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Abstract

The perception and integration of sequential numerical information is a common

cognitive task. It is a prerequisite for experience-based economic choices, but it is

usually not part of economic decision theory. To better understand the process of

symbolic number integration and its influence on economic behavior, we performed

three experimental studies that examined mean estimates and economic valuations of

continuous number distributions. The results indicate that participants valued random

number distributions below their respective arithmetic means and valued distributions

as lower when their variance increased, indicating risk aversion. A similar though less

pronounced pattern also occurred in the matched mean estimation task where accuracy

was incentivized and preferences played no role. These patterns suggest that seemingly

risk-averse preferences are partly due to cognitive biases when perceiving and

estimating numbers. In addition, participants’ apparent economic preference for

right-skewed outcome distributions could be attributed mainly to estimation biases. We

discuss the extent to which the results can be explained based on a compressed mental

number line and different sample weighting models. Finally, a new model that can

account for the qualitative data pattern and has stronger overweighting of lower than

higher numbers as its core feature is developed. Together, our results indicate that basic

cognitive processes in perceiving and integrating number sequences play a key role in

understanding experience-based economic behavior.

Keywords: decision from experience, BDM auction, risk preference, continuous

outcome distributions, estimation bias



VALUATION AND ESTIMATION 3

How Basic Cognition Influences Experience-Based Economic Valuation

Introduction

How do people perceive and integrate numerical information that is presented

sequentially? A better understanding of the underlying cognitive processes is an

important question in its own right and has important implications for economic

judgment and decision-making. For example, when one thinks about determinants of

real-world investment behavior, what usually comes to mind are economic preferences,

such as risk, delay, loss, or uncertainty aversion. Yet, subjective valuations of investment

options are also influenced by cognitive number perception and processing (Kahneman,

2003; Khaw, Li, & Woodford, 2017; Krajbich, Armel, & Rangel, 2010; Schley & Peters,

2014; Tsetsos, Chater, & Usher, 2012). So when people think about investing in stocks,

they might research the history of returns on the stock market. Integrating and

estimating a sequence of discrete monetary returns is a complex cognitive task that

requires perception, attention, and working memory. In this paper, we aim to

understand how people integrate and evaluate the outcome distribution of a continuous

number sequence. In addition, we probe to what extent behavioral phenomena that are

usually explained by subjective preferences (e.g. risk aversion) might also depend on

regularities in the way people perceive and integrate numerical information.

To distinguish between cognitive number processing on the one hand and

economic preferences on the other, we designed a series of experiments in which we gave

participants identical numerical information while varying the task: An estimation task

asking about the mean as an objective characteristic of an outcome distribution should

not involve economic preferences. In contrast, eliciting certainty equivalents/ valuations

for an outcome distribution requires both assessing objective aspects such as the mean

and incorporating one’s own subjective economic preference such as risk-aversion. We

made use of this difference between estimation and valuation to disentangle economic

preferences from the process of number integration: To the extent that economic

valuations are based on (potentially distorted) perception and number integration,

behavioral patterns in the estimation task should predict answers in the valuation task.



VALUATION AND ESTIMATION 4

Economic Preferences

A central concept in economic decision making is risk aversion. It describes two

commonly observed behavioral phenomena: First, people typically prefer a sure

outcome over a gamble with the same expected value (EV). Second, in the case of two

(or more) risky gambles with similar EV, people often prefer the one with lower

variance. Risk aversion is often mathematically described in terms of a concave utility

function, such that high values are relatively more compressed than small values (Pratt,

1964, Rothschild & Stiglitz, 1971, but see: Weber, Shafir, & Blais, 2004). This also

leads to the prediction that gambles with higher stakes lead to more risk-aversion than

gambles with lower stakes. Only few studies explicitly examined this effect, but mostly

found evidence for an increase in risk-aversion with stakes (Binswanger, 1980; Holt &

Laury, 2002).

Whereas risk aversion has been invoked to explain economic preferences with

respect to outcome variance, empirical evidence suggests that economic preferences are

also affected by higher moments of an outcome distribution. One example is the third

moment (i.e. skewness; Åstebro, Mata, & Santos-Pinto, 2015; Kraus & Litzenberger,

1976; Spiliopoulos & Hertwig, 2015). To illustrate, Figure 1 shows distributions that are

right-skewed (i.e. high outcomes occur with small probability and most samples are

below the mean) and left-skewed (i.e. small outcomes occur with low probability and

most samples are above the mean). A preference for right-skewed distributions is one

way to explain buying lottery tickets and insurance at the same time (Golec &

Tamarkin, 1998; Spiliopoulos & Hertwig, 2015). In line with this reasoning, the

mean-variance model (Markowitz, 1952) was extended for skewness preferences with an

additional parameter (Kraus & Litzenberger, 1976). Likewise, prospect theory

(Kahneman & Tversky, 1979) can incorporate skewness preferences with the shape of

the probability weighting function. Often, this function is estimated to give higher

weights for rare events, for example, high outcomes in a right-skewed and low outcomes

in a left-skewed distribution (but see Hertwig, Barron, Weber, & Erev, 2004).

The ontological status of utility-based models in economics has been debated for
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over a century. It could be either a parsimonious way to mathematically summarize and

describe economic behavior, a so-called as-if model (Friedman, 1953), or it could depict

a more fundamental basic regularity of human (and nonhuman) number cognition

(Kahneman, 2003). To the extent that economic choices depend on how people perceive

and integrate numerical information, research in psychophysics and cognitive science

should be integrated into theories about economic behavior.

Experienced Outcomes and Numeric Cognition

The cognitive foundation of economic preferences is supposedly relevant in

decisions from experience (DFE; Barron & Erev, 2003; Hertwig et al., 2004; Weber

et al., 2004). In a DFE experiment, participants typically sample single outcomes from

a numerical distribution before making a choice. This paradigm can have higher

external validity and is arguably cognitively more demanding compared to a situation

where all possible outcomes and probabilities are presented in a descriptive format.

Consequently, the DFE paradigm has been used to test several prominent findings such

as the influence of subjective probability weighting (i.e. the under- and overweighting of

rare events) (e.g. Barron & Ursino, 2013; Hau, Pleskac, Kiefer, & Hertwig, 2008;

Ungemach, Chater, & Stewart, 2009). Yet, these studies were confined to test specific

economic preferences and typically focused on choices between a gamble with only one

nonzero outcome and a certain outcome. When these analyses were extended to

incorporate gambles with two nonzero outcomes, empirical results were mixed

(Abdellaoui, L’Haridon, & Paraschiv, 2011; Glöckner, Hilbig, Henninger, & Fiedler,

2016). In the experiments presented below, we further generalize the paradigm by using

continuous outcome distributions.

Although there are some theories to explain behavior in an experience-based

economic context (e.g. Erev, Glozman, & Hertwig, 2008), so far this literature is not

well connected to research about the cognition of numbers. In cognitive psychology,

there is evidence that people have an inherently imprecise and nonverbal notion of

numbers (Gallistel & Gelman, 2000; Whalen, Gallistel, & Gelman, 1999). To some
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extent, this may also hold true for symbolic numbers (Brezis, Bronfman, & Usher, 2015;

Moyer & Landauer, 1967; Schley & Peters, 2014). Given that economic behavior is

stochastic (Hey, 1995; Mosteller & Nogee, 1951), imprecise mental representations could

be a source of this stochasticity (see Khaw et al., 2017). In the following, we review

models of imprecise mental number sense to explore if they predict a systematic

distortion when integrating a sequence of symbolic numbers. Several models of number

cognition have been proposed in the literature. Here, we focus on two frameworks of

number processing and their respective predictions for the perception and integration of

number sequences: The compressed mental number line and the unequal weighting of

certain numbers in a sequence.

Compressed Mental Number Line

Research by Dehaene and colleagues (Dehaene, 2011; Feigenson, Dehaene, &

Spelke, 2004) indicated that the internal representation of numerals can be described as

a compressed mental number line. Historically, concave functions and the resulting

compression are a ubiquitous modeling approach in psychophysics and experimental

psychology and have been found to describe the perception and discrimination of

various entities such as weight, length, and brightness (e.g. Fechner, 1860; Stevens,

1957). A compression with respect to samples in a sequence of numbers implies that

people underestimate the mean of a number sequence and show stronger

underestimation for high variance compared to low variance sequences. Thus, the

compression of numerals could be a source of risk-averse behavior in an economic

context (Schoemaker, 1982). Furthermore, it has been shown that for compressed power

functions (that is a power coefficient between 0 and 1), sequences’ means are higher for

right- compared to left-skewed distributions (Genest, Stauffer, & Schultz, 2016;

Menezes, Geiss, & Tressler, 1980) . Finally, compression should be greater for higher

means compared to lower means.

Empirical evidence for a compressed mental number line when integrating

symbolic number sequences is mixed. Whereas some studies have reported that people
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have a tendency to underestimate the mean or the sum of a number sequence (Brezis

et al., 2015; Scheibehenne, 2017), others have found no such evidence (Lindskog &

Winman, 2014; Peterson & Beach, 1967). Also, in contrast to the prediction of a

compressed mental number line, a recent study found that an increase in variance of a

number sequence led to higher mean estimates (Tsetsos et al., 2012). Consequently, it is

an open question if and under what circumstances a compressed mental number line

applies when integrating symbolic number sequences.

Sample Weighting Function

A different class of models assumes that the weight each number in a sequence

receives to determine an overall magnitude judgment like the sum or the mean could be

systematically distorted. In research about experience-based choices, models were

developed assuming that people underweight rare events, which were defined as events

that occur with at most 20% probability (Hertwig et al., 2004). In the case of

continuous and symmetric distributions like the normal distribution, rare events occur

equally likely for high and low numbers. Therefore, such a weighting scheme would

predict no underestimation of normally distributed outcomes as well as no effect of

mean or variance. In contrast, in skewed distributions, rare events are more likely to

occur on one side of the distribution. Hence, underweighting of rare events predicts

lower mean estimates for right-skewed distributions (where high values are rare)

compared to left-skewed distributions (where low values are rare) with symmetric

distributions in the middle.

As an alternative to looking at rare events, Ludvig and Spetch, 2011 showed that

extreme numbers in a sampling sequence get overweighted. Here, extremeness was

defined as the largest (absolute) outcome in the samples of a number sequence. For

positive continuous outcome distributions this would mean that a sequence’s mean

should be overestimated and this effect should be stronger for high variance (compared

to low-variance) and right-skewed (compared to left-skewed) outcome distributions. In

addition, when extremeness is strictly locally defined within a single number sequence,
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that is numbers from other sequences in the same experiment or in the real world do not

affect the process, differences in the mean of a sequence should not affect the estimation.

Empirical evidence for sample weighting models comes from early studies in

decision-from-experience (for a review see Wulff, Mergenthaler-Canseco, & Hertwig,

2018). These studies show for example that people predominantly chose gambles with

small probabilities of the worse outcomes over the expected value for certain. Yet, it has

to be noted that the underweighting of rare events is not the only explanation for these

empirical finding and that later studies looking at choices between two two-outcome

gambles came to different conclusions (Glöckner et al., 2016; Kellen, Pachur, & Hertwig,

2016). Concerning the overweighting of extreme events, studies showed that people

overestimated the frequency of extreme events in a sequence of numbers (Madan,

Ludvig, & Spetch, 2014, 2016). In addition, psychophysics research using sound stimuli

found that right-skewed distributions lead to higher mean estimates compared to

left-skewed distributions (Parducci, Thaler, & Anderson, 1968) and retrospective

ratings of pain have been found to strongly depend on the maximum (i.e. extreme) pain

endured (Kahneman, Fredrickson, Schreiber, & Redelmeier, 1993). Finally, as already

mentioned above, when people choose between two continuous outcome gambles, people

chose on average the higher variance gamble with same expected value, which is in line

with the idea that people overweight the highest outcomes (Tsetsos et al., 2012).

To summarize the predicted effects of the respective theories of number cognition

on economic behavior: The compressed mental number line predicts overall

risk-aversion and a preference for right-skewed over left-skewed gambles as well as an

increase in risk-aversion as the stakes (i.e. the mean of a gamble) rise. Sample

weighting comes in two flavors: Underweighting of rare events predicts an economic

preference for left- over right-skewed distributions but no overall risk-aversion for

normally distributed gambles. In contrast, overweighting of extreme events predicts a

preference for right-skewed over left-skewed gambles. It further predicts risk-seeking

behavior for gains. To systematically test these predictions, we conducted three

experiments. Participants in all experiments repeatedly sampled numbers from different
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continuous payoff distributions and then estimated the mean of the observed number

sequence and provided an economic valuation. In contrast to economic valuations,

estimations of objective criterion values such as the mean should not be influenced by

economic preferences. This paradigm bridges the literature on economic preferences

with the literature on cognitive number processing.

Experiments 1 and 2

Method Experiment 1

The Tasks. The experimental tasks were based on the DFE paradigm, where

people can freely sample from number distributions for as long as they want before

finally making one consequential choice. To assess participants’ economic valuations, we

had them repeatedly state their certainty equivalents for different outcome distributions

from which they could sample. We made the certainty equivalents incentive compatible

by asking for minimum selling prices (willingness-to-accept, WTA). It was explained to

participants that the minimum selling price is the minimum price they would demand

to forgo the option to draw a single number from the distribution. So we could assess

possible perceptual biases, participants also completed a second task where they had to

estimate the means of the same distributions. In this second task, accuracy was

incentivized with respect to how closely the estimates matched the theoretical mean.

For both tasks, a single trial consisted of a rectangular box presented on the

computer screen representing a distribution to draw from and a smaller gray box

displayed below indicating where participants could type in their answers (see Figure 2

for a schematic). Participants could sample freely from the given distribution by

pressing <space>, which was followed by a number presentation for 250 ms in the

middle of the larger box. After the number disappeared from the screen, an additional

sample could be drawn. Each presented number was generated as a random draw from

the respective underlying frequency distribution, rounded to its nearest integer. After

having drawn at least one sample, participants could enter their answer into the gray

box. Sampling was also possible after entering a number and the number could be
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revised. To end a trial, a number had to be typed in and had to be confirmed with

<enter>.

Outcome Distributions. We constructed 24 continuous number distributions

by combining four different means (80, 100, 130, 160), two standard deviations (5, 10),

and three shapes (normally distributed, left-skewed, and right-skewed). Skewed

distributions were constructed from scaled gamma distributions with a shape parameter

of 1 (absolute skewness = 2) and were truncated at the first (left-skewed) or last

(right-skewed) percentile to avoid extreme outliers. We used four levels of mean mainly

to make the different sequences’ means noticeable, in an effort to keep participants

engaged in the task and hence to increase the number of trials. The different

distributions were presented in randomized order and were the same in both the

valuation and the estimation task.

Procedure and Incentives. The experiment was implemented on a computer

with PsychoPy (Peirce, 2007) and conducted in individual sessions in separate rooms at

the University of New South Wales School of Psychology. All instructions were

presented on the computer screen and could be read at participants’ own pace. Each

participant completed two blocks consisting of 24 trials each. In one block they had to

estimate the mean of the number sequences and in the other they had to report their

certainty equivalent. Block order was counterbalanced between participants.

Payment was determined by randomly selecting one answer across both blocks. If

the trial was in the WTA block, a BDM procedure was implemented (Becker, DeGroot,

& Marschak, 1964): A random number was uniformly drawn between 0 and the

theoretical mean of a given distribution. When the random number was below the

participant’s answer for this trial, then the participant received a draw from the

distribution; otherwise the participant received the points from the random number for

certain. If the selected trial was in the estimation block, the absolute difference of the

estimate and the true mean was subtracted from the true mean. In a final step, the

obtained points were exchanged into Australian dollars (AUD) with a 20:1 ratio and

paid out in cash.
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Method Experiment 2

Experiment 2 was a direct, preregistered replication of the first experiment

(https://osf.io/ehkuz/). The only difference was a change in participants’ instructions.

Anecdotal interviews of participants in the first study indicated some difficulties in

comprehending the incentive scheme (particularly the BDM auction). Hence, in the

second study we simply instructed participants to answer thoroughly and stated that

their accuracy would influence their final payoff. We further informed participants that

details of the actual payment mechanism were available upon clicking on an extra

button on the screen. About one-third of participants made use of this option in each

block.

Participants and Data Analysis Experiments 1 and 2. Because both

experiments used the same stimuli and procedure, we included a study dummy variable

across all statistical analyses. It never came out significant and hence we pooled both

data sets to increase statistical power. Furthermore, there were no differences between

participants who read the incentive schemes and those who did not in the second

experiment.

We tested 53 participants in the first and 58 participants in the second

experiment. Sample size was chosen based on the availability of a convenience sample

prior to data inspection. Participants were undergraduates from the University’s

subject pool, recruited via online advertisement. Participants received course credit and

a choice-dependent bonus of 1.50 to 8.93 AUD (Mpay = 5.43 AUD). Participants’ age

and sex were not assessed, but in the subject pool the mean age was 19 years and

approximately 70% were women.

Prior to analyzing the data we excluded answers further away than 5 standard

deviations from the distribution’s mean (21 trials in the first and 33 trials in the second

experiment out of 5,232 total trials across both experiments). Further, two participants

from the first experiment were excluded for not complying with the task: One

participant sampled only once in each trial (the minimum to continue) and another

participant gave only two answers within 5 standard deviations from the true mean.
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This left us with 109 participants.

We analyzed the data by means of a participant mixed effects regression analysis

in R (R Core Team, 2016; RStudio Team, 2015) using the lme4 package (Bates,

Mächler, Bolker, & Walker, 2015) and the lmerTest package (Kuznetsova, Bruun

Brockhoff, & Haubo Bojesen Christensen, 2016). Across all regressions, we used the

theoretical characteristics of the respective distributions as independent variables. In

particular, variance and skewness were dummy coded and the mean was treated as a

continuous predictor variable. As dependent variables we defined the logarithm of

sample size and participants’ accuracy, quantified as the deviation of their answers

proportional to the distributions’ true mean. The last measure is similar to the

(exponential) signed order of magnitude error that is sometimes reported in the

literature (Brown & Siegler, 1992). Regression analyses that used the characteristics of

the actually experienced samples rather than the theoretical characteristics as

independent variables led to qualitatively similar results. For the second experiment, all

exclusion criteria and the statistical regression analyses were preregistered.

Results

On average, participants drew M = 28.81 samples from each distribution

(Mdn = 21, SD = 31.25). There was no difference in sample size between task types

(estimation: M = 28.51, Mdn = 21, SD = 28.79, valuation: M = 29.12, Mdn = 21,

SD = 33.54), t(108) = 0.20, p > .250. Table 1 shows the regression results with the

logarithm of the number of drawn samples as dependent variable. As can be seen from

the table, only variance had an effect on sample size: The higher the variance, the more

participants sampled. This is in line with previous findings in the literature (Ashby,

2017; Lindskog, Winman, & Juslin, 2013) and it is adaptive in the sense that more

samples mitigate higher uncertainty.

Valuation Task. Figure 3 (left) plots the proportional deviation of participants’

answers in the valuation task from the true means across the different experimental

conditions. As can be seen in the figure, participants gave lower certainty equivalents
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than the theoretical (i.e. true) means. The average deviation from the true mean was

M = −4.78 (Mdn = −3.13, SD = 16.45). This is corroborated by a t test showing that

certainty equivalents were significantly lower than the theoretical means,

t(108) = −4.65, p < .001.

Higher variance led to lower certainty equivalents compared to lower variance

sequences (M = −4.68, Mdn = −3.13, SD = 19.18). The middle column of Table 2

shows the regression results for the valuation task. In particular, the parameter for

variance is negative (−4.73, SE = 1.20)—that is, higher variance led to significantly

lower valuations. Together with the result of overall undervaluation of the mean, these

results are consistent with the notion of risk-averse preferences.

Skewness also has a significant effect on economic valuations. Participants gave

lower values to left- compared to right-skewed distributions with a mean difference

between these two distributional forms of M = −5.40 (Mdn = −1.52, SD = 18.41). In

line with this, the regression analysis shows significant effects, indicating that

left-skewed outcome distributions were valued lower than normally distributed ones

(−2.36, SE = 0.63) and that right-skewed outcome distributions were valued higher

than normally distributed ones (3.02, SE = 0.60). Thus participants had a preference

for right-skewed distributed outcomes.

Finally, results indicate that the mean had a significant positive effect (0.03,

SE = 0.01) on participants’ valuations. In particular, the proportional deviation from

the theoretical mean got smaller as the theoretical mean increased from 80 to 160.

Supposedly, this is because the variability relative to the mean was lower in trials with a

mean of 160 than in those with a mean of 80. This is a consequence of the design choice

to hold the absolute variance constant across different mean levels. Hence, taking the

absolute deviation of the answers from the theoretical mean as dependent variable, there

was no significant effect of the mean, whereas all other predictors remained significant.

Estimation Task. The mean estimates within each condition are depicted in

Figure 3 (right). Like in the valuation task, participants underestimated the theoretical

mean of the number sequences across all conditions (M = −1.39, Mdn = 0, SD = 9.57).
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A t test revealed this underestimation to be significant, t(108) = −3.00, p = .003.

Underestimation was more pronounced for sequences with high variance compared

to those with low variance (M = −0.83, Mdn = 0, SD = 12.27). Table 2 (right column)

shows the respective regression results. As can be seen from the table, there is a

significant effect of variance on estimation deviation in the direction descriptively

observed (−1.33, SE = 0.59). Together with the effect of overall underestimation, this

effect is in accordance with a compressed mental number line.

Furthermore, mean estimates for left-skewed distributions were lower than for

right-skewed distributions (M = −2.91, Mdn = −1, SD = 12.20). The regression

results reveal that mean estimates of right-skewed distributions were significantly higher

(1.79, SE = 0.47) and mean estimates of left-skewed distributions significantly lower

(−1.18, SE = 0.47) than mean estimates of normally distributed sequences. This is

consistent with the idea of number compression and with overweighting of extreme

outcomes.

Finally, the proportional deviation from the theoretical mean got smaller with

higher means (0.01, SE = 0.01). As in the valuation task, this effect most likely was

due to a decrease in relative variability as the mean increased. Inserting the absolute

deviation from the theoretical mean as dependent variable shows no effect of the mean

level on the deviation, whereas the effects of variance and skewness are robust to this

change.

Comparing Estimation and Valuation. As described above, we found

qualitatively similar answer patterns in the estimation and valuation tasks. The

observed effects were smaller for the estimation task though. The observed overall ratio

of underestimation to undervaluation was .29. This ratio can be interpreted as the

relative influence of cognitive biases on valuation. Taking the difference between low-

and high-variance trials separately for the two tasks and calculating the ratio of these

two differences results in .18. Finally, taking the difference between left- and

right-skewed trials separately for the two tasks and calculating the ratio of these

differences gives .54. Together, these results suggest that participants’ responses in the
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valuation task could be partly attributed to basic perceptual and cognitive regularities

in their number estimation, particularly so for the effect of skewness.

Discussion Experiment 1 and 2

Experiment 1 and 2 together showed robust effects of overall undervaluation as

well as effects of the variance and the skewness that are in line with behavior in other

contexts of risky choice. In the estimation task, similar effects were observed which is

evidence that answers in the economic valuation can partly be explained by the process

of number integration. Underestimation, the effect of variance, and higher estimates for

right- compared to left-skewed distributions were consistent with the compressed mental

number line. Overweighting of extremely high numbers is consistent with higher

estimates for right- compared to left-skewed distributions, but would have predicted

higher estimates for high variance compared to low variance distributions. There was no

evidence for underweighting of rare events in our data. Finally, increasing the mean led

to less undervaluation and underestimation, which was not in line with any of the

reviewed theories above. As a limitation, the mean effect vanished when using as

dependent variable the absolute difference between the valuation and the theoretical

mean compared to using the proportional difference. As noted, a possible confound was

the variance, which was the same for all mean levels. Thus there was proportionally less

variability for high compared to low mean sequences (see also Whalen et al., 1999).

Experiment 3

To overcome this limitation of the previous studies, we conducted a new

experiment. In this experiment we held the variability constant across means and we

increased the range of means to have more power to detect an effect of the mean on

participants’ answers.

Method

Material. The third Experiment uses the same design and task structure as the

previous ones: Again, participants sampled to learn about number distributions as often
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as they wanted. In a within-subject design, participants had to estimate the mean in 24

trials and gave their certainty equivalent in 24 trials each. The different tasks were

pooled in two distinct blocks with randomized trial order. Incentivization was changed

for the certainty equivalence task compared to the first two experiments,in that a bid

was selected from zero to the 99% quantile of the respective distribution. To check for

an effect of number compression more specifically, we changed the number distributions

by holding the relative variability (variance/mean) constant across different mean levels.

Furthermore, we increased the number of variability levels from 2 to 3 (at levels of 5,

10, and 20 compared to a mean of 100) and we introduced a stronger mean

manipulation using 8 different levels: 30, 50, 75, 100, 130, 160, 200, and 250. In order

not to inflate the number of trials too much, we omitted the skewness manipulation.

Participants & Procedure. We recruited 120 participants from the University

of Geneva subject pool. The sample size was determined prior to the start of the

experiment, based on the results in the previous experiments. The experiment was

conducted on single computer work stations. The experiment lasted on average about

30 minutes. The participants average age was 23 years (Median = 22, SD = 5.65). 40

participants were male and 80 female. On top of the show-up fee of 20 CHF, the

average choice dependent bonus was 122.90 points (approx. 6 CHF; Median = 121.96,

range = [21.85; 365.26].

Results

On average, participants drew M = 28.47 samples from each distribution

(Mdn = 20, SD = 29.22). There was no difference in sample size between task types

(estimation: M = 29.53, Mdn = 20, SD = 29.53, valuation: M = 27.39, Mdn = 20,

SD = 28.87), t(119) = −1.15, p > .250. Table 3 shows the regression results with the

logarithm of the number of drawn samples as dependent variable. As can be seen from

the table, the mean significantly affects the sample size. The higher the stakes in a

given trial, the higher is the sample size. In addition, variance had an effect on sample

size: The higher the variance, the more participants sampled similar to the effect in
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Experiments 1 and 2. Finally, the coefficient for task type is significant in this

regression, revealing that participants sampled slightly more in the estimation compared

to the valuation task.

Valuation Task. Figure 4 (left) plots the proportional deviation of participants’

answers in the valuation task from the true means across the different experimental

conditions. As can be seen in the figure, participants gave lower certainty equivalents

than the theoretical (i.e. true) means. The average deviation from the true mean was

M = −5.55 (Mdn = −3, SD = 14.74). This is corroborated by a t test showing that

certainty equivalents were significantly lower than the theoretical means,

t(119) = −3.39, p < .001.

Higher variability relative to the mean led to lower certainty equivalents compared

to sequences with lower variability (variability 5: M = −1.72, Mdn = 0, SD = 4.97;

variability 10: M = −3.38, Mdn = −1.33, SD = 10.04; variability 20: M = −5.54,

Mdn = −3, SD = 17.77). The middle column of Table 4 shows the regression results

for the valuation task. In particular, the parameter for variance is negative for both

higher levels of variability (−2.01, SE = 0.48, −5.42, SE = 0.48). Also the effect is

larger for the high compared to the medium variability (both in contrast to the low

variability trials).

Since we explicitly manipulated variability, we can now differentiate the effect of

variability from the effect of higher numbers. Results indicate that there is no significant

effect of the mean level (b = −0.0006, SE = 0.003) on participants’ valuations. In

particular, we found no evidence for more risk-aversion for higher mean sequences.

Estimation Task. The mean estimates within each condition are depicted in

Figure 4 (right). Similar to the previous experiments, participants underestimated the

theoretical mean of the number sequences across all conditions (M = −1.62, Mdn = 0,

SD = 8.88). A t test revealed this underestimation to be significant, t(119) = −3.61,

p < .001.

Higher variability relative to the mean led to lower estimates compared to

sequences with lower variability (variability 5: M = −0.64, Mdn = 0, SD = 3.58;
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variability 10: M = −1.69, Mdn = 0, SD = 8.19; variability 20: M = −2.51, Mdn = 0,

SD = 12.38). The right column of Table 4 shows the regression results for the

estimation task. In particular, the parameter for variance is negative for both higher

levels of variability (−0.79, SE = 0.53, −1.43, SE = 0.54). Also the effect is larger for

the high compared to the medium variability (both in contrast to the low variability

trials).

As in the valuation task, the proportional deviation from the theoretical mean was

not affected by higher means (0.0005, SE = 0.002). This suggests that the observed

numbers were not subject to a compressed mental number line.

Comparing Estimation and Valuation. As in the previous experiments, we

found qualitatively similar effects of variability and mean on valuation and estimation

answers. To quantify the influence of basic cognition on economic valuations, we again

calculated the respective ratios of underestimation to undervaluation.

The observed overall ratio of underestimation to undervaluation was again .29.

Taking the difference between low- and high-variability trials separately for the two

tasks and calculating the ratio of these two differences results in .26. Together, these

results confirm that participants’ risk-averse responses in the valuation task could be

partly attributed to systematic biases in their number estimation. Finally, we divided

trials into low-mean vs. high-mean trials and calculated the ratio of differences between

these two task types between estimation and valuation, which results in a value of 0.05.

The effect of the mean is thus much stronger in valuation compared to estimation, but

note that the effect of the mean was not significant in either the regressions on

valuation or on estimation trials.

A new Sample Weighting Model

As seen above, the behavioral results of the estimation and valuation of

continuous outcome distributions are not fully consistent with either of the above

revised theories. In particular, no effect of the mean on estimation and valuation is not

in line with the compressed mental number line. On the other hand, underestimation
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and -valuation as well as stronger underestimation and -valuation for high compared to

low variance distributions is not in line with the overweighting of high numbers.

Here, we present a post-hoc model of sample weighting that can account for the

qualitative data pattern. A closer look into the literature reveals that behavior

characterized as if people overweight high numbers was mostly found when people have

to choose the preferred/ higher number stream of two options (Glickman, Tsetsos, &

Usher, 2018; Ludvig & Spetch, 2011; Spitzer, Waschke, & Summerfield, 2017; Tsetsos

et al., 2012). Interestingly, when people estimated whether the mean of a number

sequence was lower or higher than a certain amount, people also overweighted low

numbers (Experiment 5 in Kunar, Watson, Tsetsos, & Chater, 2017). The authors

conjectured that the overweighting thus depends on the participants’ goals in a task.

Presumably, for estimation or valuation tasks, both very low and very high numbers

capture attention. More concretely, the results in our experiments are consistent with

the idea that people overweight small numbers more than large numbers in a given

sequence of numbers. Mathematically, small and high numbers in a sequence can be

defined by their distance to the median of the sequence. In the following we describe it

as the proportional absolute deviation (pad) from the median:

pad = abs(sample−median(sample))
median(sample) + 1. (1)

Here, the median is taken from the given distribution. The absolute deviation between

sample and median guarantees the same scale for numbers below and above the median.

Dividing by the median results in the percentage deviation, which then leads to the

same weighting of percentage deviations independent of the mean. This is in line with

many psychopyhsical approaches of mapping objective entities to subjective perceptions

in general (Stevens, 1957) and in number perception and representation (e.g. Izard &

Dehaene, 2008; Whalen et al., 1999). We add 1 to the ratio to have a more natural

interpretation: Samples that are exactly the median have a weight of 1 and all samples

deviating from the median have a higher weighting with the weighting increasing with

absolute distance. In a final step all weights are divided by the sum of weights to result

in weights that sum up to one. To account for individual heterogeneity and for different
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weighting of samples below and above the median, we introduce two parameters:

w(sample) =


padα, if sample−median(sample) ≤ 0

padβ, otherwise.
(2)

For α, β > 0, samples away from the median get more weight than samples equal to the

median. Assuming α > β means that samples below the median get more weight than

samples above the median. As an illustration, Figure 5 shows the weightings of 1000

samples from a normal distribution with mean (and median) equal to 100 and standard

deviation of 20. In this example α = 4 and β = 0.5. This overweighting of low

compared to high numbers directly leads to the underestimation or -valuation of the

mean. Quantitatively, the smaller the parameter, the flatter the curve and thus the

lesser overweighting of extreme numbers. That way, the different levels of

underestimation compared to undervaluation, as observed in our studies, could be

modeled by differences in the ratio between α and β: When α and β are the same, the

predicted mean of a symmetric number sequence is equal to the true mean. The larger

α is compared to β the more underestimation or -valuation is predicted. In case of

asymmetric, that is right- and left-skewed distributions, the absolute level of the

parameters plays a role. The larger the absolute values of α, β, the stronger the

difference in underestimation or -valuation between left- and right-skewed distributions.

As numerical examples, we now construct distributions with different

characteristics mimicking the stimulus material in the experiments. We sample from

them 10,000 times and use again the parameter values α = 4 and β = 0.5. This model

predicts an answer of 99.62 for a low variance normal distribution (m = 100, sd = 5)

compared to 92.09 for a high variance normal distribution (m = 100, sd = 20). This is

in line with stronger underestimation for high compared to low variance distributions in

our experiments. Doubling the mean of the distribution and keeping the relative

variability constant (m = 200, sd = 40) leads to a predicted answer of 184.07.

Comparing the percentage deviation from the true mean of −7.96% with the same value

for the lower mean distribution of −7.91% shows that the mean does not strongly

influence the deviation. This was the main finding in Study 3. A right-skewed
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distribution (m = 100, sd = 20, skew = 2) with most samples (slightly) below the mean

and some samples highly above the mean is predicted to lead to comparatively little

deviation of 98.74. In contrast, a left-skewed distribution (m = 100, sd = 20,

skew = −2) with most samples (slightly) above the mean, but some extremely low

samples, is predicted to lead to a much stronger deviation of 79.86. This reproduces the

empirically found effect of skewness on answers in our experiments.

This model should illustrate how the effects found in our experiments can be

accounted for in a simple mathematical model. It was built on frequently used concepts

in the numeric cognition literature, like proportional deviations from the median and

overweighting of extreme events. Whereas the model provides a parsimonious

explanation for the observed patterns, it was constructed post-hoc after seeing the data

and thus awaits further validation and rigorous testing in future research. Also, even

though the assumed cognitive processes have some plausibility, the model assumes the

median of the sequence of samples to be known beforehand. This was not true in our

experiments. Instead people most likely have prior expectations about the range of

outcomes and might not keep consciously track of the median with every sample. Thus,

using the median in the model is just an approximation of a more complex process.

Finally, the model needs many samples to lead to stable predictions. Thus, when

humans are sampling voluntarily, the amount of samples - although leading to quite

accurate summary statistics - leads to a lot of variability on the level of samples, which

are the inputs to this model.

Discussion

In three experiments, participants sampled number sequences and either estimated

their means or stated their willingness to pay for drawing an uncertain outcome from

the respective distributions. Results indicate qualitatively similar answers in both tasks

but also show clear quantitative differences, suggesting that economic preferences can be

partly explained by cognitive biases in perceiving and integrating numeric information.

Overall, participants underestimated the mean of a sequence of numbers. A direct
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comparison to economic valuations, where people gave certainty equivalents below the

distributions’ actual means, showed that about one-third of this undervaluation can be

attributed to an estimation bias. Underestimation and undervaluation were stronger for

sequences with high variance. Here, about one-fourth of the undervaluation could be

attributed to an underestimation bias. These patterns are in line with the compressed

mental number line and were not predicted by underweighting rare events or by

overweighting extremely high events. In addition, underestimation and undervaluation

were more pronounced for left-skewed over right-skewed distributions. Here, about half

of the variance in the observed undervaluation could be attributed to underestimation.

This pattern is again in line with the compressed mental number line, but was also

predicted by an overweighting of high numbers. Finally, when keeping variability

constant relative to the mean as in Experiment 3, estimation and valuations did not

vary significantly with the sequence’s mean. This can be accommodated for by

assuming only local (i.e. trial by trial) effects of extremeness or rarity, but are not in

line with the compressed mental number line.

The Cognitive Process of Economic Valuation

Biased estimations of number sequences can be explained by introducing the idea

of an intuitive (nonverbal) number sense that guides the perception and integration of

numbers (Brezis et al., 2015; Feigenson et al., 2004; Gallistel & Gelman, 2000). To

capture the cognitive processes that govern overall magnitude judgments from

sequences of symbolic numbers, we referred to two different theoretical frameworks:

First, a compression of the numeric scale and thus a concave psychophysical mapping of

objective numbers to subjective numerosity. Second, systematic differences in the

weighting of single samples, either through underweighting of rare events (Wulff et al.,

2018) or overweighting of extreme events (Ludvig & Spetch, 2011).

A compressed mental number line can explain the overall underestimation and the

stronger underestimation of high-variance sequences that we observed. Furthermore, it

is consistent with higher mean estimates for right-skewed compared to left-skewed



VALUATION AND ESTIMATION 23

distributions. Our experiments show that this number sense can also (partly) explain

economic valuations from experience. To the contrary, the notion of a compressed

mental number line is inconsistent with our finding that underestimation did not

intensify for higher means (controlling for relative variability). The similar concept that

risk-aversion (i.e. compression in a power utility function) increases as the stakes

become larger seems to be intuitively plausible though and has also been found in

economic gamble tasks where the mean was increased by a factor of up to 90 (Holt &

Laury, 2002). In contrast to this, the largest difference in our experiments was less than

10 times (i.e. 30 vs. 250). Thus, perhaps a mean effect can be found with a stronger

manipulation of the mean.

Overweighting of extreme events is also consistent with our finding that people

estimated higher means for right- compared to left-skewed distributions. Such an

overweighting pattern might occur through attention and memory effects that render

extreme outcomes easier to memorize and to retrieve (Kahneman et al., 1993; Madan

et al., 2014; Parducci et al., 1968). Our empirical evidence supports such a weighting

and identified it as an important source of the observed skewness preference in the

economic valuation task. In our experimental design, extreme outcomes are always also

rare outcomes. Thus we cannot rule out that the overweighting of rare events drove the

skewness effect on estimation and valuation. Yet, in a recent study, Ludvig, Madan,

McMillan, Xu, and Spetch (2018) found evidence for a stronger effect of the

extremeness than the rarity of a numbers in a sequence.

On the contrary, the hypothesis that extreme numbers are overweighted did not

predict overall underestimation of the mean and stronger underestimation for higher

variance sequences. In addition, interpreting extremeness as the highest number

predicts higher estimates as the variance of the observed sequence increases. This is the

opposite of our finding. Higher estimates for sequences with larger variance would lead

to risk-seeking behavior, which has indeed been found in a previous study where people

chose between outcome sequences with different variance (Glickman et al., 2018; Ludvig

& Spetch, 2011; Spitzer et al., 2017; Tsetsos et al., 2012). This suggests that the way
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samples are subjectively weighted differs depending on whether the task requires an

explicit valuation or a choice between different options. Valuation and choice are

qualitatively different indeed: Whereas in binary choice tasks two number streams have

to be processed and integrated, only one number stream had to be heeded in a

valuation task. Additionally, the higher level goals of the decider might differ in a

valuation compared to a choice task (Kunar et al., 2017).

Finally, our data are not consistent with the hypothesis that rare events are

underweighted. Underweighting of rare events could neither explain overall

underestimation, nor the effect of variance. The effect of skewness was predicted to go

into the opposite direction. Our results appear to be at odds with the more typical

underweighting of rare events previously reported in the DFE literature (Wulff et al.,

2018). However, our stimuli were continuous and thus generalizing the notion of rarity

in number samples. We conclude that underweighting of rare events does not prevail in

the context of continuous distributions. Even in binary outcome distributions, recent

findings demonstrate seeming overweighting of rare events in DFE tasks examining

choices between two two-outcome distributions (Glöckner et al., 2016; Kellen et al.,

2016). Finally, some of the above theories of the imprecise number sense were mainly

developed for the processing of non-symbolic magnitudes. Future studies could examine

the predictions of these theories for a stream of non-symbolic magnitudes (as for

example in Dutilh & Rieskamp, 2016; Zeigenfuse, Pleskac, & Liu, 2014).

Towards an Integrative Cognitive Model

To capture all qualitative patterns of our data, we developed post-hoc a new

model of sample weighting: The core feature of this weighting model is that in

extension to previous models (e.g. Tsetsos et al., 2012), high as well as low numbers are

overweighted compared to numbers close to the median. As discussed above, differences

in the task (estimation/ valuation vs. choices for higher numbers as in Ludvig &

Spetch, 2011; Tsetsos et al., 2012) could be an important moderator to the way

numbers of a sequence are weighted. Assuming that numbers below the median are
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more strongly overweighted than numbers above the median is consistent with our

findings (see above). In favor of such a model, past research reported evidence that

attentional differences exist in the processing of numbers that signify losses compared to

those signifying gains (Tom, Fox, Trepel, & Poldrack, 2007; Yechiam & Hochman,

2013). Assuming an internal reference point in our task that made people perceive

numbers below the median as losses could thus explain why they receive more weights

than numbers above the median. If such a loss frame is more pronounced in valuation

than estimation, it can explain why high variance number distributions are more

strongly undervalued than underestimated.

In sum, future research is needed to probe the presented model and to clarify the

mechanism that leads to overweighting of high and low numbers. Another open task is

to explain the cognitive processes that give rise to the differences in magnitude between

estimation and valuation. Perhaps numeric cognition and preference formation processes

are additive in that existing number integration biases are augmented in an economic

context. But the relation could also be more complex, for instance, when both, numeric

cognition and economic preferences mutually depend on the presentation format.

Another approach to think about the integration of numerical information is the

theory of decision-by-sampling (Olivola & Sagara, 2009; Stewart, 2009; Stewart, Chater,

& Brown, 2006). This framework assumes that the perception and cognitive processing

of numbers depend on their rank in a reference distribution. Stewart et al. (2006)

showed that distributions of monetary amounts in the gain and loss domain as well as

the distribution of frequency words can lead to economic preferences similar to

cumulative prospect theory (Tversky & Kahneman, 1992) such as risk aversion in the

gain domain and overweighting of rare events. The valuation data we observed in our

experiments is in line with prospect-theory predictions. Thus, decision-by-sampling

theory could explain similar answer patterns in the estimation task. However, prospect

theory with a concave or compressed utility function would also predict to find more

undervaluation for higher mean sequences, which we did not observe.

As a final note, decision-by-sampling theory also assumes that the proximal
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distributions of numbers have an effect on answer patterns (Stewart, Reimers, & Harris,

2014; Walasek & Stewart, 2015). In the extreme case, when everyday experience with

numbers would not affect behavior in the laboratory, a pure rank-based integration of

numbers would not predict systematic underestimation for normally distributed

outcome sequences as presented in our experiments. This is because the numerical

differences between rank positions in the cumulative probability function of the normal

distribution are symmetric at the low and high end of the distribution. Likewise, a pure

rank-based number perception would also fail to account for our findings showing higher

underestimation for high variance (compared to low variance) and stronger

underestimation for left- (compared to right-) skewed distributions.

Differences in the Presentation Format and Estimation Biases

A widely studied format dependency in economic choice is the systematic

difference in behavior between experience-based and description-based representations

(i.e. the description–experience gap). In comparing choices between both formats,

researchers found differences in the weighting of rare and extreme events (Hertwig

et al., 2004; Madan et al., 2014). These differences were explained by assuming either

undersampling of rare events or a recency bias that gives more weight to later samples

(Wulff et al., 2018). Yet, recency has not been found consistently in the literature and

the sampling bias is limited to certain outcome distributions. For example, a sampling

bias cannot explain the format differences when choosing between 50–50 gambles

(Madan et al., 2014). Another way to better understand the source of this format

dependency could be to fit functional forms to the respective choice patterns. Yet,

studies fitting cumulative prospect theory to both descriptive and experience-based

choice data came to inconclusive results with respect to differences in the utility and

probability weighting parameters (Abdellaoui et al., 2011; Glöckner et al., 2016).

Our results suggest another perspective on format dependencies: Presumably, the

influence of numeric cognition is greater in experience-based tasks than in

description-based tasks. This is the case because in the experience-based format often a
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large number of single samples (> 10) have to be processed and integrated sequentially.

To the extent that the cognitive complexity of information integration differs between

the two paradigms, it seems plausible that biases in basic number perception and

integration contribute to the description–experience gap.

Incorporating the cognitive processes underlying number perception and

integration can advance the predictive power of economic models that usually do not

make predictions about concrete parameter values for utility and probability weighting

functions depending on the format. For example, given that skewness valuations in our

experiments highly depended on estimation bias, we would expect that skewness

preferences would be less pronounced in choices from description where estimation

errors presumably are smaller. In line with this reasoning, the effect of skewness on

preferences in description-based choices is indeed mixed (Åstebro et al., 2015;

Lichtenstein, 1965; Spiliopoulos & Hertwig, 2015; Taleb, 2004). Consequently, when

modeling economic behavior, researchers should consider both basic cognitive and

genuine preferential components. This distinction is particularly important when

measuring preferences by comparing utility and probability weighting parameters across

different task designs (see Tversky & Fox, 1995).

From an applied perspective, our results suggest that people will be more risk

averse when it is hard to perceive and integrate the underlying numerical information.

Our results further suggest that skewness preferences will depend on the perceptual

salience of extreme events. This implies that economic decision making can be improved

by improving people’s estimates of outcome distributions. One way to facilitate

information integration would be, for example, to present a list of all sampled outcomes

in experience-based information acquisition (Kopsacheilis, 2017). Another application of

this idea is research in empirical finance, where people have been found to invest in

riskier, but also more profitable, assets when combining descriptive information with

simulated experience of return sequences compared to a mere description condition

(Bradbury, Hens, & Zeisberger, 2014; Kaufmann, Weber, & Haisley, 2013). This

suggests that potential biases in the estimation of number sequences can be corrected by
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presenting descriptive information in addition to a number sequence. Moreover, there is

evidence that investors’ long-run return expectations of a company that is newly listed

on the stock market (i.e. after an initial public offering) are positively skewed, which in

turn can lead to losses because stocks are overbought on the first day (Green & Hwang,

2012). Given our finding of higher estimates of the means for right- compared to

left-skewed distributions, one could train decision makers to give less weight to rare or

extreme outcomes and be thus less susceptible to overbuying newly listed stocks.

Conclusion

The results of our experiments indicate that part of what is often framed as an

economic preference may be the result of cognitive processes of number perception.

Thus, researchers and practitioners alike would benefit from considering possible

influences of number perception and integration on economic choices. This can help

people to assess and execute preferences more reliably. Furthermore, it contributes to a

better prediction of preferences in an economic context depending on the way the

information is presented. Estimations of symbolic number sequences in our experiments

are in line with a complex weighting scheme that overweights both very low and very

high numbers with higher overweighting of low than high numbers. We think

magnitude judgments of sequentially presented numbers are a good test for established

models of numeric cognition. In addition, these and other models could help to

understand format dependencies like valuation vs. choice and experience vs. description

in economics from the perspective of numeric cognition.
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Table 1

Experiment 1 + 2: Sample Size in Valuation and Estimation

Distribution characteristic Estimate

(Intercept)
2.95***
(0.08)

Mean
-0.0005*
(0.0002)

Variance
0.11***
(0.02)

Right-skewed
-0.01
(0.02)

Left-skewed
-0.01
(0.02)

Valuation
0.01
(0.01)

Note. Effects of theoretical mean, variance, skewness, and task type on the

log-transformed number of drawn samples (dependent variable) based on a

mixed-effects regression with subject random intercepts. Standard errors in parentheses.

*p < .05. **p < .01. ***p < .001.
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Table 2

Experiments 1 + 2: Answers in Valuation and Estimation

Distribution characteristic Valuation Estimation

(Intercept)
-6.44*** -2.83**
(1.48) (0.86)

Mean
0.03*** 0.01*
(0.01) (0.01)

Variance
-4.68*** -1.02**
(0.49) (0.35)

Right-skewed
3.04*** 1.74***
(0.60) (0.42)

Left-skewed
-2.38*** -1.19**
(0.60) (0.42)

Note. Effects of theoretical mean, variance, and skewness on percentage deviation of

answers from the theoretical mean in economic valuation and estimation. All models

with subject random intercepts. Standard errors in parentheses.

*p < .05. **p < .01. ***p < .001.
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Table 3

Experiment 3: Sample Size in Valuation and Estimation

Distribution characteristic Estimate

(Intercept)
2.790***
(0.0772)

Mean
0.0007***
(0.0001)

Variance10
0.0805***
(0.0156)

Variance20
0.0152***
(0.02)

Valuation
-0.0647***
(0.0127)

Note. Effects of theoretical mean, variance, and task type on the log-transformed

number of drawn samples (dependent variable) based on a mixed-effects regression with

subject random intercepts. Standard errors in parentheses.

*p < .05. **p < .01. ***p < .001.
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Table 4

Experiment 3: Answers in Valuation and Estimation

Distribution characteristic Valuation Estimation

(Intercept)
-2.42 -1.21*
(1.28) (0.60)

Mean
0.0006 0.0005
(0.003) (0.002)

Variability10
-2.01*** -0.79*
(0.48) (0.54)

Variability20
-5.43*** -1.43***
(0.48) (0.54)

Note. Effects of theoretical mean and variance on percentage deviation of answers from

the theoretical mean in economic valuation and estimation. All models with subject

random intercepts. Standard errors in parentheses.

*p < .05. **p < .01. ***p < .001.
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Figure 1 . Right- and left-skewed distributions as used in the experiments with mean

and median as vertical lines (in this example the mean is 100).
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Figure 2 . Schematic for one trial in the valuation (left) and estimation (right) task.

Participants sampled from the white box and could type their answer into the gray box.
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Figure 3 . Answers in Experiments 1 and 2: The y axis shows percentage deviation of

participants’ answers from the distributions’ theoretical means across different

experimental conditions. Error bars are 95% confidence intervals.
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Figure 4 . Answers in Experiment 3: The y axis shows percentage deviation of

participants’ answers from the distributions’ theoretical means across different

experimental conditions. Error bars are 95% confidence intervals.
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Figure 5 . Weights of 1000 samples from a normal distribution with mean = 100 and

sd = 20. Weights are calculated according to equation 1 and 2 with α = 4 and β = 0.5.


