Computational resource demands of a predictive Bayesian brain

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: There is a growing body of evidence that the human brain may be organized according to principles of predictive processing. An important conjecture in neuroscience is that a brain organized in this way can effectively and efficiently approximate Bayesian inferences. Given that many forms of cognition seem to be well characterized as a form of Bayesian inference, this conjecture has great import for cognitive science. It suggests that predictive processing may provide a neurally plausible account of how forms of cognition that are modeled as Bayesian inference may be physically implemented in the brain. Yet, as we show in this paper, the jury is still out on whether or not the conjecture is really true. Specifically, we demonstrate that each key subcomputation invoked in predictive processing potentially hides a computationally intractable problem. We discuss the implications of these sobering results for the predictive processing account and propose a way to move forward.

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.