Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Online repository of data and script for: https://www.frontiersin.org/articles/10.3389/fmars.2018.00317/full. Abstract: We analyze recently collected feather tissues from two species of seabirds, the sooty tern (Onychoprion fuscatus) and brown noddy (Anous stolidus), in three ocean regions (North Atlantic, North Pacific, and South Pacific) with different human impacts. The species are similar morphologically and in the trophic levels from which they feed within each location. In contrast, we detect reliable differences in trophic position amongst the regions. Trophic position appears to decline as the intensity of commercial fishing increases, and is at its lowest in the Caribbean. The spatial gradient in trophic position we document in these regions exceeds those detected over specimens from the last 130 years in the Hawaiian Islands. Modeling suggests that climate velocity and human impacts on fish populations strongly align with these differences.

Wiki

CITE THE PARENT ARTICLE:

Gagné TO, Hyrenbach KD, Hagemann ME, Bass OL, Pimm SL, MacDonald M, Peck B and Van Houtan KS (2018) Seabird Trophic Position Across Three Ocean Regions Tracks Ecosystem Differences. Front. Mar. Sci. 5:317. doi: 10.3389/fmars.2018.00317

Files

Files can now be accessed and managed under the Files tab.

Citation

Tags

fisheriesfood webmachine learningmarine ecologytrophic ecology

Recent Activity

Unable to retrieve logs at this time. Please refresh the page or contact support@osf.io if the problem persists.

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.