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Abstract

Background: Procrastination is a prevalent problematic behavior that leads to

adverse consequences in many aspects of daily life. Numerous studies have

tentatively explored the neurobiological substrate of procrastination, but it remains

unclear how these procrastination-related brain regions potentially interact.

Method: To address this issue, 254 participants were recruited and collected their

brain structural images. Based on previous studies, we predefined dorsolateral

prefrontal cortex(dlPFC), anterior cingulum cortex (ACC), orbital frontal cortex

(OFC), parahippocampal gyrus (PHC), ventromedial prefrontal cortex(vmPFC), and

insula as regions-of-interest (ROIs) by using Human Brainnetome Atlas(BNA);

Voxel-based morphometry (VBM) was used to measure the gray matter volume

(GMV) of ROIs; Step-wise linear regression analysis was used to define node;

Connectome-based graph-theoretical analysis was conducted to probe topological

properties of procrastination gray matter structural covariance network(SCN) and

finally compare different degrees of procrastinators’ discrepancy on topological

properties.

Results: Step-wise liner regression analysis showed that the 5ROIs (dlOFC, ACC,

OFC, PHC and Insula), can fit the procrastination scores better than do of sole one or

other combination modes. Further graph-theoretical demonstrated three modules for

procrastination gray matter SCN, including self-control (dlPFC and ACC), future task

reward (PHC and OFC), and task aversiveness (insula). Meanwhile showed the dlPFC

and PHC have significant high nodal betweenness centrality (Be-dlPFC = 16, p <.001;

Be-PHC = 16, p <.001, Bootstrap test, sim = 2,000, similarly hereinafter ) and the

dlPFC-PHC has significant high edge betweenness centrality (Between-dlpfc-phc =

11, p < .001) in the procrastination gray matter SCN. In addition, compared with the

low procrastination group (lpro), the modularization coefficient, betweenness

centrality of nodes and edges were significantly decreased in the high procrastination
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group (hpro)（Be-dlPFC: hPro=0, lPro = 10, p < .01; Between-dlpfc-phc: hPRO = 3,

lpro = 11, p<.05).

Conclusion: This study firstly established procrastination gray matter SCN, the

results showed the decreased both nodal topological metrics of dlPFC and edge

topological metrics of dlPFC-PHC in hpro, which might be biomarkers of

procrastination.

Keywords: Procrastination; VBM; graph theory; Structural Covariance Network

1 Introduction

Procrastination refers to the behavior predisposition for voluntarily delay of the

intended courses of action (P. Steel, 2007). Procrastination is a common phenomenon

(P. Steel, 2007), in cross-cultural researches, 15%–20% of adults suffer from

problematic and pathological procrastination (Harriott, Jesse, Ferrari, Joseph, & R.,

1996)and more than 75% of college students have reported experiences for critical

procrastination (Rozental, 2014). As a personality-like trait, procrastination can

steadily influence an individual’s behavior and lead to terrible consequences, such as

low subjective well-being, lack of fitness, weak mental health (F. M. Sirois, 2011;

Piers Steel & Ferrari, 2013), and precarious economic situation(Jr & Zauberman,

2006; Rabin, 1999). To reveal the neural mechanism and provide a scientific basis for

the treatment and prevention of procrastination, what the neural substrates are to

explain procrastination caught many eyes in recent decades.

Thus far, the concerns for the neurobiological substrate of procrastination have been

explored from a few tentative studies. Zhang and colleagues (2016) used regional

homogeneity(ReHo) and amplitude of low-frequency fluctuation (ALFF) revealed

that procrastination was positively correlated with the regional activity of vmPFC and

PHC but negatively correlated with the regional activity of anterior prefrontal cortex
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(aPFC) (W. Zhang, Wang, & Feng, 2016). Further, the procrastination was found to

be negatively correlated with the GMV of clusters in left dlPFC but positively

correlated with the GMV of clusters in the parahippocampal gyrus (PHG) and the

OFC(Chen, Liu, Zhang, & Feng, 2019; P. Liu & Feng, 2018) . Likewise, several

resting-state functional magnetic resonance imaging (fMRI) studies further revealed

that decreased resting-state functional connectivity(RSFC) of vmPFC–dlPFC,

dACC-caudate, left dlPFC-lOFC, and left dlPFC-right dMFC connectivities in high

procrastination (Xu, Sirois, Zhang, Yu, & Feng, 2021; Yan, Ling, Yuan, & Tian,

2016).

Furthermore, Chen and colleagues (2020) found that dlPFC, ACC, insula, OFC, and

PHC were significantly correlated with procrastination in gray matter volume (GMV),

gray matter density (GMD), cortical thickness (Addis, Ling, Vu, Laiser, & Schacter)

and other indicators. Thus, they proposed the triple brain subsystems of

procrastination based on this finding: self-control network, emotion regulation

network, and episodic prospection network. the current study adopts this theory.

Self-control is widely considered to be the most important factor affecting

procrastination(Dan & Wertenbroch, 2002; Eerde, 2000; P. Steel, 2010) . Researchers

usually attribute procrastination to self-control failure(Ridder, Lensveltmulders,

Finkenauer, Stok, & Baumeister, 2012; P. Steel, 2007). Previous studies have found

that dlPFC is the center of regulating self-control (Hare et al., 2009), and ACC

represents the regulation of cognitive resources(Botvinick, 2007), which belongs to

the cognitive control network with dlPFC(Alexopoulos et al., 2012). In the study of

procrastination, it can be integrated into the self-control network, which may reduce

the occurrence of procrastination by increasing the subjective value of future results.

At the same time, procrastination is accompanied by a series of negative emotions. As

described in the emotion regulation theory proposed by Sirois and Pychyl (2013), the

study of emotion regulation function is also important for understanding

procrastination. The insula is usually associated with averseness to the task(Sridharan,

Levitin, & Menon, 2008; L. Q. Uddin, 2015), while OFC is found to be an important
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area for negative emotion regulation and reassessment (Kanai & Rees, 2011), and

they are theoretically integrated into an emotion regulation network to procrastination.

It is noteworthy that procrastination is the evaluation and decision-making of future

events, so the brain regions associated with imagining the future during exploration

were found to be very consistent with expectations, and PHC 's GMV was just found

to be positively correlated with procrastination in the study. PHC is mainly involved

in episodic memory and episodic future thinking(Okuda et al., 2003; Peters & Büchel,

2010, 2011) . The directivity of this image has an important impact on whether it will

show procrastination in the following. Thus, how these networks worked to influence

procrastination sparked intensive debates explaining the neural underpinning of

procrastination.

From studies that have been reviewed above, it could be observed that despite Chen et

al. extending the exploration for the neurobiological substrates of procrastination from

local GMV to large-scale networks, the interaction patterns of the procrastination

brain structural networks remain unclear. Structural covariance network (SCN)

analysis refers to a connectome-based technique to reveal covarying interindividual

differences (e.g., coordinated variations in grey matter or white matter morphology) in

neural anatomy across groups(Alexander-Bloch, Raznahan, Bullmore, & Giedd, 2013;

Evans, 2013) has been broadly used to assessing structural brain organization. A key

assumption underlying this methodology is that morphological correlations are related

to axonal connectivity between brain regions, with shared trophic, genetic, and

neurodevelopmental influences(Alexander-Bloch et al., 2013). SCN analysis is

different from the analysis of functional connectivity or structural networks obtained

with diffusion imaging, yet it has shown moderately strong overlap with both (Gong

et al. 2012; Alexander-Bloch et al. 2013a). The preponderance of SCN analysis is that

it focuses on the coordinated structure of the brain regions as opposed to focusing on

a specific local structure. For example, Francesca Saviola et al. applied gray matter

SCN founded that trait and state anxiety exhibited different structural node changes in

Default Mode Network (DMN) and Salience Network(S., A., Katherine, & Peter)
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(Saviola, Pappaianni, Monti, Grecucci, & Pisapia, 2020), Heinze, K and colleagues

through whole-brain structural covariance analyses revealed subtle changes of

connectivity of the default-mode, executive control, salience, motor and auditory

networks in Ultra-High Risk (UHR) individuals for psychosis(Kareen et al., 2015). In

summary, SCN analysis is less computationally intensive and arguably less sensitive

to noise compared with functional imaging. So, we used SCN analysis to explore the

altered brain morphological architecture of procrastination.

In summary, the current study aims to explore the interaction neuroanatomical

patterns of procrastination. Firstly, to do a proof-of-concept analysis, we used the

step-wise linear regression model to fit all the alternative brain regions (i.e., dlPFC、

ACC、OFC、insula、vmPFC、PHC) for procrastination tendency; Further, the SCN

was built upon across-participant GMV to the triple brain subsystems. By using

graph-theoretical analysis, the potential local modules would be investigated; Finally,

the whole sample would be split into two groups by top 27% and later 27%

procrastination severity for exploring the difference of the topological properties of

the gray matter SCN between different degree procrastinators.

2 Mater ials and Methods

2.1. Par ticipants

254 right-hand college students were recruited and paid for their participation.

Exclusion criteria were general contraindications against MRI, the consummation of

drugs, the excessive consummation of alcohol and nicotine, medication affecting the

central nervous system, history of neurologic or psychiatric disorders, and pregnancy.

A total of 19 participants were excluded for further analysis by lack of demographic

information. Finally, we retained 234 participants for further analysis (Meanage:21.26,

SDage: 2.08, Rangage: 17-26,169 females). At the same time, we divided the top 27%

and the later 27% scorers on Pure Procrastination Scale into the high procrastination

group (hpro, n=61) and low procrastination group (lpro, n=59), details for the final

sample are described in Table 1.
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All participants gave written informed consent for participation in the study and were

informed of their right to discontinue participation at any time. The study was

approved by the IRB of Southwest University (China).

2.2. Measures of procrastination

Pure Procrastination Scale (PPS) was adopted to measure the degree of

procrastination (Frode & Piers, 2017; P. Steel, 2010), which was based on the General

Procrastination Scale (GPS)(Lay, 1986), the Decisional Procrastination Questionnaire

(DPQ) (Mann, Burnett, Radford, & Ford, 1997) and the Adult Inventory of

Procrastination (AIP) (Mccown, Johnson, & Petzel, 1989). The scale is a self-report

measure using 12 Likert-style items, in which the point from 1 (very seldom or not at

all like me) to 5 (very often or very true of me). With higher score indicates serious

procrastination. Steel reported internal consistency of the PPS at α = 0.92(P. Steel,

2010) and had accredited reliability with the current study (α = 0.89).

2.3. Structural MRI data acquisition
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Structural images were collected with a 3T Siemens Trio MRI scanner (Siemens

Medical, Erlangen, Germany). A 16-channel circularly polarized head coil was used,

with foam padding to constraint head motion. During scanning, participants were

instructed to keep their eyes closed, relax their minds, thought of nothing, and remain

motionless as much as possible. High-resolution T1-weighted anatomical images were

acquired using a magnetization prepared rapid gradient echo (MPRAGE) sequence,

with a total of 128 slices at a thickness of 1.33 mm and in-plane resolution of 0.98 ×

0.98 mm2 (TR = 2530 ms; TE = 3.39 ms; flip angle = 7°; FoV = 256 × 256 mm2).

2.4 Preprocessing and Analysis

2.4.1 Definition of regions-of-interest (ROIs)

We based on previous studies determined the six brain regions(ie., dlPFC seed

A8dl_l ;OFC seed A11m_l; ACC seed A32sg_l; PHC seed riHipp_r, vmPFC seed

A14m_r, and insula seed vla_l) on BNA (http://atlas.brainnetome.org) as ROIs in the

current study (Fan et al., 2016). The details of the ROIs are described in Table 2,

spatial position information in Figure 1. We also showed the Euclidean distance

between the MNI coordinates of the brain regions, which found by Chen (2020) and

Hu et al (2019), and the MNI coordinates of the BNA atlas. The Euclidean distance

between the location of the peak voxel for each ROI as obtained in previous studies

and the location of centroid for each ROI as obtained when using the BNA atlas. The

centroid is defined here as the voxel within the ROI that is nearest, in terms of

Euclidean distance, to all other voxels in the ROI(Douw, Nieboer, Stam, Tewarie, &

Hillebrand, 2018).

http://atlas.brainnetome.org/
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2.4.2.VBM analysis

Structural images were processed with Statistical Parametric Mapping software

(SPM12: http://www.fil.ion.ucl.ac.uk/spm/software/spm12) operated in Matlab

R2019b (MathWorks Inc., Natick, MA, USA). Firstly, for better image registration,

all T1-weighted anatomic images displayed in SPM12 were manually reoriented to

place the anterior commissure at the origin of the three-dimensional Montreal

Neurological Institute (MNI) space. Secondly, the reoriented images were segmented

in grey matter (GM), white matter (WM), and cerebral spinal fluid in SPM12

(Ashburner and Friston 2005). Thirdly, the DARTEL algorithm was used to generate

a group-specific template based on the participants. For each participant, a flow field

storing the deformation information for warping the participants’ scans onto the

template was created. These were used to spatially normalize grey matter images to

MNI space using affine spatial normalization as implemented in the normalization

algorithm included in the DARTEL toolbox. To preserve the grey matter volumes

(GMV) within a voxel, the images were modulated using the Jacobian determinants

derived from the spatial normalization by DARTEL. Finally, data were spatially

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
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smoothed with an 8-mm full-width at a half-maximum (FWHM) Gaussian kernel to

increase the signal-to-noise ratio.

Statistical analysis of GMV of brain regions was performed using SPM12 software.

The global GMV was added as a global measure for proportional global scaling

(Peelle, Cusack, & Henson, 2012). The global or ROIs’ GMV were calculated by the

MATLAB script get_totals provided by Ridgway (http://www.cs.ucl.ac.uk/staff/g.

ridgway/vbm/get_totals.m). We applied explicit masking using the

population-specific masking toolbox in SPM8 to restrict the search volumes within

gray matter and white matter (http://www.cs.ucl.ac.uk/staffff/g.ridgway/masking/).

This approach was used instead of absolute or relative threshold masking to decrease

the risk of false negatives caused by overly restrictive masking, and potentially

interesting voxels were excluded from the statistical analysis (Ridgway et al., 2009).

Next, to exclude the promiscuous effect of individual difference in the total GMV, we

calculated the relative GMV utilizing dividing the GMV of ROIs by the total GMV,

and then it was transformed into Z scores.

2.4.3 Graph theoretical-based brain network analysis

Graph-theoretical analyses were performed to quantify the topological metrics of

structural connectivity networks by the Graph Theoretical Network Analysis

(GRETNA) Toolbox (https://www.nitrc.org/projects/Gretna) (Wang et al., 2015). At

present, the method of using graph theory to analyze complex brain networks has

been widely used in the study of brain images. Graph theory can be used to quantify

the topological properties of brain networks or connectomes. In Graph-theoretical

analyses, the brain is modeled as a graph composed of nodes and edges, where nodes

denote ROIs or voxels, edges denote the interactions or connections among nodes.

The topology of brain networks usually consists of three aspects: global attributes (for

example clustering coefficient, shortest path length et. al), modularity regional nodal

attributes(such as degree(k) and betweenness centrality(be))(Filippi et al., 2013;

Sporns & Olaf, 2013). Among them, global attributes reflect the ability of the brain

http://www.cs.ucl.ac.uk/staffff/g.ridgway/masking/
https://www.nitrc.org/projects/Gretna
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complex network to separate and integrate information, modularity reflects the

anatomical or functional connection of brain regions performing specific functions,

and local node feature reflects the key brain regions in the brain complex network(C

& E, 2015). In the current study, we described the modularity regional nodal attributes

of procrastination gray matter SCN.

2.5 Statistical Analysis

2.5.1 Demographic Differences Analysis

Independent-Samples T-Tests and chi-square tests were run to compare the

differences between hpro and lpro in the demographic differences. To ensure the

reliability of the regression model, we tested collinearity diagnostics between

procrastination and covariates with r > 0.30 and P < 0.05 for the critical co-linearity.

Results showed that co-linearity between PPS and eight covariates (gender, r = -0.029,

P = 0.752; BMI, r = -0.045, P = 0.623; conscientiousness, r = -0.009, P = 0.919;

extraversion, r = -0.053, P = 0.563; neuroticism, r = 0.068, P = 0.462; agreeableness, r

=-0.001, P = 0.992; openness, r = 0.02, P = 0.829), co-linearity between PPS and two

covariates (ages, r = − 0.225, P = 0.013; education, r = − 0.225, P = 0.013).

2.5.2 Prediction for Procrastination with Step-wise Linear Regression Model

To do a proof-of-concept analysis and define nodes of procrastination gray matter

SCN, after calculating the GMV of the six ROIs by VBM. We further used the GMV

as independent variables, the PPS score as the dependent variable. Previous studies

have suggested that some aspects of brain asymmetries interacted with gender

(Kulynych, Katalin, Jones, & Weinberger, 1994), and age had a significant effect on

brain morphology as well (Good et al., 2001). To exclude the effects of demographic

variables on individual brain structure and procrastination measurement, we put

gender, age, education, BMI, big-five personality traits (ie., Neuroti, Extrave, Open,

Agreea, Conscie) as the covariates of no interests (Table 3).
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2.5.3 Brain-Behavior Association Analysis

To define edges of procrastination gray matter SCN, according to the results of

stepwise linear regression analysis, ROIs in the model with the best fitting effect was

defined as nodes, edges were determined according to the correlation of nodes.

Therefore, we further used correlation analysis to calculate ROIs correlation matrix

(Table 4).

3 Results

3.2 Prediction for Procrastination with Step-wise Linear Regression Model

To obtain deep insights into the predictive role of brain gray matter structural on the

procrastination, step-wise linear regression analysis was used to fit the model for

dependent variable “scores of the procrastination” on independent variables including

GMV of dlPFC, GMV of ACC, GMV of vmPFC, GMV of PHC, and GMV of insula,

and age and gender as covariates variables. The entered measure of the step-wise

process was defined with a probability of F≤0.05 for each independent variable,

however one would be refused into the model in case of the probability of F≥0.10 for

the dependent variable. Subsequently, the step-wise iteration would automatically

stop until no one could fit this criterion. Finally, GMV of dlPFC, GMV of ACC,

GMV of OFC, GMV of PHC, and GMV of insula were available to enter the multiple

regression model for the explanation on the procrastination. The final model (model 6)

included above five variables was captured as the optimal model to significantly

predict procrastination with account for 23% of total variance independent variable

(R2 change=0.224, p<0.05; β[GMV_ACC]= 0.263, p<0.001; β[GMV_dlPFC]= -0.183, p<0.001,

β[GMV_insula]= 0.137, P=0.001, β[GMV_ PHC]= 0.126, p=0.003 and β[GMV_OFC]= 0.104,

p=0.031). The covariates, age and gender have not significant explanation (βage=

0.022, p=0.306; βgender= -0.051, p=0.602) and vmPFC was not included in the

model(p=0.99).

3.3 Brain Behavior Association Analysis

file:///C:/Users/ly1997/Desktop/GMSCN/写写/javascript:;
file:///C:/Users/ly1997/Desktop/GMSCN/写写/javascript:;
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3.3.1 Pearson's Correlations of procrastination

To define edges of gray matter SCN, we further used correlation analysis to explore

whether there exist correlations between the five brain regions in model 6 (ie., dlPFC,

ACC, OFC, PHC, insula). Correlation analysis results showed significant positive and

negative correlations between the GMVs of dlPFC, ACC, OFC, PHC, insula, and PPS

score (Table 4). The GMV of dlPFC was significantly positively correlated with ACC

(r=0.169, p<0.01), the GMVs of dlPFC and ACC were significantly negatively

correlated with PHC (rdlPFC=-0.140, p<0.05; rACC =-0.144, p<0.05). Furthermore,

consistent with previous research(citation), the GMV of dlPFC was significantly

negatively correlated with PPS score (r = -0.169, p<0.01) and the GMVs of ACC,

OFC, PHC, insula were significantly positively correlated with PPS scores

(rACC=0.304, p < 0.01; rOFC=0.158, p<0.05; rPHC=0.144, p<0.05; rinsula=0.207, p<0.01).

3.5 Modular ity character istics for gray matter SCN

To further reveal the modular topological properties of the gray matter SCN of six

brain regions (ie., dlPFC, ACC, OFC, PHC, insula), we used 2000 bootstrap iterations

to generate the null distribution of modularity, the result showed that the modularity

mode of the covariant network of procrastination gray matter is significant, and these

ROIs can be divided into three models (Figure 2b), module 1 includes dlPFC and

ACC, module 2includes PHC、OFC and PPS, module 3 includes insula（Bootstrap test,

sim = 2,000 p = .0024）. Then, based on the modularity mode, we further compared

whether there were differences in the modules between hpro and lpro. The result
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showed that the modularization coefficient of hpro was significantly lower than the

lpro（hPro = 0.82,lPro = 1.17, p < .05, Bootstrap test, sim = 2,000.

3.4 Network topological metr ics for structural connectomes

Degree and betweenness centrality were proven to be the most pivotal nodal measures

to quantitatively describe the position of nodes within the network, reflecting the

capability of regions on parallel information processes in brain connectomes (Gross,

2008; Sporns & Olaf, 2011)In node-based test, significantly high betweenness of

dlPFC and PHC was also found in the procrastination gray matter SCN (Be-dlPFC =

16, p <.001; Be-PHC = 16, p <.001, Bootstrap test, sim = 2,000), no significant results

were found on other nodes (Figure 2 c). Further, we explored the changes of nodes

betweenness centrality between hpro and lpro.The results showed that , compared

with the lpro, the betweenness centrality of dlPFC in the hpro decreased significantly

and even disappeared（Be-dlPFC-hPro=0,Be-dlPFC-lPro = 10, p < .01, Bootstrap test,

sim = 2,000 ） ,however, no significant difference in the changes of betweenness

centrality of PHC between the hpro and lpro (Be-PHC-hPro=9,Be-PHC-lPro = 11, p

< .18, Bootstrap test, sim = 2,000).

Finally, we found that the dlPFC-PHC connection has a significant high edge

betweenness centrality in the procrastination gray matter SCN (Between-dlpfc-phc =

11, p < .001, Bootstrap test, sim = 2,000) (Figure 2 d). At the same time, we explored

the changes of this edge betweenness centrality between the two groups. the result

showed that, compared with the lpro, the edge betweenness centrality of dlPFC-PHC

connection decreased significantly (hpro = 3, lpro = 11, p < 0.5, Bootstrap test, sim =

2,000).
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Figure 1. Spatial position information of ROIs. dlPFC (seed A8dl_l) = dorsolateral
prefrontal cortex, ACC (seed A32sg_l) = Anterior cingulum cortex, OFC (seed A11m_l) =
orbital frontal cortex, PHC (seed riHipp_r) = parahippocampal gyrus, vmPFC (seed
A14m_r) = ventromedial prefrontal cortex(vmPFC), Insula (seed vla_l). All ROIs has
unilateral characteristics consisitent with previous studies.



This is approved for pre-print, but not the final version for submission or publication.
Caution: this is early release pre-print without peer review.

Figure 2. Brief Framework of the processes for the network-based metrics. (a)
Shows the Structural connectomes of ROIs (ie., dlPFC, ACC, OFC, PHC, Insula, PPS). (b)
Shows the modularity of structural connectomes of ROIs. (c) shows the betweenness
centrality of node (d) shows the betweenness centrality of edge

4 Discussion

In the current study, we investigated the topological properties of gray matter SCN of

procrastination. The results of step-wise linear regression analysis showed that the

model including dlPFC, ACC, OFC, PHC, and insula has a better prediction effect

and verify the accuracy of ROIs selection. Further, the modular partitions of

procrastination showed that the gray matter SCN consists of three modules (module 1:

dlPFC and ACC; module 2: PHC and OFC; module 3: insula). In the node-based

analysis, we found the dlPFC and the PHC have significantly high node betweenness

centrality. In the edge-based analysis, we found the connection of dlPFC-PHC has a

significantly high edge betweenness centrality. The modularization coefficient and

node betweenness centrality of dlPFC in the hpro decreased significantly and no

significant difference in PHC compared with the lpro. Similarly, compared with the
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lpro, edge betweenness centrality of the dlPFC-PHC of the procrastination gray matter

SCN in the hpro decreased significantly. These findings, therefore, substantiate the

existence of potential interaction between the triple brain subsystems of

procrastination and further a new advance in unearthing the neural mechanisms of

procrastination.

Model 1 demonstrated the self-control network of procrastination including dlPFC

and ACC. Numerous studies have shown that the dlPFC is the hub of self-control, the

function of dlFPC was selectively responsible for the top-down cognitive control for

downstream signals(Figner et al., 2010; Hare et al., 2009; MacDonald & A., 2000) .

Meanwhile, in node-based analysis, we found the dlPFC has significantly high nodes

betweenness centrality. This is consistent with previous research on self-control as a

core competencies predictor of procrastination(Laura A. Rabin & Nutter-Upham,

2011). Importantly, structural abnormalities of the dlPFC also have been interpreted

as a lack of self-control thereby predicting more serious procrastination(Hu, Liu, Guo,

& Feng, 2018; Peiwei Liu & Feng, 2017) . In addition, adequate evidence has

illustrated the role of ACC as conflict monitoring and reinforcement learning of the

error signals during making a decision(Hare et al., 2009; MacDonald & A., 2000) .

Encouragingly, dlPFC and ACC have integrated a network called cognitive control

network (Alexopoulos et al., 2012; Bae et al., 2006). Naturally, it was reasonable to

perceive model 1(dlPFC and ACC) as a self-control network.

Model 2 demonstrated the future task reward network of procrastination including

PHC and OFC, more specifically, the interaction of episodic prospection and reward

processing to influence procrastination. Meanwhile, in node-based analysis, we also

found the PHC has significantly high nodes betweenness centrality in procrastination

gray matter SCN. The PHC is part of a network mediating human's ability of episodic

future thinking, which allows people to pre-experience future rewards through mental

stimulation (S. Zhang, Liu, & Feng, 2019). Rebetez, Barsics, et al. (2016) have

reported that high procrastinators indeed showed worse performance in episodic
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future thinking. In addition, several fMRI research showed that OFC activity

increases accompany increasing expected reward and decrease after depreciation of

the predicted outcome(Breiter, 2009; Ja., O'Doherty, & Rj., 2003). Encouragingly,

PHC was anatomically connected to the OFC (Witter, Wouterlood, Naber, & Haeften,

2010). These findings derived from previous literature hinted at this standpoint that

model 2(PHC and OFC) could be perceived as a system called “future task reward”

network, which was specialized to inspire motivation to act confronted task.

Model 3 demonstrated the role of insula on procrastination. The insula was

specialized to emotional processes for the averseness in task engagements(Chen et al.,

2019). As the key subcortical region for the salience network, the insula acted a key

role in social emotion and averseness on the task-induced signals(Uddin & Lucina,

2014). Furthermore, a functional brain imaging study substantiates this case

straightforward that the insula responds selectively to the facial expressions of disgust

and the disgust-inducing pictures(Wicker et al., 2003; Wright, He, Shapira, Goodman,

& Liu, 2004). On balance, we concluded that model 3 (insula) could be defined as a

system called “task averseness”, which inspires the motivation to avoid a task(S.

Zhang, Liu, et al., 2019).

More specially, the recent theory proposes that procrastination has intrinsic temporal

nature as a form of temporal self-regulation failure (Gustavson, Miyake, Hewitt, &

Friedman, 2014) and mirroring a primacy of present self over the needs of the future

self (F. Sirois & Pychyl, 2013). Those viewpoints are further supported and enriched

by the temporal decision model(TDM)(S. Zhang, Liu, et al., 2019). The TDM for

procrastination illustrates the conflict between the pursuit of future task reward and

aversiveness to negative emotions evoked by doing a task, and self-control plays a

moderating role in the balance between them(S. Zhang, Becker, Chen, & Feng, 2019;

S. Zhang, Liu, et al., 2019). Furthermore, individuals with high self-control can enact

goal-congruent behaviors by regulating their negative emotions or modulating their

concerns for long-term benefits(Mcguire & Kable, 2013; Tornquist & Miles, 2019).

https://www.sciencedirect.com/topics/psychology/self-regulation-failure
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Inevitable, this study has some inherent limitations that should warrant caution.

Firstly, structural covariation network constructed is an undirected structural network,

future work will include directed action network or dynamic functional connectivity

analysis on the neural basis of procrastination such as Magnetoencephalography

(MEG). MEG is an invaluable functional brain imaging technique, permits

spatiotemporal tracking of cortical pathways with sub-millisecond temporal resolution

and provides direct, real-time monitoring of neuronal activity which is necessary for

gaining insight into dynamic cortical networks.

In conclusion, the current study provides evidence for network-based cortical volume

reductions in procrastination and suggests that the dlPFC and the dlPFC-PHC

connection can predict procrastination well. These results also provide novel evidence

about the triple brain subsystems of procrastination.
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