Loading wiki pages...

Wiki Version:
<h1>Independent Learning Resources Section</h1> <p>In this section we will collect a number of different resources which you can use in your own time. Hopefully this will help you to leran some new skills that can be applied in your research to take it to the next level. </p> <p>The section will be developed and improved with time so make sure to check it out every once in a while to see what's new. </p> <h2>Discussions and News</h2> <p>Podcasts:</p> <ul> <li><strong>Everything Hertz</strong> (general research themes but run by psychologists) </li> <li><strong>The Road to Open Science</strong> by the Open Scinece Community Utrecht, multidisciplinary focus</li> <li><strong>ReproducibiliTea</strong> (general research themes but run by psychologists)</li> <li><strong>The Black Goat</strong> (mainly psychology themes but widely applicable) </li> </ul> <h2>Open and Reproducible Science - First Steps</h2> <p><strong>Introductory Online Courses</strong><br> <a href="https://opensciencemooc.eu/" rel="nofollow">Open Science MOOC (Massive Open Online Course)</a> </p> <p>This course includes many independent learning modules starting with open science principles, through collaborations, software, data, public engagement and more. Good for beginners in all disciplines. </p> <p><a href="https://www.futurelearn.com/courses/open-social-science-research" rel="nofollow">Transparent and Open Social Science Research</a><br> This is a Future Learn platform course which may not always be available, but it's good to subscribe and be alerted when the course becomes active. </p> <h2>Data Management and Research Planning</h2> <p><strong>PREREGISTRATIONS</strong> </p> <p>You should take into consideration pre-registering your study before you start data collection. There are many benefits to this and it will help you to make your research more reproducible and transparent. </p> <p><strong>Preregistrations</strong> are time-stamped versions of your project including your aims and hypotheses to protect you from introducing bias later on after you analyse your data. These can be public or private. </p> <p>Preregistration process and benefits:<br> <a href="https://help.osf.io/hc/en-us/articles/360021390833-Preregistration" rel="nofollow">Pre-registration info</a> </p> <p>Preregistrations guide:<br> <a href="https://help.osf.io/hc/en-us/articles/360019738834-create-a-preregistration" rel="nofollow">Preregistration step-by-step</a> </p> <p>Preregistration types & templates:<br> <a href="https://osf.io/zab38/wiki/home/" rel="nofollow">Types</a><br> <a href="https://osf.io/zab38/" rel="nofollow">Templates</a></p> <p><strong>DATA MANAGEMENT PLANS</strong><br> It would be very beneficial to create a thorough data management plan for each of your studies. Many funders now also expect this from you when you submit your bids. </p> <p>This link will take you through the data management plan steps:<br> <a href="https://help.osf.io/hc/en-us/articles/360019931133-Creating-a-data-management-plan-DMP-document" rel="nofollow">Data management plans guide</a> </p> <p>The website below contains some templates:<br> <a href="https://dmptool.org/" rel="nofollow">DMP Templates</a> </p> <p><strong>Workshops</strong> </p> <p>University of Surrey Researcher Development Programme also offer a few courses on research and data management plans. If you are a PGR student here, you can use SITS and sign up for:<br> - Dealing with data - Data Management Plans - Research Data Management </p> <p><a href="https://osf.io/cwbq3/" rel="nofollow">Here</a> you can also find the slides from a workshop that was run by Alice Motes during one of the society meetings. </p> <h2>Transparent lab books and notes</h2> <p><a href="https://rmarkdown.rstudio.com/" rel="nofollow">R Markdown Guide</a><br> Make notes as you go through your data analysis - keep a transparent lab book. Any notes or text you write, the images, tables and figures as well as the code and the results can be organised within one document! It also allows you to create presentations and event write your publications in a template for a given journal --&gt; <a href="https://github.com/rstudio/rticles" rel="nofollow">Templates</a> </p> <p><a href="https://www.dataquest.io/blog/jupyter-notebook-tutorial/" rel="nofollow">Jupyter Notebooks Guide</a><br> If you use Python, Jupyter notebooks offer a very savvy way of keeping your notes and creating documents. Similarl to R Markdown, any notes or text you write, the images, tables and figures as well as the code and the results can be organised within one document! <br> Have a look at this <a href="https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007007" rel="nofollow">paper</a> which also gives additional advice on using Jupyter. </p> <p><a href="https://mybinder.readthedocs.io/en/latest/" rel="nofollow">Binder Guide</a><br> Binder is a great resource that allows you to organise the code that is stored in your Git repositories into cohesive projects. It also works well with Jupyter notebooks. Check out the introduction <a href="https://bit.ly/2XwFsoL" rel="nofollow">Slides</a> by Andrew Stewart, University of Manchester. </p> <h2>Registered Reports</h2> <p>Read this <a href="https://rss.onlinelibrary.wiley.com/doi/10.1111/j.1740-9713.2019.01299.x" rel="nofollow">article</a> to learn about the rise of registered reports.<br> The main hub for information on <em>registered reports</em> is the Centre for Open Science <a href="https://cos.io/rr/" rel="nofollow">RR Section</a>. </p> <p>You should also take a look at this <a href="https://docs.google.com/spreadsheets/d/1D4_k-8C_UENTRtbPzXfhjEyu3BfLxdOsn9j-otrO870/edit#gid=0" rel="nofollow">table</a> to consider different expectations from journals accepting registered reports. </p> <p>You can also listen to a podcast <a href="https://soundcloud.com/reproducibilitea/episode-18-hannah-hobson" rel="nofollow">ReproducibiliTea episode 18</a> welcoming a researcher who completed a registered report during their PhD. They discuss their experience reflecting on the challenges and the benefits.</p> <h2>Statistical thinking and skills development</h2> <p>Books: </p> <p><strong>The Art of Statistics: Learning from Data</strong> <br> <strong>David Spiegelhalter</strong><br> This is an essential book that will help you to become more open-minded about statistics and data. It is an absolute <strong>must read</strong> for anyone doing any work on data from undergraduate level onwards. If you ever get a chance to attend a talk by David make sure not to miss it! He is based at the University of Cambrudge and he is a great speaker! </p> <p><strong>Learning Statistics with R</strong><br> <strong>Danielle Navarro</strong><br> This is a comprehensive book introducing statistics for social sociences using R. It covers all common frequentist and as well as some Bayesian approaches. This is an <a href="https://learningstatisticswithr.com/" rel="nofollow">online book</a>. </p> <hr> <p>Online Courses: </p> <p><strong>Improving your statistical inferences</strong> <br> <strong>Daniel Lakens</strong>, Eindhoven University of Technology <br> <a href="https://www.coursera.org/learn/statistical-inferences/home/welcome" rel="nofollow">Course Era Link</a></p> <p>This is a great course that uses R for illustrations of flaws and challenges in statistical inferences. It covers frequentist and Bayesian approaches as well as important issues regarding open science and reproducibility. I strongly suggest you should follow Daniel on Twitter as he is a very active user and you can learn a lot from his tweets <a href="https://twitter.com/lakens?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor" rel="nofollow">@lakens</a>. </p> <hr> <p>Online Resources:</p> <p><strong>PsyTeachR</strong><br> <strong>University of Glasgow</strong><br> <a href="https://psyteachr.github.io/" rel="nofollow">PsyTeachR Link</a></p> <p>The name of this platform is rather misleading as most of its components are not tightly linked to psychology alone. It can be applied across disciplines. The platform contains a large amount of resources for workshops, tutorials and lectures oriented around data reproducibility as well as the development of programming skills.</p> <h2>Data analysis in R</h2> <p>University Workshops: </p> <p><strong>University of Surrey, School of Psychology Resources</strong><br> <strong>Peter Hilpert and Marta Topor</strong><br> <a href="https://osf.io/pkjsu/" rel="nofollow">OSF Link</a> </p> <p>Have a look through the worksheets used during the introductory sessions on data management in R Studio. Data files are also provided. </p> <hr> <p>Online Courses:</p> <p><strong>Introduction to R for Data Science</strong><br> <strong>Mark Daniel Ward</strong>, Purdue University <br> <a href="https://www.futurelearn.com/courses/data-science" rel="nofollow">Future Learn link</a></p> <p>This is a great introductory course with videos and step by step instructions for big data handling in R. If you have no experience in R, this course would be ideal to start learning. The course is not always available but you can add it to your wishlist and you will be notified when you can start learning. </p> <p><strong>Introduction to R</strong><br> <a href="https://www.datacamp.com/courses/free-introduction-to-r?utm_source=adwords_ppc&utm_campaignid=805200711&utm_adgroupid=42045039256&utm_device=c&utm_keyword=%2bdatacamp%20%2br&utm_matchtype=b&utm_network=g&utm_adpostion=1t1&utm_creative=255792658557&utm_targetid=aud-334851567295:kwd-424141783896&utm_loc_interest_ms=&utm_loc_physical_ms=9045837&gclid=CjwKCAjw9dboBRBUEiwA7VrrzcxWlRRjhkgfzLqAre4gPeeY_bDF-ALdbNzwy-pyooLwkpNLCGq4ARoCVmkQAvD_BwE" rel="nofollow">DataCamp Link</a> </p> <p>This is a very basic course in R which helps to understand the different types of data used in programming languages and specifically in R. If you have no experience of programming, this will be a good place to start. The course is always available. However, it uses R in an in-built console and there is no introduction to using R Studio. </p> <hr> <p>Online Resources: </p> <p><strong>R Studio Quick Guides (cheat sheets)</strong><br> <a href="https://www.rstudio.com/resources/cheatsheets/" rel="nofollow">R Studio Link</a> </p> <p>These quick guides provide a lot of information in poster formats. They are a good resource to check what you can do in R and how to go about doing it. They are also great to keep handy to help you refresh your knowledge once you learn something once. Unfortunately, if you don't use R regularly, it is easy to forget how to do different things. Therefore, you should make sure to keep the notes you have been learning from. You will probably need them again!</p> <p><strong>R for Social Scientists</strong><br> <a href="https://datacarpentry.org/r-socialsci/" rel="nofollow">Data Carpentry Link</a> </p> <p>Not just for social scientists! This repository has a very well structured and accessible introduction to R. It is not like a usual online course, but completing all the steps and exercises will feel like completing a full introductory course in R. It explains how to use R studio as well as useful instructions for managing and visualising data. </p> <p><strong>Programming with R</strong><br> <a href="https://swcarpentry.github.io/r-novice-inflammation/" rel="nofollow">Software Carpentry Link</a> </p> <p>This is a very comprehensive repository with guides for a range of things that can be done in R. It is suitable for relative beginners, but also those who want to explore cool new things they can do with R. It has sections which are more technical and relate to the development of programming skills but also applied sections for instance on patient data. </p> <p><strong>More R!</strong><br> Check out the <a href="https://osf.io/mydnq/wiki/5F:%20Methods%20-%20Statistics/" rel="nofollow">wiki page</a> of the Brain and Behaviour group within the school of psychology here at the University of Surrey. They have a very comprehensive list of different R resources. </p> <p><strong>Stats in R</strong><br> Don't forget about the <a href="https://learningstatisticswithr.com/" rel="nofollow">Stats Book</a> by Danielle Navaro. It will guide you through all most commonly used statistical analyses in R. </p>
OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.