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Figure 1: From left to right, glyph designs with an increasing level of anthropomorphic characteristics. In our study we found
strong evidence that the least anthropomorphic glyph (‘Pixel’) was more accurate than the ‘Petal, ‘Human, and ‘Face’ glyphs

for a probabilistic categorization task.

ABSTRACT

Data glyphs continue to gain popularity for information communi-
cation. However, the cognition and perception theory of glyphs is
largely unknown for many tasks including “categorization”. Cate-
gorization tasks are common in everyday life from sorting objects
to a doctor diagnosing a patient’s disease. However it is unknown
how glyph designs, specifically anthropomorphic human-like rep-
resentations which in prior visualization research have demon-
strated improved information recall, affect accuracy in a catego-
rization task. To better understand how people comprehend and
perceive glyphs for categorization, including anthropomorphic rep-
resentations, we conducted a crowdsourced experiment to evaluate
whether more human-like glyphs would lead to higher categoriza-
tion accuracy. Contrary to our hypothesis, we found evidence that
subjects are more accurate with a less anthropomorphic glyph. A
posthoc analysis also reveals that anthropomorphic glyphs intro-
duce biases due to their anatomically salient features. Based on
these results we propose design guidelines for glyphs used in cate-
gorization tasks. The supplemental material of this paper available
is on https://osf.io/3bgcv/.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9156-6/22/04...$15.00
https://doi.org/10.1145/3491101.3519748

CCS CONCEPTS

+ Human-centered computing — Empirical studies in HCI.

KEYWORDS

Data Glyph, Probabilistic Categorization Task, Information Visual-
ization, Quantitative Studies

ACM Reference Format:

Aditeya Pandey, Peter Bex, and Michelle A. Borkin. 2022. Effect of Anthro-
pomorphic Glyph Design on the Accuracy of Categorization Tasks. In CHI
Conference on Human Factors in Computing Systems Extended Abstracts (CHI
"22 Extended Abstracts), April 29-May 5, 2022, New Orleans, LA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3491101.3519748

1 INTRODUCTION

Data glyphs [3] are a visualization encoding which combines multi-
ple data dimensions and represents them as an object. For example,
Fig. 2(Left) depicts diverse aspects of regional well-being using the
star glyph [32], and Fig. 2(Right) shows state-wise election results
as a Chernoff face with different features of the face summarizing
election results [33]. The design of data glyphs offer creative free-
dom to visualization practitioners leading to charts beyond basic
encodings such as bar and line charts [6] (Fig. 2). Consequently,
over the past few years, data glyphs have become a popular tech-
nique for creating bespoke visualizations [32, 33]. While glyphs
continue to grow in popularity and applications, the factors that
contribute to their perception and cognition still remain largely
unknown and not sufficiently studied in the visualization commu-
nity [13]. With a deeper understanding of how people interpret
and understand glyph encodings, this new theory will enable the
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creation of more effective glyph representations including optimal
designs for specific tasks or use-cases. Therefore, in this paper, we
take a step in this direction to generate empirically-driven design
guidelines for data glyphs.
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Figure 2: Left: A multi-colored star glyph depicting different
aspects related to regional well-being [32].Right: Chernoff
faces overlaid on a cartogram to show the results of 2016
presidential election [33].

One specific type of task not previously studied in the context
of data glyph design is “categorization.” In a categorization task,
a person classifies objects based on their features. For example,
a physician performs a categorization task when they diagnose
a patient as sick or healthy based on their symptoms as features
in a medical diagnosis [29]. In machine learning, categorization
tasks can be helpful to categorize data into clusters based on their
dimensions [20]. Data glyphs are a particularly appropriate and ef-
fective method to visually communicate categorization data because
categorization tasks require the synthesis of these many dimensions of
data to determine its category. Categorization tasks are also usually
probabilistic. For example, in the medical diagnosis case, if a pa-
tient exhibits the symptom of having a headache there are different
probabilities that the symptom may be indicative of them suffering
from fatigue versus a tumor. Formally, probabilistic categorization
tasks are defined as tasks in which object features are associated
with categories probabilistically [11]. In this paper we focus on
probabilistic categorization tasks because of their broad applicabil-
ity as well as lack of prior work and unknown theory pertaining to
its associated glyph design.

One subset of glyphs that are of particular relevance to cate-
gorization tasks are schematic representations of anthropomor-
phic (human-like) objects such as Chernoff Faces [9]. Humans are
especially skilled at differentiating faces because they enter mem-
ory through two distinct pathways per the dual-coding theory:
visual and verbal, thus enabling easy recall [17, 27]. Additionally,
work on the memorability of natural images [18] and data visu-
alizations [4, 5] has demonstrated that the inclusion of natural
images and human-recognizable pictures results in improved mem-
orability and recall of figures and visualizations. But, how does a
human-like glyph representation impact the human perception and
cognition of the encoded data? Can a human-like encoding, through
memorability and salience, improve categorization task accuracy?
Consequently, we hypothesize: A human-like or anthropomorphic
glyph will aid in learning and recall of a categorization rule resulting
in a higher categorization accuracy.

To test our hypothesis, we conducted a within-subject study
with 480 participants on Amazon’s Mechanical Turk. Each par-
ticipant completed a probabilistic categorization task with two
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of four different glyph designs (Fig. 1) and we observed whether
there was a positive benefit to the more anthropomorphic glyphs.
Contrary to our hypothesis, we found strong evidence that the non-
anthropomorphic glyph visual encoding was more accurate than
the anthropomorphic glyphs. Additionally, participants felt less con-
fident with anthropomorphic glyphs to complete the categorization
task. To gain further insight into our study results, we conducted
a posthoc data analysis. The results of the analysis indicate with
anthropomorphic glyphs, participants learn categorization rules
with a bias towards visually salient features and tend to ignore data
represented as non-salient features in the categorization tasks. For
example, in a human face glyph a participant will focus more on
the data encoded with “eyes" mark.

Contributions: We present the first empirical study to measure
the effect of glyph design on probabilistic categorization accuracy.
The results of the study demonstrate that glyph representation can
affect task completion accuracy. Through a posthoc data analysis,
we explain how categorization strategy differs between glyphs
based on the particular design. With our results as premise, we also
recommend specific glyph design idioms for categorization tasks.

2 RELATED WORK

Data representation in categorization tasks: Categorization
tasks in which object features are associated with categories prob-
abilistically are called probabilistic categorization tasks [11]. For
example in our medical diagnosis case a headache is a feature (symp-
tom) related to both diagnoses of a brain tumor and fatigue. How-
ever, in general a headache is more likely caused by fatigue and less
likely a result of brain tumor. Most real world categorization tasks
are probabilistic and require selection among non-deterministic
categories [11]. As a result, probabilistic category learning has
been extensively studied for the development and testing of formal
models of learning and memory (e.g., [1, 14, 15, 25]). In category
learning studies, researchers use a visual encoding to represent the
features. For instance, in a weather prediction task [14, 15], authors
present each feature with a card that had a particular geometric
pattern. Aron et al. [1] used a potato head glyph (similar to the
anthropomorphic glyphs in this paper) with features mapped on
a hat, eyeglasses, mustache, and bow tie, and the glyph had no
direct relation to the task. Other studies focused instead on the
task and used abstract glyphs, e.g., Shepard et al. [30] used shape,
size, and color to encode features. Per this related work, the use of
visual features is common in probabilistic categorization, but their
design is rarely justified. Therefore, in our study we design four
glyphs inspired by existing categorization studies and then study
how glyph design affects categorization task performance.

Categorization Strategies: In a categorization experiment, the
strategy used by a participant to predict the category of a visual
stimulus, which represents a real-world categorization object, is
called a categorization strategy [2, 15, 25, 28]. Here we will discuss
a recently published set of strategies by Gluck et. al. [15]. Gluck’s
strategies were derived from trends observed in subject responses
in probabilistic categorization tasks:

1. Multi-Cue Strategy: People perform inclusive categorization
in which they use all the features to read the stimulus.
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2. Singleton Strategy: People learn one ‘primary’ stimulus and
based on this stimulus guess categories for other stimuli depending
on how similar or different they are from the primary.

3. Single-Cue Strategy: People categorize on the basis of pres-
ence or absence of a single feature in the stimulus.

Gluck et al. [15] showed that the Multi-Cue strategy had the
highest categorization accuracy, and the Single-Cue had the lowest
accuracy [15]. In Sec. 6, we discuss these categorization strategies
in the context of our study’s results. In the evaluation of glyph
designs, categorization strategies can explain how participants per-
ceive glyphs, which can be useful for the identification of appropri-
ate visual encodings for categorization tasks. These categorization
strategies are explained in more detail in the accompanying Sup-
plemental Material.

Glyph Visualization: Glyphs are visual objects used to rep-
resent multidimensional datasets, and they map one or more at-
tributes of the data onto one or more of an object’s visual marks.
A classic example of a glyph visualization is the Chernoff Face[9],
where features of the face like eyes, nose, and mouth are used to
represent a dataset. The glyph design space is large, and their usabil-
ity is widely studied [13]. However, despite the large design space
of glyphs, their evaluation remains an open topic. For example, few
studies have investigated the differences between anthropomorphic
glyphs such as faces versus non-anthropomorphic representations
for visualization tasks [7, 22, 24, 26, 34]. However, these studies do
not focus on a probabilistic categorization task. Moreover, Fuchs et
al. [13] conducted a meta-analysis of these studies and concluded
that the results from these evaluations are contradictory and ef-
ficacy of a glyph design is dependent on the data and the task.
Therefore, in our work, we evaluate glyphs for categorization tasks
and contribute further to understanding differences between an-
thropomorphic and non-anthropomorphic glyph designs.
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Figure 3: Columns represent all the unique permutations of
a three dimensional binary featured dataset. Rows show the
corresponding visual encoding of the features with the four
glyph designs.

3 MULTIDIMENSIONAL STIMULI AS GLYPHS

In categorization tasks, a stimulus is made up of one or more fea-
tures. In our study, we use three-dimensional features (see Fig. 1),
and all the features are of binary data type, i.e., they take a 0/1 value.
The visual encoding maps the binary value (0 or 1) to the absence
or presence of a feature (Fig. 3). This is common in medical diag-
noses, where doctors use a simple binary conditional logic when
dealing with symptoms [21]. For example, the logic may look like:
if a headache(symptom) then fatigue(diagnosis). Three-dimensional
binary features can have 23 unique permutations. Out of the 23
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permutations, the stimulus representation where no features are
present ([0,0,0]) provides no information to categorize a concept
and can be visually confusing. Consequently, the feature with no
stimulus is removed, allowing 23 —1 total permutations as shown in
Fig. 3. In our visual encoding, each feature is tied to a visual mark
of the glyph.

The overarching motive of our study is to compare anthropomor-
phic and non-anthropomorphic glyphs because these two classes of
glyph designs are commonly used in the probabilistic categorization
literature (Sec. 2). According to our hypothesis, anthropomorphic
glyphs will be more conducive for probabilistic categorization tasks.
Below, we explain the glyph encodings used in our study.

Pixel: The abstract Pixel glyph uses point (circle) marks which
resemble three pixels. This glyph includes a rectangle as a frame of
reference around the circles. These circles are placed equidistant
from each other arranged horizontally linear. This design uses the
position of the circle to encode data, i.e., one feature per circle.

Petal: The abstract Petal glyph utilizes a radial layout with shape
marks (“petals”) around a common center point. Our petal glyph
is similar to the flower [8, 23] and star glyphs [12, 22], as both of
them show features in a radial layout and use position and length
to encode data on the individual marks.

Human: The anthropomorphic human glyph is of a human body
form in which each data dimension is encoded to a anatomical part.
The three features in our study were mapped to the head, the arms,
and the legs. The torso serves as a visual reference point, and it is
visible in conjunction with all features. An advantage of the Human
glyph is it’s visual saliency in which each data encoding mark is
substantially different.

Face: The anthropomorphic Face glyph encodes each data di-
mension to an anatomical facial feature. The three features in our
study were mapped to the eyes, the nose, and the mouth. For the
face stimuli, we avoided using previously published Chernoff [9]
and Kabulov [19] face glyphs because their facial features represent
emotion. For instance, the mouth/lips of Chernoff can show a frown
or smile, based on how data is encoded. Emotional expression may
affect the perception of face glyph positively or negatively. We
avoid such effects by the use of a neutral Face glyph design.

4 EXPERIMENT DESIGN AND METHODS

In this section we present our experimental design and methods
used to measure and compare the performance of human subjects
across different glyphs for a probabilistic categorization task. As
we are interested in measuring the performance difference between
different glyph representations, our independent variable in the
categorization task is the glyph design and our dependent variable
is the categorization accuracy. This study uses an abstract catego-
rization task. For example, in Fig. 1, all of the features are marked
as 1, 2, or 3 and not, for example in the Face glyph, “eyes", “nose",
and “mouth". We also provide a neutral premise and wording to
the categorization task “Your task will be to look at each figure and
decide which family it’s from” instead of “Your task will be to look
at symptoms and decide if a patient is sick or healthy”. The rationale
for choosing an abstract task versus a domain specific task was to
ensure that results can be generalized for categorization domains
and domain specific confounds are not introduced in the study. The
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Figure 4: Left: Within-Subject Study Design. Right: In a categorization task, probability is communicated as frequencies. For
example, in (Block A) stimulus [1,1,1] appears 29 times in the training block of 100 samples, and it appears 27 times with

Category 2 and 2 times with Category 1.

wording used in the experiment is included in the Supplemental
Material.

Participants: A total of 480 study participants (mean age=35;
48.7% women and 51.3% men) were recruited through Amazon’s
Mechanical Turk. All participants were based in the United States of
America and had a 95% or greater approval rating. Before starting
the experiment, participants indicated their informed consent in
accordance with the guidelines of our organization's IRB and our
approved study protocol. The experiment was conducted in a single
15 minute session. Study participants were monetarily compensated
and received $2.00 for their participation.

4.1 Within-Subject Study Design

We used a within-subject experiment design in order to observe if
the same person has different categorization abilities with different
glyphs. Our study design consists of six comparisons as shown in
Fig. 4(Left) (Comparison) with each part broken down into four
separate within-subject studies, Fig. 4(Left) (Parts 1 - 4). Parts 1 and
2 of the comparison were designed to balance the effect of presenta-
tion order. Parts 3 and 4 had participants repeat the experiment with
the same glyph design but with different probabilities. These Parts 3
and 4 aim to counter carryover effects of learning and fatigue in a
within-subject study. In a categorization study setup it is possible
for participants to learn an optimal categorization strategy with
the first glyph and subsequently use the improved strategy with
the second glyph. In some cases fatigue may occur and participants
may lose motivation affecting their accuracy in the second task. We
carefully and accurately take these carryover effects into account
in the final analysis (Sec. 5).

In each within-subject study, subjects complete two categoriza-
tion tasks. For example, in Fig. 4(Left) (Row 1, Part 1) a participant
completes a categorization task with Pixel Glyph (Block A) and
Face Glyph (Block B). We designed Blocks A and B to have different
probability structures of equal difficulty to prevent subjects from
directly mapping probability structures from Block A to Block B.
Frequency distribution obtained from this probability structure
is shown in Fig. 4(Right). More details on the calculation of the
frequency distribution are available in the Supplemental Material.

4.2 Procedure

For each within-subject study, Fig. 4(Left) (Parts 1-4), participants
had to complete two categorization tasks. Each task consisted of:

1. Training Instructions: In the training block instructions,
study participants were introduced to a glyph representation and
told that they would learn how to assign each glyph to one of two
families. Most importantly, participants were instructed A) that
each glyph could occur in each family but would be more common
in one family than the other, and B) that approximately half of the
figures were from “Family 1" and half from “Family 2". Participants
were instructed that they would be shown a set of glyphs with their
respective family labels and that the participant should try to learn
which glyphs occur in each family.

2. Training Phase: In this phase, participants saw 100 sam-
ples randomly drawn from the frequency distribution shown in
Fig. 4(Right). For each sample, stimulus and category label were
visible. The glyph was displayed with the true label, and the screen
remained visible until the subject advanced to the next glyph in-
stance.

3. Testing Instructions: This step consisted of a single screen
instructing the participant that they would next view a series of
stimuli (all of the same glyph encoding) and categorize them. Par-
ticipants were asked to press on their keyboard the number “1” for
Family 1 and “2” for Family 2 to pick the correct category.

4. Testing Phase: Subjects completed 100 trials of the testing
phase. In the testing block, the glyph was visible as in training;
however, the correct categorization Family label was unmarked. In
this way, participants could not continue learning the probability
distribution and enable us to evaluate how well they learned how to
categorize features. On each trial, we recorded participant response.
After the testing phase, participants completed a NASA-TLX [16]
based survey to measure cognitive workload measures associated
with the categorization task.

At the end of the experiment, participants were asked to vol-
untarily provide their age, gender, and any patterns they noticed
or strategies they used to complete the task. All categorization
experiment procedures and stimuli are provided in Supplemental
Material.
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5 RESULTS

Accuracy Differences: Our experiment is comprised of six pair-
wise comparisons (Fig 4 (Left) ) of categorization accuracy for each
of the four glyphs (Pixel, Petal, Human, and Face). In each compari-
son, there are four parts with two categorization tasks (Fig. 4(Right)).
In a categorization task, the accuracy is calculated as the proportion
of correct responses, i.e., the number of trials on which the sub-
ject correctly categorized a stimulus divided by the total number
of trials. Next, we take a median of accuracy across all subjects
who performed the same categorization task to obtain accuracy
per glyph design. Finally, the median accuracies are subtracted
to find the accuracy difference between glyph designs. The pair-
wise accuracy difference between glyph designs are summarized
in Fig. 5(Left). A stepwise calculation of the accuracy difference
along with the data analysis code is included in the Supplemental
Material.

Significance Test: From the results in Fig. 5(Left), we can see
that accuracy with the Pixel glyph is higher than that of the other
three glyphs and that the Petal glyph has slightly higher accuracy
than the Human glyph. To test for the significance of these differ-
ences, we derived the null hypothesis distribution for each glyph
empirically by bootstrapping [10]. Bootstrapping allows us to esti-
mate the variability in distribution more confidently and provides a
more realistic estimation of the population mean by using repeated
sampling from the collected data. We assume each subject’s number
of correct responses for each stimulus in each block to be binomially
distributed. Next, 10,000 samples at random were drawn from these
distributions. We carried out the analyses above on each of these
estimates, resulting in a set of 10,000 estimates of accuracy differ-
ence. To handle multiple comparisons, we use Bonferroni corrected
99.9% confidence intervals for each distribution. The Confidence
Intervals (CI) for each accuracy difference are shown by the error
bars in Fig. 5(Left).

Contrary to our hypothesis, we found strong evidence that par-
ticipants were more accurate with non-anthropomorphic glyphs as
compared to anthropomorphic glyphs. The Pixel glyph visual en-
coding generated the most precise categorization performance
and led to statistically significantly higher accuracy than the
Face glyph.

Task Load Survey Results: Our NASA-TLX based survey re-
sults are shown in Fig. 5(Right). We excluded responses to the
questions of temporal effect and physical effort from analysis in our
study due to their lack of relationship to our study’s task. The Pixel
and Petal glyph consistently recorded the lowest average value for
the responses, indicating they were perceived to be the easiest to
use to complete the task. To test for statistical significance, we used
a non-parametric Kruskal Wallis test with a Bonferroni corrected
alpha level of 0.01. The statistical tests yielded a non-significant
result, i.e., p > 0.01 for all NASA-TLX questions.

6 DISCUSSION

In the present study we asked, “How should the data be visually
represented to maximize categorization accuracy?”. Our research
explores a small but meaningful visual design space to understand
the differences in categorization accuracy. Our results show that,
contrary to our expectations based on published literature, we
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found that non-anthropomorphic glyph designs have higher cate-
gorization accuracy. To explain this trend, we conducted a posthoc
strategy analysis to determine the categorization rule adopted by
the participants in the categorization task as discussed in Sec. 2.
For the posthoc analysis we use self reported strategy data (Sec. 4.2,
Demographic Survey and Qualitative Feedback). Based on this strat-
egy analysis, we speculate that participants used an optimal cate-
gorization strategy (Multi-Cue strategy) for the Pixel glyph and a
sub-optimal strategy (Single-Cue) for the Face glyph. Our specula-
tion is backed by comments like “T thought that the heads belonged
mainly to one family and same with the eyes" where participants
explicitly point out that their strategy focused on looking for vi-
sually salient features such as eyes and heads in the glyphs. More
specifically, we found that the “eye” feature is processed differ-
ently than the other elements of the Face glyph. Based on their
anatomical significance, the eyes have a pop-out effect which aids
the pre-attentive processing [31], i.e., eyes attract more attention
than other features of the Face glyph. Consequently, eyes bias the
categorization strategy of participants.

In the self-reported feedback, we found similar patterns exist for
the head feature in the Human glyph. We predicted that anthro-
pomorphic glyphs would aid memory and guide participants to
higher categorization accuracy. Instead, we see the opposite effect:
our anthropomorphic glyphs negatively affect performance and
lead to biased information processing.

Based on the results of the posthoc strategy analysis, we propose
two design recommendations for probabilistic categorization tasks:

1. If the categorization task requires equal attention for all fea-
tures, it is essential that glyph designers use an encoding in which
all features are equally perceptually salient.

2. Alternatively, if the categorization task includes a subset of
features that should be weighted more heavily in the observer’s
decision, such as in the doctor example indicating a symptom which
is critical or deadly, then glyph designs with very salient or signifi-
cant features (e.g., anthropomorphic designs) could be used to take
advantage of human pre-attentive selection processes.

Our study takes an essential step in the direction of general re-
sults for glyph encoding performance with categorization tasks,
including a comparison of abstract glyphs with anthropomorphic
glyphs. Our study found that participants performed the categoriza-
tion task significantly worse with the most anthropomorphic (Face)
glyph. These results naturally lead to the question “Do other glyph
encodings with anthropomorphic or natural features follow our
results?" For example, if we use a dog-shaped glyph, will the dog
head or face be processed differently than a human? What about a
car-shaped glyph? These differences are hard to predict as there is
significant variation in the participation strategy and may only be
addressed with detailed future empirical studies. Meanwhile, our
results can serve as a heuristic for glyphs where the design does
not match the stimuli used in the experiment.

7 CONCLUSION

We found that the visual encoding of probabilistic categorization
data as glyphs can affect human performance for completing cat-
egorization tasks. To find an effective glyph representation, we
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Question Pixel = Petal |Human | Face

How mentally demanding was the
task? (1 = low, 7 = high) 4.09 4.08 4.54 4.26

How successful were you in
accomplishing what you were 3.81 3.97 3.93 3.95
asked to do? (1 = perfect,

7 = failure)

How hard did you have to work to
accomplish your level of 4.56 4.42 4.77 4.77
performance? (1 = low, 7 = high)

How insecure, discouraged,
irritated, stressed, and annoyed 3.36 3.19 3.42 3.72
were you? (1 = low, 7 = high)

Figure 5: Left: Summary of the average differences in accuracy between each pair of glyphs evaluated in the study. On the y-
axis, positive ratios denote that glyphs on the top of the chart had greater accuracy, and visa versa for negative. For each glyph
comparison, the 99.9% CI is plotted, and asterisks (*) denote Bonferroni-corrected significance in accuracy of one stimulus
over other. Right: Average subjective data responses to select NASA-TLX rated on a 7-point Likert scale.

evaluated four glyph designs ranging from abstract to anthropo-
morphic. Contrary to our hypothesis, our results show that human-
like features negatively affect categorization accuracy. Through a
posthoc analysis of quantitative and qualitative experimental data,
we learned that human-like glyphs introduce biases as people relate
differently to anatomically salient features. Based on these results,
we propose if the categorization task requires equal attention for all
features, it is essential that glyph designers use encoding in which
all features are equally perceptually salient. In future work we hope
to investigate if there are effects from other glyph designs, as well
as conduct in situ evaluations with real decision making scenarios
(e.g., medical diagnoses). We also hope the visualization commu-
nity will further explore visualizations in support of probabilistic
categorization learning and task completion in support of effective
decision making.
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