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Abstract 48 

The ability to perceive moving objects is crucial for threat identification and survival. Recent neuroimaging 49 

evidence has shown that goal-directed movement is an important element of object processing in the brain. 50 

However, prior work has primarily used moving stimuli that are also animate, making it difficult to 51 

disentangle the effect of movement from aliveness or animacy in representational categorisation. In the 52 

current study, we investigated the relationship between how the brain processes movement and aliveness by 53 

including stimuli that are alive but still (e.g., plants), and stimuli that are not alive but move (e.g., waves). We 54 

examined electroencephalographic (EEG) data recorded while participants viewed static images of moving or 55 

non-moving objects that were either natural or artificial. Participants classified the images according to 56 

aliveness, or according to capacity for movement. Movement explained significant variance in the neural data 57 

over and above that of aliveness, showing that capacity for movement is an important dimension in the 58 

representation of visual objects in humans.   59 
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1. Introduction 70 
 71 

The ability to categorise objects is crucial for efficiently interacting with our environment and vital for 72 

survival. Knowing that objects in the same category share properties promotes efficient decision-making, such 73 

aiding in deciding which animals to approach and which to flee, or determining which plants are edible and 74 

which are poisonous. Generalising object properties to new objects in the same category is an efficient way to 75 

make use of our limited memory capacity and permeates all interactions with the visual world.   76 

One way of investigating human categorical knowledge is to examine how the brain distinguishes 77 

objects in the visual world. The human visual system can automatically categorise stimuli, from low-level 78 

visual features, to individual object identity, to increasingly abstract conceptual categories in fractions of a 79 

second (Cichy et al., 2014; Contini et al., 2017; Mohsenzadeh et al., 2018; Potter et al., 2014; Potter & 80 

Hagmann, 2015; Robinson et al., 2019). Categorical distinctions such as animacy are rapidly and 81 

subconsciously processed by the brain (Carlson et al., 2013; Cichy et al., 2014; Connolly et al., 2012; Contini 82 

et al., 2017; Grootswagers et al., 2018; Konkle & Caramazza, 2013; Ritchie et al., 2015). The representations 83 

of higher-order categorical distinctions like animacy have been localised to the inferotemporal cortex (Haxby 84 

et al., 2001; Kriegeskorte et al., 2008), and is observable from patterns of brain activity from approximately 85 

100-160ms after stimulus onset (Contini et al., 2020; Goddard et al., 2016; Grootswagers, Robinson, & 86 

Carlson, 2019; Grootswagers et al., 2021). In addition to higher-order conceptual processing, some of this 87 

separation can be explained by differences in low and mid-level visual features between animate and 88 

inanimate stimuli (Grootswagers, Robinson, Shatek, et al., 2019; Long et al., 2018; Wang et al., 2022). Even 89 

at rapid presentation rates, and when subjects are completing an unrelated task, animate stimuli are 90 

distinguishable from inanimate stimuli in patterns of EEG recordings (Grootswagers et al., 2021). This 91 

automatic identification of animacy has also been shown behaviourally in children as young as 7 months old 92 

(Träuble et al., 2014), leading to suggestions that learning about animacy early in development is 93 

evolutionarily adaptive (Aslan & John, 2016). Neuroscience research has supported this idea, demonstrating 94 

that both the adult brain (Bao et al., 2020; Konkle & Caramazza, 2013; Kriegeskorte et al., 2008) and the 95 

infant brain (Bayet et al., 2020; Deen et al., 2017) represents whether something is animate as part of core 96 

visual processing (DiCarlo et al., 2012).  97 
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However, more recent research has shown that the structure of object representations in the brain is 98 

more complex than a simple animate/inanimate dichotomy and may be influenced by an object’s ability to 99 

move independently. Recent neuroimaging work has shown that movement and agency are important in 100 

animacy judgements, and visual stimuli may be better represented in the brain as a spectrum, according to 101 

their similarity to humans (Contini et al., 2020) or their capacity for agency and goal-directed movement 102 

(Connolly et al., 2012; Grootswagers et al., 2022; Jozwik et al., 2021; Sha et al., 2014; Thorat et al., 2019). 103 

These findings suggest that motion, particularly animate motion, is an important property of object processing 104 

in the brain. Areas active when perceiving motion are also active when viewing a still photograph taken mid-105 

motion, also known as implied motion (Kourtzi & Kanwisher, 2000). Studies of implied motion have shown 106 

that the speed of implied motion has differential effects on brain activity based on the category of the object 107 

being shown, suggesting that movement is an important factor in category distinctions (Lu et al., 2015). 108 

Collectively these findings suggest that the brain represents both movement and aliveness. 109 

Behavioural work further demonstrates how movement and aliveness are used to categorise objects. 110 

Theoretical models of life status, such as the animistic-anthropocentric construction model (Yorek & Narli, 111 

2009), suggest that our conception of what is alive is shaped by similarity to humans, particularly in terms of 112 

the overlapping concept of motion, with animals most similar to humans, then plants and then other non-living 113 

things. Most things that are alive can move, yet movement and aliveness are not the same: not all moving 114 

objects are alive (e.g., cars, clouds), and not all objects that are alive move on a time scale that humans can see 115 

(e.g., plants). The co-occurrence of movement and aliveness is so common that it is often a cause for 116 

classification error. For example, adults often mistake natural moving things (e.g., waves) for being alive 117 

when under time pressure to make a decision (Goldberg & Thompson-Schill, 2009). This co-occurrence 118 

makes it difficult to interpret prior neuroimaging literature on how the brain might represent movement, given 119 

it is so often confounded by aliveness. Is movement a relevant characteristic of an object for the brain to 120 

process, and if so, is this solely because it most commonly co-occurs with animacy? Investigating these cases 121 

that violate the intuitive association between aliveness and movement can provide insight into how these 122 

characteristics are coded by the brain.  123 

In the current study, we investigated the relationship between movement and aliveness in neural 124 

categorisation by taking advantage of unusual cases of natural movement that are often misclassified by 125 

children, and adults under time pressure. We used naturalistic static image stimuli, including typical animate 126 
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and inanimate stimuli as in prior research, and also included natural moving objects (e.g., waves, fire) and 127 

plants (e.g., trees, vines). These natural stimuli that violate the association between movement and aliveness 128 

(i.e., they are moving but not alive, or alive but not moving) allow us to investigate how movement and 129 

aliveness are processed in the brain. We first ran an online study to clarify behavioural classifications of the 130 

stimuli. In two experiments, we gathered electroencephalography (EEG) data obtained while participants 131 

classified images according to whether they were alive or not (Experiment 1), or whether they could move or 132 

not (Experiment 2). Using multi-variate pattern analysis techniques, we examined similarities and differences 133 

in the temporal dynamics of visual processing and decision-making based on a stimulus’ capacity for 134 

movement, and whether it is alive or not. These methods were used to examine if, and when, movement 135 

(including natural, non-agentive movement such as from fire, or waterfalls) is represented in the brain, and 136 

whether this is dependent on the categorisation task being completed. We find that capacity for movement 137 

explains significant variance in the EEG data, even after controlling for low-level visual factors and aliveness. 138 

The findings suggest that movement is an important organisational principle for object representation in the 139 

brain.   140 

 141 

2. Methods 142 

This section reports two EEG studies (Experiments 1 and 2) with very similar methodology. Stimuli, analysis 143 

scripts, results and anonymised raw EEG data are publicly available at 144 

https://doi.10.18112/openneuro.ds003855.v1.0.0  (Experiment 1) and 145 

https://doi.10.18112/openneuro.ds003857.v1.0.0  (Experiment 2).  Stimuli, analysis scripts, results and data 146 

from the online stimulus validation study are also publicly available at https://osf.io/jxhcs/. 147 

 To investigate how aliveness and movement are represented in the brain, we recorded 148 

electroencephalography (EEG) in two experiments, each consisting of a categorisation task in which 149 

participants classified images, and passive viewing, in which participants viewed stimuli in rapid streams. The 150 

structure of both experiments was identical, including the passive viewing blocks. The only difference was the 151 

categorisation task. In Experiment 1, participants classified images based on “whether they are alive or not”. 152 

In Experiment 2, participants classified images based on “whether they can move or not”. Different 153 

participants completed each experiment. Unless stated otherwise, the description of the methods below applies 154 

to both EEG experiments.  155 
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2.1 Participants 157 

In Experiment 1, 24 undergraduate psychology students (15 females, 9 males) at the University of Sydney, 158 

Australia, participated in exchange for course credit. The mean age was 19.58 (range 18-26), and all but one 159 

were right-handed. In Experiment 2, a separate group of 24 undergraduate psychology students (16 females, 7 160 

males, one non-binary person) at the University of Sydney participated for course credit. One additional 161 

subject was excluded from Experiment 2 with incomplete data as a result of a technical error during data 162 

collection. The mean age was 19.71 (range 18-26), and all but one were right-handed. All participants in both 163 

experiments had normal or corrected-to-normal vision, were neurologically healthy, and were not colour-164 

blind. Informed written and oral consent was obtained from all participants prior to participation. The study 165 

was approved by the University of Sydney Ethics Committee. 166 

 167 

2.2 Apparatus  168 

Images were shown in the centre of a 1920x1080 pixel Asus gaming monitor with a refresh rate of 60Hz. 169 

Participants responded using the two outermost buttons on a four-button button box produced by The Black 170 

Box ToolKit Ltd (layout as shown in Figure 2C, 1D). They were seated 55cm away from the screen and 171 

stimuli subtended approximately 5° of visual angle. EEG was recorded at 1000Hz on a 128 channel 172 

BrainVision ActiCap system (Brain Products GmbH), with electrodes located in positions consistent with the 173 

10-5 extension of the 10-20 system (Oostenveld & Praamstra, 2001). Data were recorded with an online 174 

reference of FCz. 175 

 176 

2.3 Stimuli 177 

Stimuli were 400 realistic colour images collected from free online image databases (www.pixabay.com, 178 

www.pexels.com) under Creative Commons 0 licenses, and were used in all studies. All text in images (e.g. 179 

brand names on cars) was blurred manually using GIMP (v2.10.14, 2020), then each image was cropped and 180 

resized to 256 by 256 pixels. Stimuli were gathered in six categories based on those in Goldberg & 181 

Thompson-Schill (2009): animals, plants, still artificial things, still natural things, moving artificial things, and 182 

moving natural things (shown in Figure 1A). For animals (bee, cat, dog, dolphin, eagle, horse, lemur, pigeon, 183 

tiger, whale) and plants (cactus, clover, fern, flower, grass, lemon tree, moss, palm tree, tree, vine), there were 184 



NEURAL PROCESSING OF MOVEMENT 
10 objects. For all other categories, still artificial things (bench, clothes peg, headphones, lock, mug), still 185 

natural things (cliff, crystal, rock, sand, shell), moving artificial things (boat, bus, car, helicopter, train), and 186 

moving natural things (fire, hot spring, river, waterfall, waves), there were five objects. The extra plant and 187 

animal categories were included to ensure there was an equal number of images that were alive and not alive, 188 

as well as equal numbers of moving and still images. Within each category (e.g., cat, bench), there were 10 189 

different images (e.g., cat1, cat2, … cat10). There were 400 images in total, each classified according to 190 

aliveness (200 living and 200 non-living), movement (200 moving and 200 still), and naturalness (300 natural 191 

and 100 artificial). For objects that are able to move, the stimulus was shown in motion in the image (e.g., 192 

birds and helicopters shown flying, see Figure 2A), though all stimuli were static images.  193 

 194 

2.4 Stimulus validation and model generation 195 

To validate the stimulus set and generate behavioural models to compare to the EEG data, we ran an online 196 

experiment using Amazon’s Mechanical Turk platform, guided by Grootswagers (2020), programmed using 197 

jsPsych (de Leeuw, 2015) and hosted on Pavlovia (Peirce et al., 2019, https://www.pavlovia.org/). Stimuli, 198 

analysis scripts, results and data are publicly available at https://osf.io/jxhcs/. Categorisation responses served 199 

to ensure that people generally agreed upon stimulus category and were used to construct independent 200 

behavioural models. 201 

Mechanical Turk (MTurk) workers were recruited from the U.S.A. and Canada to complete the 15-202 

minute experiment in return for cash payment. Participants were randomly allocated to answer one of three 203 

questions about each of the 400 stimuli: (1) “Is the thing in the image alive, or not alive?”, (2) “Can the thing 204 

in the image move, or is it still?”, or (3) “Is the thing in the image naturally occurring or man-made?” Data 205 

was gathered from 50 participants for each question. Participants were shown one image at a time and 206 

instructed to press the ‘F’ and ‘J’ keys on their keyboard to indicate their response for that image. The 207 

instructions stated that participants should “try to be fast and accurate.” Each image appeared after a 500ms 208 

fixation cross and remained on the screen until participants responded (Figure 1B).  209 

To ensure we were only using data where participants were completing the task properly, we removed 210 

seven subjects whose overall accuracy (based on expected classification) was less than 50%. We also removed 211 

15 participants who responded in less than 100ms on more than 25% of images, as participants are unlikely to 212 

be making valid responses in such a short time period. These exclusion rates are within the range expected 213 
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from online samples (Thomas & Clifford, 2017). After these exclusions, there were 42 participants who 214 

classified by aliveness, 48 participants who classified by movement capacity, and 38 participants who 215 

classified by naturalness. For these included participants, any trial that had a reaction time more than 3 216 

standard deviations longer than the mean of all trials pooled across all participants (on average, less than one 217 

trial per participant) or less than 100ms (on average, less than one trial per participant) was also removed.  218 

To investigate how neural activity was related to behavioural classifications of the stimuli, we used 219 

Representational Similarity Analysis (RSA) to generate models of categorical and visual attributes of the 220 

images (Kriegeskorte et al., 2008). Behavioural models were generated from responses of online participants 221 

by averaging the percentage of responses towards the affirmative decision (‘alive’, ‘moves’, or ‘natural’) for 222 

each image and calculating the Euclidean distance between each pair of images. This 400 x 400 matrix was 223 

then averaged over all images within a category to create a 40 x 40 Representational Dissimilarity Matrix 224 

(RDM). These RDMs are shown in Figure 2A, 2B and 2C.   225 

 226 

2.5 EEG Experiment procedure  227 

Participants in both EEG experiments completed 8 blocks of trials, alternating between passive viewing (4 228 

blocks) and the categorisation task (4 blocks) and always beginning with passive viewing.  229 

 230 

2.51 Categorisation task.  231 

To see how focusing on aliveness and movement affected neural processing, participants completed a 232 

categorisation task (Figure 1D). Each trial consisted of a fixation cross for a random duration between 500ms 233 

and 1000ms, followed by an image in the centre of the screen for 100ms. Participants had 1000ms from 234 

stimulus offset to respond on the button box. For Experiment 1, participants decided whether the image was 235 

alive or not alive. For Experiment 2, participants decided whether the stimulus could move or not. The 236 

response mapping changed over each block, such that the side of the button corresponding to ‘alive’ or ‘able 237 

to move’ switched between left and right every block, and the order of the mapping was counterbalanced 238 

across participants. When a participant responded, the fixation spot filled in to indicate that a response had 239 

been recorded (Figure 1D). If there was no response in this time, the screen displayed “Too late!”, and 240 

advanced to the next trial. For each of the four categorisation blocks, trials (single image presentation and 241 

response, as described above) were chunked into 10 sequences. One sequence contained 40 trials, so that each 242 
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sequence contained one image from each category (e.g., one dog, one fire). Thus, across the 10 sequences in 243 

each block, all 400 images were shown. Each sequence lasted approximately 1-2 minutes, and participants 244 

were told to take a break between sequences and advance at their own pace.  245 

 246 

2.52 Passive viewing task.  247 

In passive viewing blocks, participants viewed a series of rapid presentation sequences and responded by 248 

pressing a button when a fixation spot changed colour (Figure 1C). This non-category related task was 249 

included to provide baseline neural activity for each image in order to assess whether movement was 250 

processed as a higher-order characteristic, or a lower-level visual attribute. The collection of the same passive 251 

task across both experiments also allows the experiments to be directly compared.  252 

In each of the four passive viewing blocks, participants were shown three repetitions of each image 253 

during passive viewing sequences, equating to 12 total repetitions of each stimulus across the experiment. 254 

These were split into 15 short sequences of 80 images each (~12 seconds each), to minimise fatigue and eye 255 

blinks. All 400 images were displayed in the first five sequences, then shuffled and repeated over the next 256 

five, and shuffled and repeated over the final five sequences. This ordering ensured that no image appeared 257 

twice in the same sequence, and that images were distributed within each block.   258 

Participants were instructed to press a button as quickly as possible whenever they saw the fixation 259 

spot (a bullseye, two concentric black circles, shown in Figure 1) change colour to red. There were two to four 260 

randomly located colour changes in the middle 60 presentations of each sequence of 80 images. The 261 

concentric circles of the bullseye were used to ensure there was sufficient contrast with all stimuli to 262 

distinguish colour changes. This task ensured that participants maintained a central fixation and paid sufficient 263 

attention to the screen but were not explicitly focused on the semantic properties or categories of the images.  264 
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 267 

2.6 EEG Data Analysis 268 

2.61 EEG preprocessing.  269 

We used a minimal pre-processing pipeline, based on prior work (Grootswagers et al., 2021; Grootswagers, 270 

Robinson, & Carlson, 2019; Grootswagers, Robinson, Shatek, et al., 2019; Robinson et al., 2019; Shatek et 271 

al., 2019). Using custom scripts for EEGLab (Delorme & Makeig, 2004) in MATLAB (The MathWorks Inc., 272 

version 2020a), data were re-referenced to an average reference, low pass filtered at 100Hz, high pass filtered 273 

at 0.1Hz, then down-sampled to 250Hz. Epochs of data were created from 300ms before each stimulus 274 

appeared on the screen to 1000ms after stimulus onset.  275 

 276 

2.62 Decoding image category.  277 

To investigate how the different object categories are represented in the brain, we used multivariate decoding 278 

applied to the EEG data in response to each image. All decoding analyses were run in MATLAB using 279 

functions from the CoSMoMVPA toolbox (Oosterhof et al., 2016), using all 128 channels from each 280 

participant. To test if individual images (e.g., tree1, cat1) and categories (e.g., plant, animal) were 281 

distinguishable from the EEG recording, we conducted pairwise decoding analyses. All analyses were 282 

conducted timepoint by timepoint relative to when each image was displayed. At the individual image level 283 

(e.g., tree1, cat1), we trained a Linear Discriminant Analysis (LDA) classifier on each pair of images from all 284 

but one block and tested on those same images from the left-out block. This was repeated over all pairs of 285 

images, for each block as the test data. Separate analyses were conducted for categorisation and passive 286 

viewing. At the category level (e.g., plant, animal), we conducted a similar pairwise analysis still leaving two 287 

images out to test on, but also excluded these two images from the training set. For example, to compare 288 

plants and animals, a classifier was trained on blocks 1-3 using all plants and animals except a pair of images 289 

Figure 1. Experimental paradigm for our online stimulus validation, and Experiments 1 and 2 with EEG. 
Sample stimuli are shown in (A). For the online stimulus validation experiment shown in (B), participants 
classified images by either aliveness, capacity for movement, or naturalness. During passive viewing trials 
of both EEG experiments in (C), participants viewed a rapid stream of images and responded to the 
fixation spot changing to red by pressing a button. During categorisation trials for both EEG experiments 
in (D), participants rapidly categorised images. In EEG Experiment 1, participants responded based on 
whether each image depicted something that was alive or not alive. In EEG Experiment 2, participants 
responded based on whether each image showed something that could move or could not move. Note that 
all images are magnified here for clarity; for presentation they occupied a smaller proportion of the screen.  
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(e.g., tree1 and cat1), and then tested on these left-out images (tree1, cat1) from remaining block (block 4). 290 

This process was repeated so each pair of images was left out in each block.  291 

 292 

2.63 Representational Similarity Analysis.  293 

To investigate how movement and aliveness are represented in the brain, we used Representational Similarity 294 

Analysis (RSA) to relate neural activity to behavioural responses as well as lower-level visual features that 295 

might differ across categories (Kriegeskorte et al., 2008). Behavioural Representational Dissimilarity Matrices 296 

(RDMs) were calculated for aliveness, movement and naturalness based on the online stimulus validation 297 

study, and low-level visual models were calculated for colour, rectlinearity and patterns of shadow using a 298 

greyscale model. For the colour model, each pixel of each image was allocated values within CIELab colour 299 

space, and these values were averaged over all images in a category to form a single vector of values for each 300 

category. The Euclidean distance between categories could then be calculated. For the greyscale model, each 301 

pixel of each image was converted to a single greyscale value. These values were averaged over all images in 302 

a category, and the Euclidean distance between categories was calculated to form the 40 x 40 RDM.  To 303 

control for rectilinear differences in animacy, we also included a measure of rectilinearity from Nasr et al. 304 

(2014), calculated using publicly available code from [https://github.com/cechava/Rectilinearity_Toolbox]. As 305 

with the colour and greyscale measures, we calculated the amount of rectilinearity in of each image, then 306 

averaged across each category. We then calculated the Euclidean distance between each category to form a 307 

model of rectilinearity.  308 

To calculate RDMs for the neural data, we used an LDA classifier at every time point to compute 309 

decoding accuracy for each pair of categories (e.g., cats vs rocks), resulting in a 40x40 neural dissimilarity 310 

matrix for each time point. This classifier used the same partitioning structure as category decoding above, in 311 

which each pair of images was left out as the testing set for each block and for each pair of categories. 312 

Separate neural RDMs were created for passive viewing and categorisation trials.   313 
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 315 

 316 

2.64 Linear modelling.  317 

To investigate how categories of aliveness and movement account for neural responses to objects, we ran a 318 

series of general linear models to see which characteristics best explained the neural processes in the 319 

categorisation tasks over time. Eight predictor variables were included: aliveness, naturalness, movement, 320 

colour, greyscale, rectilinearity, animacy, and stimulus-driven neural responses from the passive viewing 321 

Figure 1. Representational dissimilarity matrices (RDMs) generated from behavioural ratings of stimuli and 
image-level analysis of stimuli. Areas that are more purple indicate low dissimilarity (more similar). Areas that 
are more orange indicate high dissimilarity (less similar). Each category (e.g., cat, tree) is shown in a single 
row/ column. Panels (A), (B), and (C) illustrate models generated from behavioural ratings of the stimuli from 
an online stimulus validation task. Panels (D), (E), and (F) show models generated by analysis of the low-level 
features of the stimuli, and panel (G) shows the experimenter-derived veridical/ expected animacy model. 
Model correlations between these models are shown in (H), and the relationships between the models are 
shown using Multi-Dimensional Scaling (MDS) in (I). Abbreviations on panels (A) – (G) indicate categories; 
plants (P), Still Natural (SN), Still Artefacts (SA), Moving Natural (MN), Moving Artefact (MA), and animals 
(A). 
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trials. Seven of these models (all except the passive viewing trials) are shown in Figure 2. These same eight 322 

predictor variables were used to run separate linear models for each time point, with outcome variable as the 323 

neural RDM of the categorisation task at that time point.  324 

The behavioural models of movement, aliveness, and naturalness (Figure 2A-C) were included in the 325 

GLMs to assess how these different image categories influenced neural responses. We also included low-level 326 

visual models of colour, greyscale and rectilinearity (Figure 2D-F), as prior evidence has shown that distinct 327 

patterns of neural activity arise at least to some extent as a result of similar low- and mid-level visual features 328 

such as rectilinearity (Grootswagers, Robinson, Shatek, et al., 2019; Long et al., 2018; Wang et al., 2022). We 329 

also included a binary model of animacy (animals coded as 1, all other categories coded as 0; Figure 2G), and 330 

the neural RDM of the passive viewing trials. For each time point, the passive viewing RDM was taken from 331 

the same time point as the categorisation task RDM (outcome variable) to account for stimulus-driven neural 332 

processes during the categorisation tasks. The combination of these models can highlight how stimulus 333 

movement and aliveness uniquely contribute to neural responses.  334 

 To ensure that multicollinearity was sufficiently low to interpret the output of the model, we 335 

calculated the variance inflation factors for each model based on a downloaded MATLAB function (Vasilaky, 336 

2021).  A measure of multicollinearity, the variance inflation factor indicates the impact on the variance of the 337 

model of adding a particular variable, compared to if it were independent to all the other variables 338 

(Montgomery et al., 2012). A variance inflation factor of one would indicate that the variable is independent 339 

from the other elements in the model, with factors close to one indicating fewer potential issues with 340 

multicollinearity and higher factors indicating more higher multicollinearity (Thompson et al., 2017). The 341 

variance inflation factors for all variables were low (ranging from 1.01 for movement to 1.40 for naturalness), 342 

indicating low multicollinearity between the models. 343 

 344 

2.65 Neural network 345 

To investigate whether the characteristics associated with movement are associated with lower-level visual 346 

processing, or more abstract categorical processing, we compared neural data to different layers of a neural 347 

network. CORnet (Kubilius et al., 2018, 2019) is a deep neural convolutional network designed as a model for 348 

the visual system, where each convolutional layer represents a different area of the visual system. Feature 349 

weights for each image were extracted from the layers representing V1, V2, V4 and Inferotemporal cortex 350 
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(IT). The distance between the feature weights for each image was calculated to form a 400 x 400 RDM, 351 

which was then averaged to 40 x 40 so it was the same size as the neural RDMs. This process was repeated 352 

over each brain region (layer). To examine which layer of CORnet most closely resembled neural activity 353 

over time, we examined the correlation between each layer and the neural data for each time point.    354 

 355 

2.7 Statistical analysis  356 

We used Bayesian inference to examine differences in accuracy and reaction time across stimulus categories.  357 

For all comparisons, we used the BayesFactor package in R (Morey et al., 2018). Following recommendations 358 

in Teichmann et al. (2021), we used a JZS prior (Rouder et al., 2009) with a scale factor of 0.707. This is the 359 

default prior and scaling in the BayesFactor package because it makes minimal assumptions about the 360 

expected effect size, and serves as a “non-informative default” (Rouder et al., 2009, p. 232).   361 

To calculate behavioural statistics for the differences between animals and plants, we used the 362 

Bayesian equivalent of t-tests (Rouder et al., 2009). We also used Bayesian linear models to determine if 363 

naturalness and capacity for movement influenced reaction times or accuracy. Models were built to express all 364 

combinations of each variable, in addition to participant ID. To determine whether naturalness and movement 365 

had an effect on reaction times and accuracy, we compared an additive model (movement + naturalness + 366 

subject ID) to a model without each variable in turn (for movement, naturalness + subject ID). A larger Bayes 367 

Factor would indicate that the inclusion of that variable makes a model that is more likely given the data 368 

(Rouder et al., 2012). This can be interpreted similarly to the main effect in a traditional ANOVA.  369 

For decoding analyses, we used a series of t-tests using the ttestBF function (Morey et al., 2018) from 370 

the BayesFactor package with the parameters described above. The alternate hypothesis is that the decoding is 371 

above chance (50%), and the null-interval was effect sizes from negative infinity up to 0.5, as effect sizes 372 

during baseline periods prior to stimulus onset from previous work have shown this to be most appropriate 373 

(Teichmann et al., 2021). This formed a one-sided hypothesis that the effect size for alternate hypothesis 374 

should be positive. For linear modelling, in which both negative and positive results are meaningful, we used 375 

the same procedure with the alternative hypothesis that the betas are different to zero, with a two-sided prior 376 

from -0.5 to 0.5.   377 

Bayes Factors are interpreted according to Jeffreys (1961/1998), where Bayes Factors larger than 30 378 

are very strong evidence for the alternate hypothesis, Bayes Factors larger than 10 are strong evidence for the 379 
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alternate hypothesis, Bayes Factors larger than 3 provide some evidence for the alternate hypothesis, and 380 

Bayes Factors smaller than 1/3 provide evidence for the null hypothesis.  381 

 382 

3. Results 383 

We used behavioural and neural measures to investigate how aliveness and movement are processed by the 384 

brain. In two experiments, participants rapidly classified images according to aliveness (Experiment 1) or 385 

capacity for movement (Experiment 2) while we measured neural responses with millisecond precision.  386 

 387 

3.1 Behavioural: Passive viewing 388 

In the passive viewing task, participants performed an orthogonal fixation change task. Behavioural 389 

performance on the passive viewing blocks of both EEG experiments indicated that participants were engaged 390 

with the task. Participants correctly identified the target colour change within 600ms on 93.77% of 391 

occurrences for Experiment 1 (SE = 0.93, range 79.07% - 100%) and on 95.76% of occurrences for 392 

Experiment 2 (SE = 0.54, range 88.04%- 98.89%).  393 

 394 

3.2 Behavioural: Categorisation task  395 

To examine the relationship between movement and aliveness in categorisation of naturalistic image stimuli, 396 

we used behavioural metrics (reaction time, classification accuracy) and multivariate pattern analysis of neural 397 

data. The median reaction time for Experiment 1 was 457ms (SE = 10.7ms, range of participant means 322ms 398 

– 561ms), and for Experiment 2 was 456ms (SE = 11.53ms, range of participant means 373ms – 588ms). 399 

Participants showed high accuracy in classifying the stimuli, with few trials (on average, ~16 of 1600 trials 400 

per participant) that timed out without a response (misses). In Experiment 1, the mean percentage of correct 401 

responses was 87.42% (SE = 1.4152%, range 69.75% - 97.5%), with an average of 1.10% misses (SE = 0.26, 402 

range 0.13% - 5.94%). For Experiment 2, there were 82.97% (SE = 1.64%, range 61.67% - 94.42%) correct 403 

responses, on average, with 0.97% misses (SE = 0.18, range 0.19% - 3.00%). Though some participants had 404 

low ‘accuracy’ scores, these always arose from consistent classification in the opposite direction from what 405 

was predicted (e.g., consistently responding that plants were not alive in Experiment 1, or consistently 406 

responding that moving natural stimuli did not move in Experiment 2). 407 

 408 
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 410 
 411 

 412 

3.3 Behavioural: Experiment 1 413 

We were interested in how image category influenced how participants categorised images according 414 

to whether they were alive or not in Experiment 1. First, we assessed performance for the alive images, which 415 

consisted of animals and plants, as previous work has shown that animals are considered ‘more alive’ than 416 

Figure 3. Median response times and classifications of stimuli from EEG Experiments 1 and 2. Data from 
participants considering whether the stimulus was alive or not is shown in (A) and data from classifying 
images by capacity for movement are shown in (B). Sample images below correspond to the labelled data 
points, showing a selection of responses.   
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plants (Yorek et al., 2009).  Bayesian t-tests were used to evaluate whether there were differences in reaction 417 

time and classification between plants and animals. There was very weak evidence for differences in reaction 418 

time between plants and animals in the aliveness task of Experiment 1 (BF = 1.09) and some evidence that 419 

responses to animals were faster than plants in the movement task of Experiment 2 (BF = 3.17). However, 420 

there was strong evidence that plants were classified as “not alive” more often than animals (BF = 16.66), 421 

suggesting that plants are considered ‘less alive’ than animals as predicted by behavioural models of aliveness 422 

(Yorek & Narli, 2009).  423 

For the stimuli that are not alive, we used Bayesian linear modelling to investigate how moving and 424 

natural stimuli influenced aliveness judgements compared with still and artificial stimuli. Natural stimuli were 425 

mistakenly classified as alive more often (BF = 184.70) and more quickly (BF = 3757.79) than artificial 426 

stimuli. This is somewhat expected, given that all of the stimuli that are alive are also natural. Capacity for 427 

movement also influenced judgements of aliveness, with non-living moving stimuli classified as alive more 428 

often (BF = 132.28) and more slowly (BF = 667.90) compared to still stimuli. These results are in line with 429 

use of intuitive biological knowledge under time pressure (Goldberg & Thompson-Schill, 2009), mistaking 430 

moving and natural stimuli for being alive. 431 

 432 

3.4 Behavioural: Experiment 2 433 

We were also interested in how image category influenced movement classification in Experiment 2. 434 

There was weak evidence for no difference in reaction time (BF = 0.68) in classifying plants and animals as 435 

moving or non-moving. There was also weak evidence that animals were classified as moving more often than 436 

plants were classified as still (BF = 3.17) . For non-living stimuli, we investigated the impact of capacity for 437 

movement and naturalness on movement classification using the Bayesian equivalent of an ANOVA. We 438 

found that natural stimuli were classified less accurately than artificial stimuli (BF = 66.50), and moving 439 

stimuli were also classified less accurately than still stimuli (BF = 1815.09). There was weak evidence for the 440 

null hypotheses that naturalness did not affect reaction times (BF = 0.92), and weak evidence for the null 441 

hypothesis that movement did not affect reaction times (BF = 0.29). Crucially, there was a significant 442 

interaction effect (BF = 168.7), suggesting that stimuli that are both moving and natural were responded to 443 

less accurately. This difference is clear in Figure 3B (pale pink circles), showing the low agreement across 444 

participants on whether these natural moving stimuli are moving or not.  445 
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 446 

3.5 Decoding image category  447 

We were interested in the temporal dynamics of visual information processing in the brain, from low-level 448 

image identity to category level representations. To test if individual images (e.g., tree1, cat1) and categories 449 

(e.g., plant, animal) were distinguishable from the EEG recording, we used a linear discriminant classifier to 450 

classify stimuli at these two levels. Neural responses contained information about image identity (e.g., dog1) 451 

and category (e.g., animal) from 90-120 milliseconds after stimulus onset, characteristic of early stage visual 452 

processing (Carlson et al., 2013; Cichy et al., 2014). Both when participants were passively viewing images 453 

(Figure 4A, C) and when they were classifying them (Figure 4B, D), information about stimulus identity 454 

remained present for more than 400ms after stimulus offset. This is in line with prior work demonstrating 455 

enduring neural representation after stimulus offset in rapid serial visual presentation sequences 456 

(Grootswagers, Robinson, & Carlson, 2019; Mohsenzadeh et al., 2018; Robinson et al., 2019).  457 

In both EEG experiments, participants completed the same passive viewing task (Figure 4A, C). At 458 

both levels of classification, neural data revealed similar information was present over time for the passive 459 

trials in both experiments. This similarity indicates that there are unlikely to be major differences in data 460 

quality between the two experiments.  461 

 462 
 463 
 464 
 465 
  466 
 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
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 480 

 481 
3.5 EEG: Linear modelling  482 

To investigate how much the conceptual categories of movement and aliveness explained brain activity while 483 

classifying object stimuli, we used a linear model to see which theoretical models best explained patterns of 484 

brain activity over time (Figure 5).  This linear model allowed us to assess how movement and aliveness 485 

account for the neural data specifically during task-related classification, once accounting for stimulus 486 

naturalness, animacy, low-level features such as colour and rectilinearity, as well as basic stimulus-driven 487 

neural processes (as measured in the passive viewing trials). 488 

Figure 4. Decoding stimulus identity. Plots show pairwise decoding accuracy from an LDA classifier over 
time for image-level (A, B), and category-level (C,D) classification. The dashed line at 0.5 indicates 
chance decoding, with higher values indicating more discriminability between classes of stimuli. Blue 
lines show data from Experiment 1 (aliveness task) and green lines show data from Experiment 2 
(movement task). Shaded areas indicate standard error across subjects (N=24 for each experiment). Bayes 
Factors (BF) above 30 (very strong evidence) are shown in the filled coloured dots, BF between 10 and 30 
(strong evidence) are shown as unfilled coloured dots, BF between 1/3 and 10 are shown in grey, and BF 
below 1/3 (evidence for the null) are shown in black. For passive viewing blocks (A,C) the task was the 
same across both experiments. For categorisation trials (B,D) participants classified stimuli by aliveness in 
Experiment 1 (blue) and by capacity for movement in Experiment 2 (green). 
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 During categorisation tasks, aliveness explained patterns of neural activity for a very brief period from 489 

120ms to 150ms after stimulus onset in Experiment 1 and 130ms to 160ms after stimulus onset in Experiment 490 

2 (Figure 5A). In contrast, movement explained variance in patterns of neural recordings from 180ms in 491 

Experiment 1 and 200ms in Experiment 2, with a peak at around 230ms - 240ms for both experiments, until 492 

approximately 320ms after stimulus onset for Experiment 1 and 500ms after stimulus onset for Experiment 2 493 

(Figure 5B). Though both aliveness and movement had a similar time course in both tasks, aliveness seems to 494 

have an earlier and less prolonged peak than movement.  495 

  496 

3.6 Neural Network  497 

To further investigate whether the neural signal more closely resembled higher-order processing, or lower-498 

level visual processing, we examined the correlation between neural activity and layers of a neural network 499 

modelling the visual system, CORnet (Kubilius et al., 2018, 2019). CORnet includes layers that resemble 500 

processing in four visual areas: V1, V2, V4 and Inferotemporal cortex (IT). In both experiments, all four 501 

layers were correlated with neural activity from approximately 100-120ms after stimulus presentation to 502 

approximately 180ms after onset, with a peak at approximately 120-130ms. Notably, only the layer 503 

resembling IT is significantly correlated with neural activity after approximately 300ms post-stimulus onset. 504 

This extended correlation with the IT layer suggests that the neural activity from around 300ms is related to 505 

Figure 5. Aliveness and movement explained a significant proportion of brain activity during 
categorisation tasks. Plots show beta estimates for aliveness (A) and movement (B) from a linear model, 
which included behavioural (aliveness, movement, naturalness) and image-level (colour, greyscale, 
rectilinearity) models, as well as a model of animacy and the passive viewing RDM from the 
corresponding time point. Blue lines show data from Experiment 1 (aliveness task) and green lines show 
data from Experiment 2 (movement task). Shaded regions show standard error across subjects (N=24 for 
each experiment). Bayes Factors (BF) above 30 (very strong evidence) are shown in the filled coloured 
dots, BF between 10 and 30 (strong evidence) are shown as unfilled coloured dots, BF between 1/3 and 10 
are shown in grey, and BF below 1/3 (evidence for the null) are shown in black.  
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higher-order classification, and that the later significance of movement in the linear modelling may be 506 

attributed to higher-order categorisation processes.    507 

 508 

4. Discussion 509 

In this study, we used electroencephalography (EEG) to investigate the contribution of movement and 510 

aliveness in categorisation. Previous work has focused on animacy as a major dimension in visual object 511 

processing, but animacy tends to co-occur with movement, raising the question of how much these object 512 

features contribute to categorical object processing in the brain. Here, we show that movement is an important 513 

organisational principle in the brain. We use naturalistic image stimuli including moving elements of the 514 

natural landscape (e.g., waterfall, fire) to show that the brain processes movement associated with non-living 515 

kinds as well as animate movement. EEG data revealed that information about capacity for movement was 516 

present in neural signals, after accounting for categorical similarities in colour, shape, naturalness, animacy, 517 

and aliveness. The results show that capacity for movement is an important dimension in human visual object 518 

perception, including for inanimate stimuli and different kinds of movement.  519 

Behavioural results from the categorisation task showed that moving things (waterfall, cloud, etc) 520 

were more likely to be judged as alive under time pressure, and that elements of the natural landscape tend to 521 

be perceived as still. These trends are in line with prior work showing that under time pressure, adults may 522 

rely on intuitions about the world (Goldberg & Thompson-Schill, 2009; Kelemen et al., 2013; Shtulman & 523 

Figure 6. Correlation between neural activity and layers of CORnet (Kubilius et al., 2018, 2019) 
representing areas of the visual system, for Experiment 1 (A) and Experiment 2 (B) during the 
categorisation task. Shaded regions show standard error across subjects (N=24 for each experiment). Bayes 
Factors (BF) above 30 (very strong evidence) are shown in the filled coloured dots, BF between 10 and 30 
(strong evidence) are shown as unfilled coloured dots, BF between 1/3 and 10 are shown in grey, and BF 
below 1/3 (evidence for the null) are shown in black. 
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Harrington, 2016; Shtulman & Valcarcel, 2012; Young & Shtulman, 2018). Our behavioural results build on 524 

these prior findings to show that application of scientific intuition in adulthood is not limited to the complex 525 

judgements about the accuracy of complex statements about physics and chemistry or judgement of words that 526 

are used in prior work, but also extends to basic judgements of aliveness and to naturalistic pictorial visual 527 

stimuli. The presence of these behavioural classification biases under time pressure may reflect that they are 528 

adaptive in most situations in both modern times and for our ancestors (New et al., 2007). For example, 529 

assuming that moving things are alive allows for rapid reactions even when these assumptions are wrong, such 530 

as moving away from an oncoming car. The behavioural results, therefore, suggest that natural movement is 531 

uniquely positioned in a spectrum of movement because of its ambiguous causal relationships.  532 

Though here we consider all kinds of movement together, it is clear that moving natural things like 533 

fire and waterfalls move in different ways to animals and vehicles. Animate movement differs from inanimate 534 

movement, in terms of having a goal-directed trajectory (Gergely et al., 1995), predictability of movement 535 

(Pratt et al., 2010) the speed and angle of directional changes (Tremoulet & Feldman, 2000), among other 536 

things. Given the evidence of neural processing of goal-directed movement and agency (Thorat et al., 2019) it 537 

is possible that difficulties and inconsistencies in classifying movement in the natural landscape (e.g., see pink 538 

dots in Figure 3) occur because there is no obvious agent causing natural movement. This is in contrast to all 539 

the other moving stimuli, which can generate spontaneous goal-directed movement (animals) or move with 540 

the intervention of humans (all the moving man-made stimuli were vehicles). Future studies may evaluate 541 

whether moving artificial stimuli that move without clear human intervention (e.g., clocks, fireworks) show 542 

similar response patterns.  543 

Alternately, these difficulties in classifying the moving natural objects may be due to colloquial 544 

implications of the language we used in the instructions.  For example, there were four participants in 545 

Experiment 1 who consistently responded that plants were not alive. The term ‘alive’ can colloquially be 546 

interpreted to mean ‘animate’ (Leddon et al., 2009) particularly in childhood, so it is possible that these 547 

participants interpreted the instructions as such. Similarly, in Experiment 2, some participants consistently 548 

classed the moving natural things as still, potentially because they interpreted ‘can move’ to refer only to self-549 

generated movement, animate movement, or as movement of an item relative to the environment it is in. 550 

However, these same participants also reliably classified vehicles as moving, so it is unclear whether this is a 551 
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semantic or lexical distinction that is important. Further research is required to fully understand the impact of 552 

lexical factors on classification behaviour in the current context.  553 

Our behavioural results suggest movement and aliveness are related in making judgements about 554 

stimuli, yet our linear modelling showed that they are processed differently in the brain. Information about 555 

movement was present in neural activity around 180-200ms after stimulus onset, regardless of the task (Figure 556 

5B). Even after accounting for stringent visual controls, the movement model still explained a large portion of 557 

variance in brain activity, indicating that capacity for movement is an inherent feature of object 558 

representations, not just for animate stimuli but also for inanimate stimuli. After an initial peak at 559 

approximately 230-240ms, there was an extended period where movement explained a proportion of the 560 

variance in neural activity until around 500ms after stimulus onset. The combination of an early peak and an 561 

enduring significance suggests that this ‘movement’ factor is primarily capturing some higher-order cognitive 562 

influences in the later period while participants are making their decision. 563 

To ensure these time-based assumptions about hierarchical processing were correct, that later periods 564 

of significance do indeed represent processing in brain areas associated with higher-order abstract object 565 

perception (Carlson et al., 2013), we compared the brain data to a neural network. The correlations between 566 

brain activity and CORnet (Kubilius et al., 2018, 2019), a neural network designed to model the visual system, 567 

revealed that early neural activity correlated well with all layers (V1, V2, V4 and IT) with a peak at 568 

approximately 120 - 130ms (Figure 6). The earlier layers remain significant for a short period of time, and in 569 

both experiments from approximately 300ms onwards, while participants were classifying the stimuli, patterns 570 

of brain activity were most similar to the IT layer, indicating that neural representations in this time period 571 

were likely to be more abstract, higher-order classifications (Carlson et al., 2013). In particular, the movement 572 

task of Experiment 2 may engage more higher-order processing than the aliveness task in Experiment 1. The 573 

correlation between the IT layer of CORnet and neural activity appears to be sustained longer in the 574 

movement task (Figure 6B) compared to the aliveness task (Figure 6A), and it seems that movement may 575 

explain more variance in neural activity in Experiment 2 compared to Experiment 1 (Figure 5B).  Similarly, 576 

object category (e.g., animal, plant) was more separable in the neural responses during the movement task 577 

than the aliveness task (Figure 4D), further suggesting that judgements about movement might inherently 578 

involve higher-level category responses. The combination of these analyses suggests that the ‘movement’ 579 
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factor in the current experiment represents a more abstract concept, as opposed to a visual similarity between 580 

all things that move, such as blurred edges.  581 

It is notable that even when participants were classifying the images by aliveness, movement still 582 

explained variance in neural activity (blue lines in Figure 5B). This suggests that when judging if something is 583 

alive, we may be using the quality and type of the movement to provide clues about aliveness. This would fit 584 

with an evolutionary explanation of the current effects; threats to our ancestors were primarily moving 585 

animate things, and thus detection and distinction of animals rapidly in the environment may have been 586 

advantageous for survival (New et al., 2007). As noted above, it is also the case that the quality and type of 587 

movement associated with animates differs from movement in the natural environment. It is possible that 588 

these differences in movement contribute to the decision-making about whether something is alive or not. 589 

This higher-order processing would fit with the hierarchy proposed in some behavioural and philosophical 590 

models of aliveness, which claim that we understand whether something is living based on similarity to a 591 

human prototype, from humans, to moving things and plants, and to non-living things (Yorek & Narli, 2009).  592 

A particularly interesting finding was that aliveness only explained patterns of brain activity in a very 593 

brief period shortly after stimulus onset. Attention to particular features of a stimulus based on the task can 594 

affect neural representations (Harel et al., 2014), and thus we were surprised that aliveness did not account for 595 

more variance in brain activity in Experiment 1 when it was the focus of the task. There is little consensus 596 

about the degree to which aliveness explains patterns of brain activity in object representations, with some 597 

work showing that aliveness is a better correlate of brain activity than animacy (Contini et al., 2020), and 598 

others showing that it is important for behaviour but does not explain variance in brain representations 599 

(Jozwik et al., 2021). The fit of aliveness models may depend on the choice of stimuli; in Contini and 600 

colleagues’ (2020) study, robots and toys appeared more animate than inanimate, reducing the fit of the 601 

animacy model compared to the aliveness model. In the current study, aliveness may have poor explanatory 602 

power in our linear models because the differences between living and non-living stimuli are captured by 603 

other variables in the linear models, particularly naturalness which is not evenly distributed across alive and 604 

non-alive stimuli, and the low-level visual correlates of aliveness such as rectilinearity (Nasr et al., 2014). It is 605 

also possible that because the classification decision occurred at different points in each trial, the temporal 606 

variation in the decision-making reduced the signal-to-noise ratio and made decoding more difficult. 607 
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Converging evidence from neuroscience and behaviour has shown that animacy and aliveness are best 608 

described as represented on a continuum according to capacity for goal-directed movement (Connolly et al., 609 

2012; Contini et al., 2020; Sha et al., 2014; Thorat et al., 2019; Yorek et al., 2009). In the current study, we 610 

show that capacity for movement is an important dimension in human visual object perception, not only for 611 

animate movement, but also for movement in the natural world. Our results support previous work showing 612 

that animacy processing in the brain is closely related to the capacity for self-initiated movement and extend 613 

this to show that natural movement may be a part of this spectrum.  Overall, our results show that capacity for 614 

movement is an important dimension in the representation of visual objects in humans. 615 

 616 
 617 
 618 
 619 
 620 
 621 
 622 
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