How to Deal With Reverse Causality Using Panel Data? Recommendations for Researchers Based on a Simulation Study

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Does X affect Y? Answering this question is particularly difficult if reverse causality is present. Many social scientists turn to panel data to address such questions of causal ordering. Yet even in longitudinal analyses reverse causality threatens causal inference based on conventional panel models. Whereas the methodological literature has suggested various alternative solutions, these approaches face many criticisms, chief among them to be sensitive to the correct specification of temporal lags. Applied researchers are thus left with little guidance. Seeking to provide such guidance, we compare how different panel models perform under a range of different conditions. Our Monte Carlo simulations reveal that unlike conventional panel models, a cross-lagged panel model with fixed effects not only offers protection against bias arising from reverse causality under a wide range of conditions but also helps to circumvent the problem of misspecified temporal lags.

This project represents an accepted paper submitted to SocArXiv . Learn more about how to work with paper files. View paper

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.

Create an Account Learn More Hide this message