periodogram or power spectrum). After 
this step, the phases of these frequencies are scrambled and subjected to an inverse transform (from the 
frequency domain back to the time domain). This preserves critical properties of the time series (like the 
autocorrelation function, power spectrum, etc.; Breakspear et al., 2004). 

After constructing an ensemble of null networks, a researcher can conduct statistical tests for each 
element of interest. This yields a test statistic and a p-value for each individual element. The resulting set 
of statistics is often called a statistical parametric network (Ginestet & Simmons, 2011). Once the statistical 
parametric network is acquired, normal considerations regarding the familywise error rate (FWER) must 
be considered. For most networks, familiar FWER-controlling methods—such as Bonferroni correction or 
controlling for the false discovery rate (FDR; Benjamini & Hochberg, 1995)—can be used. Many other 
methods for controlling the FWER have been proposed within the literature, including a nonparametric 
approach known as the network-based statistic (Zalesky et al., 2010). In this approach, groups of 
topologically adjacent points are clustered together, and the FWER is controlled in relation to the clusters 
rather than individual points. This approach exploits the topological characteristics of brain networks in 
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order to maximize power while still taking the FWER into account. In this sense, it is quite similar to 
clustering approaches designed for making inferences over statistical parametric maps commonly 
employed in neuroimaging (Bullmore et al., 1999; Nichols & Holmes, 2002). 

5. Discussion 

Herein, we have outlined a network neuroscience approach to analyzing brain imaging data. First, we 
introduced a number of communication-relevant research domains in which network neuroscience 
approaches may be especially useful for building theory and for explicating the neural underpinnings of 
communication processes. We then discussed a selection of tools and techniques for preprocessing brain 
imaging data for use in network analytic methods. Next, we discussed the considerations involved in 
precisely defining nodes and edges in the network. Following this, we highlighted extant methods for 
creating dynamic networks that can account for the multiple temporal scales at which a network may 
evolve during a communication task. Finally, we introduced procedures for statistically analyzing brain 
networks and for creating valid null models that respect the intrinsic and task-evoked structure of 
networks of interest. 

As with other fMRI measures (Weber, 2015), the potential boon of dynamic network neuroscience for 
communication research comes with a few caveats. Most notably, many concepts in communication 
research (such as "presence" or "persuasion") are often multidimensional amalgamations of more well-
understood processes. In a similar fashion, network models of the brain are also multidimensional, and 
are difficult to distill into their constitutive parts. Fitting high-dimensional network models to high-
dimensional theoretical phenomena is at risk of being sidelined by the "curse of dimensionality" (Bellman, 
1961), in which patterns observed in high-dimensional spaces do not meaningfully translate into low-
dimensional representations. Studies of the dynamic networks underlying communication processes will 
undeniably benefit from theoretical legwork aimed at clarifying and distilling communication 
phenomena into component processes that may be investigated using neural data. 

A network is, by definition, a "ruthless abstraction" of the real world (Fornito et al., 2016). As such, brain 
network analysis, perhaps more than any neuroimaging method developed thus far, requires researchers 
to make numerous analytic decisions to coax their data into a form that is amenable to analysis using 
traditional statistical tests. It is perhaps fitting to describe network neuroscience as a "garden of forking 
paths" (Gelman & Loken, 2014) in which any decision made in the preprocessing and analysis pipeline can 
influence the outcomes of statistical tests as well as the interpretation of those outcomes. It is quite 
possible that a well-intentioned researcher can observe a promising pattern of interest in their data only 
to discover that this pattern is, in fact, an artifact of preprocessing, node definition, thresholding strategy, 
or other decision made in the analytic pipeline. This fact has led to multiple calls for the development of 
best practices in conducting and reporting brain network studies (Dubois & Adolphs, 2016; Gilmore et al., 
2017; Nichols et al., 2017). It is critical that communication scholars who wish to leverage network 
neuroscience methods stay abreast of developing tools and analytic standards and report any analytic 
decision made during network construction and analysis. 

Novel methods for data collection/analysis allow researchers to push the limits of existing theories and 
facilitate the development of new perspectives (Greenwald, 2012). This method-theory synergy approach 
has been outlined within the context of communication neuroscience by Weber and colleagues (2015; 
2018). Emerging network neuroscience methods, including edge-centric connectivity analyses (Faskowitz 
et al., 2020), individual-specific functional mapping (Gratton et al., 2019), and network-based predictive 
modeling (Rosenberg et al., 2020) will undeniably create new opportunities for understanding. Although 
network science is far from a new concept in communication research (Monge & Contractor, 2003), the 
recent debut of network neuroscience approaches in communication has created new opportunities for 
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advancing our understanding of the neural precursors, mediators, and outcomes of communication 
(Schmälzle & Meshi, 2020).   
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