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How do Users Experience Traceability of AI Systems? Examining Subjective
Information Processing Awareness in Automated Insulin Delivery (AID) Systems

TIM SCHRILLS, Universität zu Lübeck, Germany

THOMAS FRANKE, Universität zu Lübeck, Germany

When interacting with artificial intelligence (AI) in the medical domain, users frequently face automated information processing,

which can remain opaque to them. For example, users with diabetes may interact daily with automated insulin delivery (AID). However,

effective AID therapy requires traceability of automated decisions for diverse users. Grounded in research on human-automation

interaction, we study Subjective Information Processing Awareness (SIPA) as key construct to research users’ experience of explainable

AI. The objective of the present research was to examine how users experience differing levels of traceability of an AI algorithm.

We developed a basic AID simulation to create realistic scenarios for an experiment with N = 80, where we examined the effect of

three levels of information disclosure on SIPA and performance. Attributes serving as basis for insulin needs calculation were shown

to users, who predicted the AID system’s calculation after over 60 observations. Results showed a difference in SIPA after repeated

observations, associated with a general decline of SIPA ratings over time. Supporting scale validity, SIPA was strongly correlated with

trust and satisfaction with explanations. The present research indicates that the effect of different levels of information disclosure may

need several repetitions before it manifests. Additionally, high levels of information disclosure may lead to a miscalibration between

SIPA and performance in predicting the system’s results. The results indicate that for a responsible design of XAI, system designers

could utilize prediction tasks in order to calibrate experienced traceability.

CCS Concepts: • Human-centered computing → Empirical studies in HCI; User studies.
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1 INTRODUCTION

The availability of intelligent technology for type 1 diabetes mellitus (DMT1) therapy [33] increases, reflecting the

general development of personalized medicine based on artificial intelligence (AI). In DMT1, self-adapting learning

algorithms are used for personalized calculation of insulin needs, e.g., at different times of the day, at different stages of

the female period, or depending on physical activity. The goal of these systems, also known as automated insulin delivery

(AID) systems, is to improve therapy while reducing the workload for people with DMT1. The incidence of DMT1

has increased in recent years and was 15 per 100,000 cases in 2020 [82]. In order to improve therapy conditions and

effectiveness, AID systems can provide fully or partially automated diabetes therapy, for example, through integrating

advanced wearable glucose sensors and intelligent insulin pumps [115]. All in all, the core of AID technology is the
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automated processing of information, especially to regulate current blood glucose levels in relation to therapy goals

while dealing with high temporal dynamics, latency and complexity of human physiology.

First empirical studies suggest that people with DMT1 can benefit significantly from AID systems [3, 18, 63]. Both

long-term metrics (e.g., the "time in range" (TIR) referring to desired glucose level) and the frequency of acute life-critical

blood glucose levels can be reduced [6]. However, the positive effect of AID systems seems to depend on, for example,

the previous quality of therapy [15, 79]. That is, individuals who had problematic long-term metrics before starting AID

therapy are more likely to discontinue AID based therapy. Paradoxically, they would profit the most from AID systems.

Thus, more inclusive methods that enable a wide diversity of users to continue AID therapy are needed. Parallel to

findings on the beneficial therapuetic effects of AID therapy, several recent studies [4, 40, 79] explicate the need for

human-centered development of AID systems, referring to problems well known in human-automation interaction:

positive effects of AID can, e.g., be hindered by a high number of alarms [14] and the associated alarm fatigue [105].

While reducing the burden of treatment [112] is one of the main goals of AID systems, the continuous efforts while

using AID systems as well as initial familiarization with this form of therapy are considered important discontinuation

criteria for therapies with AID systems [79]. Human-centered improvement of the interaction between intelligent,

highly adaptive AID systems and people with DMT1 is therefore a key scientific challenge to improve treatment options

for individuals with different levels of experience and competence in using technology. At the same time AID systems

also provide an excellent context to examine the dynamics of human-XAI interaction in a situation where high risks

and high benefits for users are juxtaposed.

Problematic expectations and experiences with AID systems play a decisive role in the current acceptance of these

systems [71]. For instance, if users have an incorrect understanding (e.g., in the sense of an inaccurate mental model, c.f.

[58]), this can lead to incorrect predictions of the results and capability of the system [9]. Such false mental models

could result from people being uncertain how system adaptability affects information processing in AID systems,

e.g., whether they are able to change therapy goals or not [66]. In addition, AID systems often work differently than

users did when they manually regulated their glucose levels: for example, information is processed by AID systems

every 5 minutes [12], while in other forms of therapy (e.g., before using an AID system) the blood glucose level is

sometimes only checked e.g four times a day with fingerstick glucose measurements [119]. Therefore, AID systems as a

case for examining the real-time cooperation of humans with intelligent algorithms potentially lead to an advanced

understanding of cooperative disease management between humans and AI. The performance of many AID systems

regularly relies on information from the user [20, 115], so correct communication between both partners may lead to

increased performance. On the other side, an incorrect understanding of the AID system could also have a critical impact

on the success of the therapy [21]. While regulatory technical briefing is mandatory, the extent to which the functions

and capabilities of such a system are understood is not tested prior to its use. If users have an incorrect mental model,

the ability to correctly predict the information processing of the system may decrease. However, the self-assessment of

how well one understands the information processing of a system may differ from the actual correctness. Explanations

could help individuals to recognize errors in their mental model, leading to a better fit between experienced traceability

and performance. However, they could also erroneously increase the confidence in an incorrect mental model and thus

worsen the calibration [34], which results in wrong expectations about system behavior and potentially confuses users,

ultimately leading to a reduction of trust [109]. Explanations can have an ambiguous effect on the calibration between

experienced traceability of a system and the user’s ability to correctly predict information processing. To address

inaccurate calibration, metrics for both experience and performance need to be measured at the same time. All in all,

AID systems represent a prototypical example of interactive systems where human-machine cooperation is centrally
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influenced by user experience and where incorrect mental models or disparity between experienced traceability and

performance may lead to unexpected issues in therapy quality.

The goal-oriented communication of information, as well as the correct predictability of, e.g., an insulin calculation are

two central characteristics of human-machine-cooperation [61]. In the field of explainable AI (XAI), various approaches

exist that are intended to help users cooperate with AI systems by addressing the challenge of opacity (such as [25, 83, 95].

As demonstrated in examples outside of AID therapy the calculation of results can be presented transparently by

revealing weights of relevant factors [99]. Furthermore, the elements that particularly favored certain results can be

highlighted [69], or alternatives close to the given result can be presented [23]. In addition to improving predictability,

explanations in AID systems could also help improve users’ opportunities to exert directability (see [57] and [28]) . In

DMT1, a loss of ’sense of control’ is a typical problem users experience [104]. Thus, when using intelligent AID systems,

increasing directability could play an important role and influence acceptance. Ultimately, "common ground" is an

important prerequisite for cooperation [61]. In the case of AID systems, a common ground could consist of 1) current

information on blood glucose levels, physical activity or food intake, 2) reference values for therapy, i.e., goals, or 3)

personalized parameters like insulin sensitivity. Therefore, it is important to disclose relevant elements or information

that users can process themselves and use to manually adjust the therapy [94], see also [110]. However, in order to

reduce the workload, many AID systems process information automatically and do not actively share it with the users.

This barriers have already led to user-initiated projects enabling access to their data (cf. [96]). Yet, in relation to the

clinical relevance and the opportunities for human factors research, empirical studies on how and when to present

detailed information on the AID’s information processing is still in a early stage of development. Comprehensive and

empirical work with a high ecological validity to derive guidelines on how AID systems can be improved to enable

cooperation is needed and constitutes an important next step in human-centered diabetes technology.

The objective of the present research was to examine the effects of explanations that vary in the amount of disclosed

information as well as repeated interaction on users’ subjective perception of trust and traceability in AID systems.

To this end, we trained a basic, yet prototypical AID algorithm based on artificial yet plausible data and designed a

minimalistic AID simulation to create stimuli for an online experiment, where people with DMT1 repeatedly interacted

with AID calculations and also predicted AID results. The information available to the algorithm was disclosed to

participants to a different extent, in order to create three different experimental conditions. It was investigated whether

a greater amount of information leads to higher experienced traceability and trust, while task completion time and

perceived workload increase. Furthermore, it was analyzed to what extent repeated viewing of explanatory information

can lead to an increase in experienced traceability. Similarly, the relationship between experienced traceability and the

ability to make correct productions was assessed to allow evaluation of the calibration of the mental model with the

system’s information processing.

2 RELATEDWORK

2.1 Automation in Diabetes Mellitus Typ 1

The continuous therapy of DMT1 sometimes can represent a great burden in everyday life for those affected [111].

Many therefore expect the digitalization of diabetes therapy to improve the quality of treatment while at the same time

reducing the burden of treatment for patients [67]. This goal is also being pursued by the development of an "artificial

pancreas", which allows complete automation of diabetes management [115]. For now, full automation is only possible

to a limited extent due to various factors or may be associated with reduced precision of the therapy (c.f. [20]).

3
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AID systems in the form of so-called hybrid closed-loop systems acknowledge those limits, while still offering relief

for patients. These systems are not fully automated, since a system-dependent level of information or decisions by

the user is required. [88] provide a suitable framework that distinguishes four stages of information processing (1.

information acquisition, 2. information analysis, 3. decision making & 4. action implementation) and therefore allows

a characterization of AID systems’ level of automation. For example, there are already differences between existing

systems in information acquisition (1): the system described by [12] only requires information on physical activity

and food intake, while [45] already no longer requires information on physical activity. In information analysis
(2), AID systems show a high degree of automation, as this is supposed to be a crucial element of relief for the users.

Here, learning systems such as [12] can be distinguished from static systems such as [19]; the latter requires users to

manually adjust parameters and thereby increase the quality of information analysis, whereas this is not necessary

for self-learning systems. Thus, self-learning AID systems promise continuous improvement in therapy with greater

automation, yet may be more complex to understand and to predict for users. The (3) decision making of, e.g.,

administration of insulin can be illustrated very well by the levels of automation presented by [88] and at the same time

represents an important feature for interaction design in AID systems. For example, after input, a single suggestion for

the administration of insulin can be made (level 4 cf. [91]) or an automatic administration of insulin occurs where the

user can intervene but is not informed in any case (level 8). Action Implementation (4) is performed automatically by

many systems in the event of identified insulin needs. However, systems currently available do not offer the injection

of, e.g., glucose in case of hypoglycemia, so action implementation for low glucose level is not automated. All in all,

AID systems in their various forms represent not only a broad field of automation in medical systems, but also systems

that are highly dependent on cooperation between humans and technology.

However, various studies also show the challenges of automation: for example, people fear an error-proneness

of digital systems in the field of DMT1 with simultaneous fears to be faced with high complexity [79]. But also, for

example, too high expectations of performance or degree of system autonomy, especially of AID systems without a

high degree of automation, pose substantial challenges [60, 92]. Furthermore, it remains to be seen to what extent a

more technologized therapy could further exacerbate the already existing inequality between individuals from different

socioeconomic strata or educational levels. In addition to accessibility (c.f. [68]), the design of systems may also improve

unequal opportunities for empowered and autonomous diabetes therapy [73, 86]. These challenges can be addressed

with the human-centered development of interactive and cooperative yet traceable AID systems, which could make a

decisive contribution to the empowerment of people with DMT1, regardless of their diverse backgrounds, e.g., in terms

of affinity to technological interaction or educational level.

2.2 Explanation and Cooperation in AID systems

Explanations and higher levels of transparency may improve cooperation between humans and intelligent systems

[117]. They may support the temporally adequate exchange of information between humans and the system, which

is of central importance for both partners to fulfill their respective functions [47]. In AID systems, for example, the

human must signal the intake of carbohydrates timely, while the system must communicate a deviation in blood glucose

levels to the user, for example, so that the human can take action. Mutual anticipation of information demands can be

a central criterion of cooperation in the sense of collegiality (cf. [28]). Especially with higher degrees of automation,

the human’s task can also be to monitor or check results. For this task, the information used by the machine can be

a central function for cooperation, as this allows the inputs for the machine calculation to be traced. The extent to

which the information processing of a system is accessible for the users and thus also provides the basis for cooperative
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actions can be described as traceability (unlike the definition of [65], where traceability refers to the creation process

of the system and not of an individual calculation). An empirical investigation of the disclosure of information in the

context of a decision-making process can therefore make an important contribution to the design of human-centered

AID systems. To the best of our knowledge, no results on how different quantities of information contributed to the

calculation of insulin needs affect user experience have been published.

However, communication - if it does not take place at the right time - can have negative effects on cooperation or

the performance of other functions by a partner [32]. Accordingly, previous research does not show a clear impact of

explanations on perceived workload [2]. In the case of AID systems, the existing workload, contrary to their initial

purpose, is partly a major problem that could motivate dropouts. In addition, unreliable integration of sensor technology

still contributes to the frequent negative perceived interaction with the system based on alarms [79]. Therefore, when

developing explanations or other approaches to increase the traceability of results of intelligent systems, the objective

and subjective workload should be controlled.

Additionally, information or explanations can influence trust in intelligent systems [9, 106, 124]. In order for trust to

be relevant, risk needs to be present [55]. The incorrect dosing of insulin by an AID system can result in significant

health consequences, which is why trust can not only be investigated in the present use case but is also addressed as a

prerequisite and challenge for AID use [64]. In this context, clinical reviews, as required from professionals in studies

regarding medical AI systems [48], are one way to provide evidence of trustworthiness and thus increase "extrinsic

trust" [55]. However, clinical evidence does not affect the traceability of systems. Experienced traceability allows for

"intrinsic trust" and, as discussed, the possibility of cooperation. Therefore, human factors research calls for studies on

trust in AID systems in dependence of explanations as a suitable means to support intrinsic trust.

Findings in literature on the beneficial effects of explanations are still inconclusive, i.e., different studies observe

that the use of explanations did not lead to an objective change in observed behavior. For example, [7] could not

find better predictions of AI outcomes even though additional explanations were offered. Similarly, [10] showed that

explanations did not significantly increase the joint performance of AI and humans in judging texts. Aggravation of

this problem is shown by [29] and [36], where explanations are positioned as "placebic explanations" or even as "dark

pattern explanations": these explanations do not contain any information to increase transparency, but induce a better

experience of the interaction, e.g., in terms of perceived trustworthiness, adversely leading to "unwarranted trust".

This could result in overconfidence and thus an unjustifiably high reliance on, e.g., the AID system. Thus, rather than

empowering users, explanations could give them a false sense of security. Especially in the automated delivery of drugs

such as insulin, interactions must be designed to prevent the development of overconfidence. Accordingly, the study

of objective and subjective measures together in experiments is crucial in the human-centered development of AID

systems.

2.3 From Situation Awareness to Subjective Information Processing Awareness

To adequately address human-centered research questions in AID systems, instruments to assess traceability-related

facets of user experiences of a system’s results are necessary. In recent years, different scales to evaluate XAI have

been proposed. [51] gave an overview of user experience metrics for XAI, introducing the Explanation Satisfaction

Scale (ESS). The ESS was developed to measure the subjective quality of explanations provided by an intelligent system.

Being based on multiple existing methods from the field of trust in automation (such as [56]), it incorporates both

affective as well as cognitive implications of explanations (see [75]). The ESS is meant for experts constructing and

developing AI systems or experienced users, as they need to rate e.g. the usefulness of results. In iterative development,
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also a quick interaction with systems needs to provide sufficient data to guide further development. An additional

scale allowing inexperienced users, e.g., first time customers and end-users, to participate is crucial for XAI research

because usage of AI-based systems is not limited to experts. Another scale addressing system traceability specifically

designed for the medical domain is the System Causability Scale (SCS) from [54]. The SCS focuses on a quick overview

of the impact of explanations and thus also captures different dimensions, e.g., to what extent users see explanations

as transferable to others or whether the explanations fit their own knowledge base. While this allows for a quick

general assessment, it is not yet clear to what extent the SCS can also be used for specific, theory-driven questions, e.g.,

about the traceability of certain decisions. As [125] elaborate in their review, the usability of measurement methods

for evaluating explanations depends on the user group, the experimental design, and also the specific properties of

the explanation. All in all, existing instruments of XAI research for surveying the subjective effects of XAI often refer

directly to the added interaction elements, i.e., explanations given by the system [51, 54].

While these instruments could be used in the selection of appropriate explanations, especially at the beginning of the

design process or in formative evaluations, a direct comparison, e.g., to a baseline without explanations may be difficult.

To address experimental designs with, e.g., a control group, an instrument that aims to measure the subjective effects of

explanations and relates to experienced traceability of automated systems rather than directly evaluate explanations

themselves would be advantageous. For this purpose we derive Subjective Information Processing Awareness (SIPA)

[101] from Situation Awareness Theory. SIPA describes "the experience of being enabled by a system to perceive,

understand and predict its information processing" [101]. When users act within a dynamic system, they make situation

assessments [38], which result in a user state that has been established as SA. SA Theory postulates three levels within

this assessment: 1) perception, where the state of environmental information in the current situation is perceived, 2)

understanding, where comprehension of the current situation is formed and 3) projection, where future states of the

situation are predicted. Previous work on automation demonstrates how SAmay play an important role for XAI research:

For example, low SA could be the reason for missing anticipation when information needs to be communicated in order

to ensure cooperation [108]. SA loss is a known problem in existing research in human-automation interaction [88].

Hence, understanding the effects of automation on SA is important and applicable to XAI. However, current methods

to survey SA have often focused on the interaction’s context. On the other hand, SIPA focuses on the transparency

of relevant elements, understandability, and predictability of information processing as it is relevant for trust and

traceability of AID systems.

While Situation Awareness focuses on processes within the person, the goal of the SIPA scale is to describe the

experience of system properties that lead to SIPA. These can be built up analogously to Situation Awareness. Instead

of Perception, the first facet of the SIPA scale is experienced transparency, which describes the extent to which the

system interaction allows the user to perceive all relevant elements for information processing. Hence, "Understanding"

and "Prediction" can analogously be positioned as "experienced understandability" and "experienced predictability".

The facets adopted in the SIPA scale are thus grounded in the levels described in SA theory and can be clearly placed

within the broad discussion of the definition of, e.g., transparency [26]. Thus, transparency, as defined in the SIPA scale,

does not refer to, e.g., goals of the developer or global information on, e.g., training of the model, but to the person’s

experienced accessibility to information to which the system has access.

To ground the specific items of the SIPA scale in SA theory, we examined different SA scales assessing subjective (c.f.

[114]) as well as objective SA (cf. [37]). The items of the scale were developed on the basis of these questionnaires as

well as theoretical explanations of situation awareness (as e.g., [39, 123]) and discussed by various experts from the field

of engineering psychology. The scale, initially developed with 12 items [101], was shortened by multiple, empirically
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supported iterations to 6 items. Two of the items are assigned to each of the facets of SIPA. While reverse-coded items

were sparingly integrated with the original generation of items, these showed the negative effects discussed in [120].

After weighing the comprehensibility of the scale against the potential negative effects of uniformly one-sided items,

no reverse-coded item was included in the 6-item scale - also on the basis of qualitative comments from users.

3 PRESENT RESEARCH

Based on the research issues presented above, hypotheses were derived for the present study. For the hypotheses H1

- H3 the level of information disclosure is the independent variable, while SIPA, the time-on-task and the subjective

workload are the dependent variables.

H1: SIPA increases when there is an increase in relevant explaining information disclosed by an intelligent

system

H2: Time-on-task increases when there is an increase in relevant explaining information provided by an

intelligent System

H3: Subjective workload increases when there is an increase in relevant explaining information provided by an

intelligent system

Further, we assume that the dependent variable SIPA increases over time, regardless of the condition, as individuals

are given repeated opportunities to make assumptions about the system and correct their mental model.

H4: SIPA increases with increasing observations

As mentioned above, we expect a close relationship between SIPA and trust, since, for example, the experienced

predictability of a system as depicted via SIPA is a crucial influencing variable for trust. Furthermore, we expect a

strong correlation with ESS due to the similarity of the underlying constructs.

H5a: SIPA and trust correlate moderately to strongly

H5b: SIPA and explanation satisfaction correlate moderately to strongly

Hypotheses H6 - H10 relate to participants’ performance on the prediction task or the effects of the prediction

task. Here, the prediction of insulin needs calculated by the AID system represents a measurement dependent on the

correctness of the participant’s mental model. Based on previously discussed theories in the area of cooperation, we

hypothesize in H6 - H9 that higher availability of information leads to better SIPA and to better prediction. Additionally,

we expected the SIPA value to rise in the performance block.

H6: Higher SIPA ratings before the performance block correlate with better performance in the prediction task

H7: Higher levels of information disclosure lead to better performance in the prediction task

H8: SIPA increases over the course of the performance block

The influence of intra-individual differences (such as attitude towards AI or duration of diabetes) could affect the

user experience of an AID system. To assess the inclusiveness of explanations, we formulate the following research

question for exploratory analysis:

EQ: How are intra-individual differences related to SIPA ratings and performance in the prediction task?

4 METHOD

We conducted an AID simulation experiment among people living with DMT1. Specifically, we examined how different

levels of information disclosure affected the participants’ experience of an algorithm calculating insulin needs after

7
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repeated interaction with varying levels of information disclosure of the system. The study was pre-registered under

https://doi.org/10.17605/OSF.IO/NUJTE at OSF [42]. Changes in the planned and performed analyses are described

under Results.

4.1 Participants

80 participants with DMT1 completed the experiment. Ethics approval for this study was granted by the Ethics

Committee of the University of Lübeck before the start of the experiment (Tracking number: 21-438). Participants

volunteered to participate in the study, and informed consent was required. The experiment was implemented using the

Labvanced online experiment platform [41]. Participants were instructed to conduct the study only with appropriate

screen size, i.e., at desktop computers, laptops or tablets. We recruited DMT1 patients via mailing lists and social

media channels (Twitter, Facebook, Instagram) applying convenience-sampling. Participants were compensated €10

for their time in the study due to the approximated duration of 60 minutes. In addition, the three best performing

participants could win €80 each. This additional price was applied in order to put an additional incentive for motivation

into performance tasks on top of the general compensation.

To safeguard data quality, we defined two exclusion criteria before the experiment and applied these after study

completion: (1) Participants with over-long completion times (>2 SD, N = 2 with 412 and 319 minutes in comparison

to M = 63 of final sample) were excluded because participants were instructed to complete the experiment in one

single continuous session. (2) Participants with very low knowledge of DMT1 management were excluded because

the experiment required the most correct understanding of the relationships between the factors influencing blood

glucose. To screen for diabetes knowledge, we developed ten items (see Appendix C). To be able to assume sufficient

uniform knowledge of diabetes management we defined six correct responses (60% to reach a reliable differentiation

from chance) as a cutoff criterion for exclusion prior to the experiment (n = 1 excluded with knowledge score = 4, final

sample with M = 7.89 and SD = 0.78 ). In addition to these pre-defined criteria, we observed in the first data inspection

that some users reported the same rating for all items in the observation blocks and excluded them to avoid invalid data

being part of the analysis. Furthermore, in the prediction task, we observed users to only respond with "0" or positive

values in the prediction class, which caused biased results for the prediction. Overall 7 participants were removed based

on those additional criteria.

The final sample consisted of 70 participants ranging from 18 to 61 years (M = 28.9, SD = 10.5). 49 participants

identified themselves as female (70.0% of the sample), 20 as male (28.6% of the sample) and one person as neither.

To better classify the sample in relation to the general population with regard to at least one fundamental facet of

user diversity (i.e., diversity in human-technology interaction), the Affinity for Technology Interaction scale [43] was

assessed. Our sample had a wide range (from 1.22 to 5.67) with an average value of 4.11 being well in the medium range

(possible ATI score range = 1-6) yet somewhat higher than reported for the general population (3.5 as described in [43]).

Yet, it has to be noted that the average ATI score in the population of AID users is not known (e.g., there is a chance

that low-ATI patients are more reluctant to adopting an AID therapy or treatment). The average duration of diabetes

was 14 years (SD = 10.1, Range = 1 - 44) which is similar to distributions of recent clinical studies for AID systems, as

for example [12]. Only n = 9 participants stated to have previous knowledge with AID systems. These were evenly

distributed across the groups and showed no correlation with performance in the prediction task (all p > .050).
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4.2 Experimental Environment

To create an experimental environment we developed an AID simulation system that was designed to meet three

criteria: (1) high ecological validity for a good transferability of the results to the practical application of systems,

(2) information, that structurally resembles real dynamics in DMT1 treatment with AID systems as well as (3) high

experimental control, which allows the systematic manipulation of independent variables and thus enables the research

questions to be addressed. Further, the application had to be sufficiently distinct from existing systems, which could

otherwise have led to potential confounding based on existing experience and prior knowledge. The AID simulation

was created in three steps described in the following sub-sections: 1) the manual creation of valid training data 2) the

training of a basic machine learning model for use in the context of a run-time capable AID simulation, and 3) the

generation of static scenarios for a controlled experiment.

4.2.1 Development of Artificial Training Data for AID simulation. An artificial data set of information relevant for AID

systems was developed to be independent of individual medical data and the complications that come with it in terms of

using personal health data. Each instance consisted of 12 different attributes and the insulin requirement. The individual

data sets represent different individuals and therefore contain individualized factors as attributes, such as the amount

of correction for excessive glucose levels. All attributes and their meaning are found in Appendix A. Negative insulin

needs refer to the need to take in carbohydrates when, e.g., too much insulin is in the body. The different attributes

are based on data that is already used in various clinically tested AID systems [12, 80]. After creation, the data set

was reviewed by two independent diabetologists. Both independently rated the data set as plausible. In total, over 480

instances were created, with 400 to train and test a model.

The attributes have been divided into three different groups, following the approach discussed in Related Work:

(1) information provided to the system by the user depending on the situation or automatically determined by the

system and representing physiological variables influencing the amount of insulin, (2) information representing

general or dynamic therapy goals or preferences of the user, and (3) information learned by the algorithm,
which provides information about the calculated insulin sensitivity and thus factors influencing the outcome of

the AID system. The information of the first group is oriented to give one (1) common ground about information that

both human and machine absolutely need for cooperative action. The information of the second group shows which

possibilities the system has for (2) implementing user preferences and can thus give users information about the extent

of directability. While all information increases the predictability of the system, the information from the third group

represents influencing factors for the concrete (3) computation of the system.

4.2.2 Training of random forest model for AID simulation. Subsequently, a model was trained based on the data. To

predict insulin needs based on the dedicated attributes as input parameters, a random forest regressor was implemented

[103], see also [84]. A train-test-split where 25% or the data was reserved for testing was used, resulting in 4 datasets:

X_train, X_test, y_train, y_test. The X datasets include the input parameters for the regressor, while the y datasets only

contain the corresponding target values (results).

Through a grid-search cross validation algorithm, a (on average) best set of hyperparameters for the random forest

were found to be: 80 estimators and 10 max depth. These parameters are used for the construction of the random forest

and control the number of trees in the forest and the max depth of those trees. A lower number of trees would have

resulted in an underfitted model, while a higher number of trees (> 100) would not have increased performance further.
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Table 1. Overview of attributes used in the simulation

Attributes

Low Information Disclosure (LowID)

Current Tissue Glucose

Current Insulin in Body

Current Carbohydrates in Body

Current Activity

Medium Information Disclosure (MedID)

Tissue Glucose Target

Avoid Hypoglycemia

Duration of Insulin Effect

Correction Intensity

High Information Disclosure (HighID)

Risk of Hypoglycemia in next hour

Blood Glucose lowering per 1 Unit Insulin

Insulin Units per 10 grams Carbohydrates

Predicted Exercise

Table 2. Hyperparameters of applied random forest model

Mean Absolute Error (MAE) 3.0250

Mean Squared Error (MSE) 13.6905

Root Mean Squared Error (RMSE) 3.7001

Mean Absolute Percentage Error (MAPE) 1.5254

Explained Variance Score 0.3922

Max Error 7.9771

Median Absolute Error 2.2023

R
2

0.3887

The maximal tree depth of 10 shows a good performance for the dataset at hand, while deeper trees are more prone to

noise in the data.

The random forest was then fitted to the training data sets (X,y) with the hyperparameters. The regression model

exhibits metrics when comparing predicted values with real result values (y_pred, y_test) as shown in 2.

4.2.3 Generation of scenarios for a simulation-based experiment. The AID simulation was used to generate scenarios

for an experiment. The interactive input of individual data was excluded for this experiment in order to 1) have

uniform scenarios for each participant and thus avoid biases due to different inputs 2) to focus on scenarios close to the

application and 3) to reduce the risk of technical problems in the ongoing experiment in the context of the experiment

conducted online.

To create scenarios, calculated insulin needs were removed from the 80 remaining instances of the previously

described data set and used as inputs for the AID simulation. The outputs were saved as screenshots, with all 80

scenarios saved in three different formats and used in the experiment as conditions: (1) low information disclosure

(LowID), (2) medium information disclosure (MedID), or (3) high information disclosure (HighID). The allocation of

information is based on the groups described above and is presented in 1.

The resulting interfaces can be seen in Figure 1. Participants consistently saw only one of these conditions throughout

the experiment, in both the observation and performance blocks. Because of feedback in pre-tests, the concept of

correction strength was explained to all participants from MedID and HighID before each block of stimuli.

10



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

How do Users Experience Traceability of AI Systems? ACM Transactions on Interactive Intelligent Systems, 2022, xxx

LowID MedID

HighID

Fig. 1. Stimuli from the study as they were shown to participants for the three conditions: LowID, MedID and HighID.

4.3 Measures

4.3.1 SIPA Scale. The SIPA scale as a measure to assess users’ experience while interacting with intelligent systems

was used to examine effects of different levels of information disclosure. The goal for the development of the SIPA scale

was to construct a highly economical scale closely linked to SA but focused on an application in intelligent automation,

respectively XAI. Additionally, the scale is specifically designed to assess the 3 facets of SIPA as described above (see

Related Work) with two items for each facet (1 and 2 for transparency, 3 and 4 for understandably and 5 and 6 for

predictability). All items are shown in Table 3.

The 6-item SIPA scale uses a 6-point Likert response scale from completely disagree = 1, largely disagree = 2, slightly

disagree = 3, slightly agree = 4, largely agree = 5, to completely agree = 6. The SIPA scale introduced in the present

paper was additionally tested over all points of measurement of SIPA for three-factor structure to examine if separate

evaluation of the 3 individual facets of SIPA was supported. Here, the approach to analyze 3 facets received support

based on a confirmatory factor analysis demonstrating a good fit with χ
2
(6) = 7.49, p = .278, CFI = .997, TLI = .992,
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Table 3. All Items of the Subjective Information processing (SIPA) Scale and the corresponding instruction

The following questionnaire deals with your experience in the interaction with the system.
Information refers to all data that the system can work with. Result refers to the output of the

system, which is presented at the end of the system’s information processing

Please indicate the degree to which you agree/disagree

with the following statements

c
o
m
p
le
te
ly

d
is
a
g
r
e
e

la
r
g
e
ly

d
is
a
g
r
e
e

s
li
g
h
tl
y

d
is
a
g
r
e
e

s
li
g
h
tl
y

a
g
r
e
e

la
r
g
e
ly

a
g
r
e
e

c
o
m
p
le
te
ly

a
g
r
e
e

01 It was transparent to me which information was col-

lected by the system.

02 The information that the system could acquire was ob-

servable for me.

03 It was understandable to me how the collected informa-

tion led to the result.

04 The system’s information processing was comprehensi-

ble to me.

05 With the information accessible for me, the results was

foreseeable for me.

06 The system’s information processing was predictable

for me.

RMSE = .06 (90% CI: .00, .17). The correlation between transparency and understandability was significant (rS = .64, p <

.001), which was also true for the correlation between transparency and predictability (rS = .53, p < .001) as well as for

the correlation between understandability and predictability (rS = .79, p < .001).

4.3.2 User diversity variables. User diversity can have a significant impact on the individual user experience and, for

example, influence initial trust in a system [8]. To examine the role of user diversity on the experience of interaction

with an AID system, two additional variables were collected: 1) affinity for technology interaction (ATI) [43], which

is based on the personality trait need for cognition [24] and describes the individual tendency to actively engage in

intensive technology interaction. ATI was measured with a scale validated in various large samples [43], and the present

sample was assessed as rather affine to interact with technology (see section participants above). Furthermore, the

individual attitude towards artificial intelligence was surveyed. To this end, a brief definition of artificial intelligence

was first given (see Appendix). Based on this, six statements from the Internet Attitude Scale [59] were adapted, with

"Internet" as the subject being replaced by "Artificial Intelligence" in all used questions (see Table X). A mean value was

calculated to evaluate the Artificial Intelligence Attitude (AIA). In addition, questions on prior diabetes knowledge were

used (see Appendix). This included 10 different statements about the treatment of diabetes to ensure that the results of

the study were not affected by significant differences in prior knowledge about the treatment of diabetes. Everyday

examples of the treatment of type 1 diabetes or questions about how insulin works were used. Finally, the duration of

diabetes in years was requested.

4.3.3 Subjective Measures for trust, satisfaction & workload. In addition to the SIPA scale, subjective variables were

collected with economical scales. The Facets of System Trustworthiness Scale (FOST) [116] was used to measure trust.

With 5 items, this can be used much more economically in a repeated-measures experiment compared to, for example,
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the more widely used scale of [56]. As for trust, the mean value of the FOST items was calculated for each point of

measurement.

The perceived workload was collected through the NASA Task-Load-Index (NASA-TLX) [49]. However, due to the

experimental conditions, not all dimensions of the NASA-TLX were used, but the question about perceived physical

workload was excluded. Furthermore, the results for effort, mental demand, and time demand were summed to a

mean value. Experienced frustration was evaluated independently of other values. The estimation of own performance

was only used as a confidence measure after the subjects themselves made a prediction of the algorithm’s results.

Additionally to SIPA and trust, the Explanation Satisfaction Scale (ESS) was measured to allow a comparison to

another scale examining the quality of explanations [51]. The ESS was developed to measure the subjective quality of

explanations provided by an intelligent system.

4.3.4 Objectives Measures for Performance & Time-On-Task. In the present experiment, time-on-task (TOT) and a

performance indicator were assessed as objective variables. For TOT, the time that the users spent in the different task

blocks was measured in seconds. For the analysis, the sum of the time in seconds was calculated. For the assessment

of the performance, 20 of the 80 stimuli created with the AID simulation environment were changed in such a way

that no prediction of the algorithm was displayed, but the different levels of information disclosure (depending on

the condition). Participants were prompted to estimate the output of the algorithm (this could be negative or positive

with one decimal place, or the "0"). The deviation of each estimate was determined per person and a mean value was

calculated, which was used as an indicator of performance.

4.4 Procedure

The study was conducted in German. In the beginning, the participants were instructed to watch a video where an

instructor to the study explained the purpose of the study as well as the tasks. The spoken text was displayed later

in written form and could be read again if needed. Afterwards informed consent was obtained from all participants.

The experiment was conducted in multiple segments as depicted in 2: first, demographic data was collected (1); then,

knowledge questions about diabetes were asked to minimize effects of divergent prior knowledge (2). Subsequently, all

participants were randomly assigned to one of three conditions - low, medium, or high level of information disclosure.

Depending on this, 15 stimuli were shown in random order in an (3) Observation Block, after which SIPA, FOST, and

the NASA-TLX were queried. Three additional observation blocks with other stimuli followed by SIPA, FOST, and

NASA-TLX followed (blocks 4-6). Subsequently, the ESS was surveyed (7). Finally, in a performance block (8), 20 stimuli

were presented in which participants had to estimate for themselves the insulin needs calculated by the algorithm. The

stimuli again differed in the level of information disclosure and were stimuli the participants did not see before. However,

the same instances were shown to all participants in a randomized order (i.e., each participant saw the same tasks, but

with different information being presented and in different sequence depending on the condition they were assigned

to). SIPA, FOST, and NASA-TLX were then collected again. Furthermore, the time for each observation block as well as

for the performance block was collected. Depending on the individual deviation from the correct calculated insulin

needs, a code was created and displayed to the participants in the last frame of the study. To ensure the anonymity of

all subjects the code only corresponded with the deviation and didn’t give any indication to personal information.
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Briefing

Debriefing

LowID / MedID / HighID Stimuli

Sequence Randomisation

Questionnaires

Video introduction

Observation block Observation block Observation block Observation block 

Performance block

AAII (ATI) + AI Attitude 

Diabetes knowledge
+ Demographics

SIPA + FOST + NASA-TLX SIPA + FOST + NASA-TLX SIPA + FOST + NASA-TLXSIPA + FOST + NASA-TLX

ESS + 
Supplementary questions

SIPA + FOST + NASA-TLX

Fig. 2. Overview of course of the experiment.

5 RESULTS

As a direct test of our hypotheses we applied contrast analysis, which allows for a more precise testing of hypotheses

[22, 122]. However, that approach was different to our pre-registration where we only planned to conduct a less precise

omnibus testing (i.e., ANOVAs), yet omnibus F-test are inefficient in order to extract the effects the present study aims

to examine. The core hypotheses H1 - H5 related to the development of user experience in repeated observations were

part of the pre-registration. Additional Hypotheses H6 - H10 relate to performance or self-assessment of performance

and were not pre-registered. One-tailed t-tests were conducted to assess the hypotheses. All p-values were corrected for

family-wise error [13] for each hypothesis and variable using the Bonferroni-Holm correction [53]. Despite random

assignment, not all groups are exactly equally distributed (n = 24 for LowID, n = 22 for MedID, and n = 24 for HighID).

Since multiple variables studied were not normally distributed (or no linearity could be assumed), Spearman’s Rho was

calculated for all correlations and interpreted accordingly depicted as rS. Effect sizes for r and rS were interpreted based

on [44, 97], effect sizes for d were analyzed according to [30] with respect to [44]. Cohen’s d was reported for contrast

analysis of dependent measures instead of Hedge’s g, because both are almost equal in sample sizes greater than 20 [62].

5.1 H1: SIPA increases when there is an increase in relevant explaining information disclosed by an
intelligent system

H1 was examined using multiple contrast analyses [22, 122], one for each SIPA facet (transparency, understandability,

and predictability) and for each point of measurement. The different amounts of information disclosed to each group
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and the corresponding relationship between attributes was used to determine the weights (i.e., lambda values). It is

assumed that each attribute (i.e., a total of LowID: 4, MedID: 8, or HighID: 12) can be related to each other attribute

seen in one condition. The number of relations between attributes is given by the binomial coefficient (i.e., number

of attributes over two). Thus, the number of relations between attributes is for LowID = 6, for MedID = 28, and for

HighID = 66. Following [22] to calculate the weights, the following lambda values for the contrast analysis were defined:

λLowID = -2.5, λMedID = -0.5, λHighID = 3. Table 4 shows the t-statistics, the corrected p-value as well as r(effect size). M

and SE are depicted in Figure 3. All descriptive data can be found in Appendix B. Results regarding the SIPA facet of

transparency supported H1 for observation blocks 3-4 and the performance block, while the first observation blocks

1-2 did not show significant effects supporting H1 (see Table 4). The other two SIPA facets understandability and

predictability showed weak effects in the expected direction which where all non-significant (except ratings for SIPA

understandability after Observation Block 1 and Observation Block 2, which were small but contrary to the hypothesis).

Hence, H1 was supported for experienced transparency after considerable experience of the system, yet not directly

after the first interaction and not for the more complex systems properties measured by SIPA (i.e., understandability

and predictability).

Table 4. H1: Contrast Analyses for each SIPA facet comparing ratings between conditions (LowID, MedID & HighID) for all blocks

SIPA transparency SIPA understandability SIPA predictability

t p r(effect size) t p r(effect size) t p r(effect size)
Observation Block 1 0.32 .375 .04 -1.03 .612 -.13 1.14 .258 .14

Observation Block 2 1.89 .063 .23 -0.39 .349 -.05 1.35 .363 .16

Observation Block 3 2.37 .031* .29 0.64 .786 .08 0.36 .360 .04

Observation Block 4 2.47 .032* .30 0.56 .578 .07 1.16 .375 .15

Performance Block 2.46 .040* .29 1.56 .309 .19 2.08 .104 .25

Note. df = 67 for all analyses. * p < .050, ** p < .010, *** p < .001

Fig. 3. H1 & H4: Ratings of the SIPA scale for all points of measurement. Bars depict M and SE for all SIPA facets at each time
measured. * indicate p < .050 for contrast analysis, as shown in Table 4.
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5.2 H2: Time-on-task increases when there is an increase in relevant explaining information provided by
an intelligent System

To test H2, multiple contrast analyses were used. The corresponding results can be found in Table 5. Contrary to the

hypothesis, there was no significant difference between the groups for all blocks, apart from one exception (performance

block). Interestingly, a medium effect aligned with the hypothesis was present in the performance block. Thus, the

performance block clearly stands out and supports the hypothesis, while the data of the observation blocks do not.

Table 5. H2: Contrast Analyses comparing time-on-task between conditions (LowID, MedID & HighID) for all blocks

Time on Task

t p r(effect size)
Observation Block 1 1.83 .107 .22

Observation Block 2 1.03 .153 .13

Observation Block 3 1.51 .136 .19

Observation Block 4 1.82 .146 .22

Performance Block 4.20 < .001*** .47

Note. * p <.050, ** p <.010, *** p<.001

5.3 H3: Subjective workload increases when there is an increase in relevant explaining information
provided by an intelligent system

To test H3, multiple contrast analyses were used. The corresponding results can be found in Table 6. Contrary to the

hypothesis, in all blocks workload ratings were not significantly higher in conditions with more information. Indeed,

negative signs in t-statistics at all points of measurement indicate, that the effect was actually in the other direction (i.e.,

more information disclosure decreases workload). In fact, an exploratory re-calculation of the contrast with inverted

weights (i.e., λLowID = 3, λMedID = -0.5, λHighID = -2.5.) of the effect would support an oppositely formulated hypothesis,

e.g., with p < .001 and r(effect size) = .36 for Observation block 1.

Table 6. H3: Contrast Analyses comparing subjective workload between conditions (LowID, MedID & HighID) for all blocks

NASA-TLX

t p r(effect size)
Observation Block 1 -0.92 .540 .03

Observation Block 2 -1.45 .304 .10

Observation Block 3 -0.69 .492 .04

Observation Block 4 -0.18 .429 .03

Performance Block -1.64 .264 .12

5.4 H4: SIPA increases with increasing observations

To test H4 multiple contrast analyses were conducted for each SIPA facet (transparency, understandability, and

predictability), but followed the contrast analysis for dependent measures [102]. The following weights were used for

each analysis: λObservation 1 = -1.5, λObservation 2 = -0.5, λObservation 3 = 0.5 and λObservation 4 = 1.5. Table 7 shows the

t-statistics, the corrected p-value as well as d. Counter to our hypotheses, SIPA ratings did not increase but decreased

and the actual effect of repeated observations was opposite to what we hypothesized. In fact, a follow-up calculation
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with inverted contrasts significantly supported he assumption of decreasing ratings for transparency with p = .44, while

p > .050 for understandability and predictability.

Table 7. H4: Contrast Analyses comparing repeated SIPA ratings for Observation Blocks 1 - 4

Contrast Analysis for Obs 1-4

t p d
SIPA transparency -1.73 .956 0.21

SIPA understandability -0.95 .827 0.12

SIPA predictability -0.40 .827 0.05

Note. * p <.050, ** p <.010, *** p<.001

5.5 H5a: SIPA and trust correlate moderately to strongly

To test H5a, the correlation between the FOST scale scores and each SIPA facet was calculated for each point of

measurement. The results are shown in Table 8. The range of effect sizes of the correlation across all facets is between rS
= .58 and rS = .85, which indicates a strong relationship. Overall, the hypothesis can therefore be supported by the data.

Table 8. H5a: Correlations between trust and SIPA facets for each point of measurement

SIPA

Transparency Understandability Predictability

rS p rS p rS p
Observation Block 1 .58 < .001*** .76 < .001*** .64 < .001***

Observation Block 2 .60 < .001*** .85 < .001*** .80 < .001***

Trust Observation Block 3 .64 < .001*** .84 < .001*** .82 < .001***

Observation Block 4 .65 < .001*** .84 < .001*** .79 < .001***

Performance Block .72 < .001*** .81 < .001*** .76 < .001***

Note. * p <.050, ** p <.010, *** p<.001

5.6 H5b: SIPA and explanation satisfaction correlate moderately to strongly

To test H5b, the correlation calculated between each SIPA facet for Observation Block 4 with ESS was calculated. All

facets of SIPA showed a significant correlation (all p < .001), with transparency rS = .57, understandability rS = .67 and

predictability with rS = .65 indicating a strong correlation, which supports the hypothesis.

5.7 H6: Higher SIPA ratings before the performance block correlate with better performance in the
prediction task

To test H6, correlation between each SIPA facet for Observation Block 4 with the overall performance was calculated.

No significant correlation was found for transparency (rS = -.11, p = .850), understandability (rS = -.17, p = .355) or

predictability (rS = -.08, p = .731). Thus, a correlation between the SIPA ratings before the performance block and the

performance cannot be assumed and the hypothesis is not supported.
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5.8 H7: Higher levels of information disclosure lead to better performance in the prediction task

To test H7 a contrast analysis was performed. The weights correspond to the weights used in H1 with λLowID = -2.5,

λMedID = -0.5, λHighID = 3. A one-tailed significance test with (t(67) = 1.21, p = .116, r(effect size) = .15) did not detect a

significant difference between the groups, thus there was no support for the hypothesis.

5.9 H8: SIPA increases over the course of the performance block

To test H8, multiple contrast analyses were conducted for each SIPA facet following the contrast analysis for depended

measures. The following weights were used for each analysis: λObservation 4 = -1.5, and λPerformance = 1.5. A one-sample

t-test against zero was performed for all contrasts. Table 9 shows the t-statistics, the corrected p-value as well as d.

The hypothesis is not supported by the results for any of the SIPA facets. However, all facets show a high negative

t-statistic, which suggests that the contrast was chosen in opposite to the real data. This corresponds to the descriptive

observation that there was not a successive increase but decrease in the SIPA ratings for all facets. The calculated effect

sizes also indicate a relevant effect at the boundary between small and medium effect. Under the assumption of opposite

contrasts, significant effects are shown for transparency (p = .014), understandability (p = .010) and also predictability (p

= .016).

Table 9. H8: Contrast Analysis comparing SIPA facets before and after performance block

Contrast Analysis for Obs 1-4

t p d
SIPA transparency -2.26 .986 - 0.28

SIPA understandability -2.40 .991 - 0.29

SIPA predictability -2.19 .984 - 0.27

Note. * p <.050, ** p <.010, *** p <.001

5.10 EQ: Explorative Analysis of Individual Differences

To examine the relation between individual differences in human-AI cooperation and user experience, correlations

between person characteristics (ATI, AIA, duration of diabetes) and SIPA ratings as well as performance were calculated.

The measurements for Observation Block 1 and the performance block were analyzed in order to keep the number of

tests (and the resulting loss of power due to correction) low. All values are shown in Table 10. There was no correlation

between the duration of the disease and the SIPA ratings or the performance. With regard to the ATI values, no

correlation can be found at the beginning of the experiment. At the last time point, there is a small to moderate effect

(for SIPA transparency and SIPA predictability). For AIA, no significant effects are found at the end of the study, but

at the beginning of the experiment there are moderate, significant correlations with SIPA transparency and SIPA

understandability. Neither ATI nor AIA show a significant relationship with performance.

6 DISCUSSION

6.1 Summary of Results

The objective of the present research was to examine the effects of explanations that differ in the amount of disclosed

information as well as the effect of repeated interaction on users’ subjective perception of trust and traceability in AID
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Table 10. Results of Explorative Analysis

ATI AIA Duration of diabetes

rS p rS p rS p
Transparency Observation Block 1 .29 .080 .38 .024* -.29 .098

Performance Block .42 .007** .29 .144 -.10 > .999

SIPA Understandability Observation Block 1 .24 .150 .36 .115 -.25 .240

Performance Block .24 .192 .14 .256 -.01 .961

Predictability Observation Block 1 .23 .104 .27 .014* -.21 .410

Performance Block .35 .018* .18 .099 .03 > .999

Performance -.04 .731 .05 .666 -.07 > .999

Note. * p <.050, ** p <.010, *** p <.001

systems. Contrast analyses were performed to test directional hypotheses related to the dependent variables SIPA, TOT,

and subjective workload.

While results showed a weak tendency for users in the HighID condition to report higher SIPA ratings than users in

the LowID condition, the assumed contrast (increasing SIPA ratings with increasing quantity of disclosed information)

was only significant for SIPA transparency after multiple interactions (i.e., after 45 observations) and aligned with

hypothesis H1. The time users spent on the prediction task was more than twice as high for users in the HighID

condition then for users in the LowID condition. Thus, a significant raise of TOT based on higher information disclosure

as stated in (H2) could be found when participants were asked to predict the insulin needs calculated by the system.

In contrast, only non-significant and slight differences were found when people were instructed to observe stimuli

displaying the insulin needs calculation. Although the subjective workload did not increase significantly with the level

of information disclosure as assumed (H3), an unexpected effect emerged: the perceived workload was higher for

the LowID condition than for the HighID, in some cases more than one standard deviation higher. The development

of the SIPA rating over time also shows, contrary to our expectation (H4), a decrease This effect was small for SIPA

transparency, while only negligible effects can be observed in the other facets. A strong correlation between all SIPA

facets and trust (H5a) as well as between all SIPA facets and explanation satisfaction (H5b) indicates high convergent

validity for the SIPA scale. SIPA ratings prior to the performance block did not correlate with performance itself and

also showed very small effects (H6), although SIPA transparency ratings differed significantly before observation

for different levels of information disclosure. Although more information were available in the MedId and HighID

than in the LowID condition, participants in the MedID or HighID condition did not perform significantly better than

participants in the LowID condition (H7). The prediction task in the performance block did not lead to an increase in

SIPA, but resulted in lower SIPA scores in all facets with a medium to strong effect size (H8). Analysis of intra-individual
correlations with SIPA revealed that SIPA was significantly related to attitudes toward AI after the Observation Block1,

while ATI showed a significant influence after the Performance Block (EQ).

6.2 Effects of information disclosure on user experience and cooperation in AID systems

One focus of the present work was to investigate the effect of different levels of information disclosure on the user

experience of AID systems. However, higher information disclosure did not affect SIPA immediately but led to a

significant difference in perceived transparency only after 45 observations. The delayed decrease in SIPA transparency

ratings suggests that a valid measurement of subjective variables may need an experimental design with sufficient

repetitions (cf. as for trust [46, 52]). While individuals in the LowID condition started with a comparably high level of
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SIPA transparency, the observed decrease could be related, for example, to the fact that only repeated observations

allowed them to recognize that not all necessary information was available. [98] describe that a person’s mental

model is used to form expectations about the outcome, e.g., of cooperation with automation. As for trust (cf. [50]),

individual differences could affect the initial SIPA rating, and only measurement after a system-dependent number of

interactions can reveal differences between systems. This is also exemplified by the co-relationship between AIA and

SIPA transparency at initial observation and after performance, which indicates that explanations may be able to offset

the effects of initial mistrust of individuals. The relationship between attitudes toward AI systems (such as AIA) and

other user diversity factors (such as education level or access to technology) represents another research challenge to

explore the effects of explanations more in depth.

Another reason, why participants in HighID or MedID did not show better prediction performance, could be

information overload. Information overload occurs when an increase in the available amount of information leads

to negative results, e.g. a decrease of performance or subjective consequences (e.g. as experienced cognitive demand

or stress) for the user [70]. Although there was three times as much information available in the HighID condition

than in the LowID condition, the TOT for the observation blocks did not differ significantly between the groups. [5]

assume that a high information workload can lead to the use of heuristics (e.g. the representativeness heuristic) or

increase the probability of users to make biased decisions. This effect is opposed to one goal of XAI design, which is to

mitigate errors based on heuristic decision making [118]. In our AID simulation experiment, the use of heuristics while

observing might have been higher for the HighID condition than for the LowID condition. This could explain why TOT

did not increase (for the observation blocks) though more attributes were presented. The results of the NASA-TLX

on subjective workload allow a parallel conclusion: experienced time demand, cognitive demand, and effort showed

no difference between the conditions. It is very unlikely that the participants of the HighID condition did not notice

or ignored the additional information, as they partly referred to it in the qualitative comments. While being already

discussed [93, 118], the extent to which explanations or the additional information available through explanations

create an information overload and thus influence, for example, the use of heuristics in the evaluation (see also [35]) of

an AID system still needs to be investigated more clearly and for users of different levels of expertise. [113] found that,

for example, the expertise of users can decrease the probability that they will use heuristics. However, AID systems, in

particular, have great potential for individuals with problematic long-term metrics, which in turn may often be due to

low engagement with and care for the disease. For an inclusive design of AID systems, effects of explanations for less

experienced users must be understood and avoided, in case they cause, e.g., limited transparency. Representations that

lead to a heuristic assessment due to information overload could thus encounter users for whom a heuristic assessment

could be particularly problematic. All in all, when designing XAI and in order to act responsible, developers should

consider, that more access to information may be harmful to transparency and elaborated context analyses are needed

to understand how users will interpret and utilize information or explanations.

Finally, the qualitative results point to another problem, as participants from the LowID conditions explicitly ask for

information that was presented to the other groups, e.g., LowID-1: "Please add probability of hypoglycemia or intensity

of correction" or LowID-2: "Please show correction quotas for glucose and carbohydrates". However, the results of the

experiment suggest that this does not necessarily allow for higher SIPA or better prediction. In order to achieve higher

SIPA, the individual pieces of information presumably need to be put into better proportion, as HighID-1 expresses: "I

need refined information, how much insulin is given to correct glucose levels and how much is given for food". The

requirement for a more mathematical description could be due to the fact that users apply their mental models of

how they would solve the problem without an AID system to the system’s information processing. In the field of AID
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systems, users potentially perform a complex calculation, through which they have certain expectations, as HighID-2

states: "I would like to see highlighting of factors that are particularly decisive for the calculation at that moment". In

future explanations of AID systems, the representation of the calculation should be as close as possible to the calculation

performed by the users (as depicted by [118]) in order to empower users to assess the system’s information processing.

This would also meet a central criterion for cooperation, where an adequate communication of information requires

partners to anticipate the relevance of the information for the task of the cooperating partner.

6.3 Fit of performance measures and subjective measures in XAI

In our experiment, the participants’ own assessment of the system’s traceability does not correlate with their ability

to predict the system’s calculation. This is a worrisome correlation, since in the best case false expectations arise

and people lose confidence in the system. A more serious consequence could be, for example, a misjudgment of

the system’s performance in extreme situations and the development of overconfidence. Several studies [77, 78] on

trust in automation show that a lack of calibration between subjective ratings and objective scores is a well-known

phenomenon. This miscalibration can lead to significant problems, e.g., complacency arises and thus the users attribute

more competencies to the system than it possesses [88] - which is described as an abuse of the system [87]. On the

other hand, mistrust can lead to a misuse of the system [87] - in the case of the AID system, suggestions of the system

could be corrected frequently and thus lead to an increase of the workload instead of a reduction. Both forms of lack of

calibration are significant problems in the AID domain and could help to explain dropout rates [79]. The calibration of

SIPA and the correct prediction of an outcome is theoretically more direct than the calibration between prediction and

trust (e.g., I can trust the technical competence of a system without understanding how it works, see [75]) and can be

used in future studies to show the miscalibration between user experience and the correctness of one’s mental model.

[98] describe a user’s mental model as a ’mechanism whereby humans generate descriptions of system purpose and

form, explanations of system functioning and observed system states, and predictions of future system states’. This is

also in line with central concepts of SA theory or the idea of so-called situation models [11]: here, mental changes are

carried out in order to assess the effects of one’s own actions. However, figuring out how changing input variables

affect the outcome of an AIs information processing, may be complicated in the case of static explanations (c.f. [1]).

Also [27] show that static explanations have a smaller influence on the ability to understand a system than interactive

explanations. The latter allows users to build hypotheses on their own and test them, which is the central approach for

knowledge acquisition (c.f. [90]). Interactive explanations should therefore be made possible for AID systems (and in

other intelligent systems). At the same time, future experiments should focus on observing the formation of hypotheses

and their evaluation in the interaction between humans and AI, e.g., to identify when explanations favor confirmation

bias or disadvantage individuals with less prior knowledge and how those effects can be mitigated.

This is also supported by the fact that the prediction task had a clear influence on SIPA ratings - all facets of SIPA

were reduced, while this was not the case for SIPA understandability and SIPA predictability even after 60 previous

repeated (passive) observations. The information provided (i.e., the attributes) was not changed for the performance

block. In further studies or development of AID systems, active prediction of AID results should therefore be part of the

experimental condition and based thereon considered in training. The role of feedback for SIPA as well as trust should

again be considered separately. For example, the diagnosticity [16] or the diagnostic value [121] of certain attributes

(i.e., what informativeness they had in determining insulin needs calculated by the system) might have been misjudged

by individuals. This could be corrected by feedback or an interactive simulation.
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Another obstacle, however, is the information overload discussed above, which could also arise in an interactive

simulation. While, e.g., explanations on the basis of "counterfactuals" [81] may be well suited for testing hypotheses,

more research needs to examine how larger numbers of, e.g., setting possibilities affect the interaction. In the exemplary

case of generative visual models, the cognitive load of the user increases with the number of adjustable settings -

without a significant effect on performance [31]. Furthermore, it must be considered whether and which additional

information is displayed e.g., in a training context or in a daily use context since these may differ considerably with

respect to the available time and cognitive resources. Here, explanations need to be designed for diverse users (i.e., the

trainer, which are often medical professionals as well as the patients). The fact that more attributes lead to a higher

time requirement for the derivation of a prediction was also shown in the present experiment (see H4, Performance

Block). Overall, context-specific prioritization of information must be made, which could be done based on the following

questions: 1) Does the representation of attributes/relationships fit the existing mental model of the users? 2) Does the

presentation of attributes / contexts allow for hypothesis generation and testing?

6.4 Research & Design Implications for AID systems

For the research of experienced traceability of intelligent systems, the SIPA scale with its facets allows for two central

observations: 1) a sufficient number of repeated interactions as well as 2) a differentiation of active interaction from

passive observation of explanatory information disclosure are necessary to discuss human-centered AI. The SIPA scale is

an appropriate instrument for this context for the following reasons: the SIPA scale shows good scale metrics (i.e., range,

standard deviation) on all facets. Additionally, due to high correlation between all 3 SIPA facets also a unidimensional

application is possible. Furthermore, the SIPA scale shows a very high convergent validity with measures of perceived

trustworthiness and satisfaction with explanations. However, there is a small to medium correlation between ATI and

SIPA, and the ATI mean of the present sample is higher than the estimated population mean. Hence, the use of the SIPA

scale in groups with lower ATI scores might be different, e.g., shows other correlations with satisfaction. Overall, the

SIPA scale with its facets represents a new tool for researching experienced traceability, which can help to underscore

and evaluate the effects of explanations on users in detail.

The boundary between Situation Awareness and Performance (i.e., Prediction) has already been raised repeatedly

in the discussion of Situation Awareness [89]. While a theoretical discussion of these concepts is beyond the scope

of this paper (c.f. [76]), a very high crenelation between SIPA understandability and SIPA predictability suggests that

the difference between Understanding and Predicting might be too small to provide an impactful analysis. Studies

using other explanatory approaches would need to investigate whether this difference can be amplified. In addition,

qualitative comments from users suggest that another facet of Traceability may be relevant - the assessment of the

relevance of attributes to the information processing, explicated, e.g., from MedID-2: "Display to what extent which

information contributed to the result", which possibly refers to the individual attribute’s influence or relevance for the

prediction (i.e., diagnosticity, c.f [16]). The extent to which the presented information has a high, subjective diagnosticity

could be distinguished from predictability as a facet. For example, an AID system’s user might know that providing

information about exercise intensity is more important than providing information about the duration of the physical

activity. The user would feel able to instruct the AID system to achieve a more precise prediction, regardless of the

user’s ability to specify the concrete outcome. Especially for the communicative processes in the field of human-AI

cooperation, such an additional facet could enable, e.g., what [28] describe as collegiality.

When designing AID systems, the effects on the experienced traceability as well as on workload and performance

must be taken into account. The sole disclosure of additional information cannot be seen as a suitable method to improve
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the user experience or the basis for human-AI cooperation in AID systems. In the given scenarios, the information used

from the AID simulation was relevant for the calculation of the system and mimics information that users themselves

need for a calculation. The fact that this approach did not offer a significant advantage for the participants of the HighID

condition shows how much human-centered research is still necessary in the XAI area. In XAI research explanatory

approaches partly refer to the confidence of the model [10, 17, 85] for a certain result or even to meta-information

about the model [74]. Depending on their task, such information might have only low significance for the users. This

could lead to erroneous conclusions in the future, especially if the methods to evaluate the performance of human-AI

cooperation are based on different processes than the processes supported by the explanation. Regardless of how helpful

certain methodologies are to AI method developers, users as well as the constructs and requirements relevant to them

may be entirely different and need different explanations. Even among the users of a system (in the broadest sense), there

might be differences. That is, the information presented in our experiment might help individuals with medical training

who, for example, match the model’s approach to guidelines on therapies and for whom a more abstract interaction

might provide more information. Individuals, on the other hand, are more likely to want to interact with the system on

an individual level, as shown by LowID-3: "I would like to enter an individual target value for physical activity". [72]

distinguish between local and global explanations of an AI system. However, to assume that end users require only

local explanations would be an incorrect simplification: in fact, users express a desire to have more influence at the

local level (e.g., adjusting goals for physical activity) as well as match their own calculation with the model at the global

level. In any case, explanations need to be aligned and evaluated with the goals of the user.

Furthermore, our experiment shows that subjective effects may only occur after repeated interactions. Both, studies

and training programs of AID-Systems, should take this effect into account. However, our results imply that, e.g., other

interaction possibilities could decrease this span if necessary (c.f. [27]). AID systems should therefore ask users for

their predictions in the first period AID therapy so that they can compare their own expectations with the system

results with little effort. The testing of hypotheses is also a central task in order to be able to form a correct mental

model about the information processing. While future studies need to investigate whether interactions with a direct

goal of promoting active hypothesis testing can also increase SIPA ratings or experience traceability, it is difficult to

integrate this into current AID systems. Actively inducing high or low glucose levels to compare expectations with

an AID system’s behavior is not recommended for medical reasons. Therefore, for XAI systems to be applicable in

medical contexts such as DMT1, simulations of the algorithm need to be developed, for example, that allow this testing

of hypotheses before use or as counterfactual during use. Existing approaches for the simulation of glucose level (see

[100]) could be supplemented with an interface that offers explanatory variants for situations selected by the users

themselves.

6.5 Limitations & Further Research

Several limitations for further research have to be considered. First, the applied method to analyze performance or

prediction was not as aligned with potential tasks in real-world application as possible. That is, in AID systems users do

not need to make predictions about the insulin needs calculated by the system. More importantly, they need to be able

to estimate the effect of communicated information on, e.g., physical activity to cooperate effectively with the system.

A more comprehensive indicator to assess the effect of traceability on the human-machine system performance could

be to show a scenario and ask how changes of one or multiple attributes would affect the outcome. This would also

open up different possibilities for interpretation (e.g., deviation from the correct value as in this study but also to what
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extent the direction of the estimate is correct as a non-metric variable). Comparable tasks exist in the area of complex

problem solving [107] and could also be used in the area of human-AI interaction.

Second, in an ideal case, it would have been possible to measure the development of user experience on the course

over several weeks. The time between observations, interactions and measurements in our experiment was short

compared everyday application. In addition, when used in one’s own therapy, one’s own previous experience can be

included to a greater extent. A possibility for further research could be to strive to enable longitudinal designs to allow

for results based on longer reflection periods as well as personalization. In addition, participants in this experiment were

shown only one condition at a time, whereas patients, for example, may compare different interfaces when deciding

on an AID system. As long as the influence of learning experience is taken into account, within-subject analyses of

different explanatory and interaction effects could be used in further experimental settings.

Third, the present research only examined one approach to explain to the users the way an AID system calculates

insulin needs. To enable users to cope, e.g., with information overload, an interactive simulation may provide coun-

terfactual explanations for scenarios they are interested in or want to understand. Furthermore, depending on the

algorithm used to construct the AID system, the concrete depiction of rules applied to calculate insulin needs could lead

to important insights into the evolution of mental models in human-AI cooperation. Ideally, further studies provide

different explanations to the users in order to render it possible to compare their effectiveness for different goals (i.e.,

understand effects of personalization vs. understanding one own’s influence on the system through communicated

information).

7 CONCLUSION

Theoretically motivated and impactful research of human-centered AI is still in an early stage of development. Empirical

data of potential end-users as a target group in contrast to, e.g., developers or professionals is needed. On top of that, the

relationship between subjective experiences and the impact on users’ capabilities to cooperate with intelligent systems is

crucial for XAI applications in the future: it determines whether explanations truly empower users or, in the worst case,

overburden or even deceive them. In this sense, the present work contributes to the development of human-centered

XAI on three levels: By 1) refining and applying the SIPA scale, which is derived from theoretical concepts of automation,

differentiated statements about the effects of explanations can be made. By 2) developing an experimental environment

to examine the interaction of potential end users with AID XAI, the usefulness of explanations for everyday life can be

validly assessed. And by 3) measuring performance at the same time as user experience the problematic miscalibration

between perceived and actual ability to predict AI behavior can be empirically supported. Based on the empirical study,

it is possible to derive design decisions that enable users of medical AI systems to collaborate and understand a system

rather than overloading them with information. Future research in AID systems should therefore examine how users

actively develop and test hypotheses on AID information processing to better understand under which conditions

reported SIPA ratings may exhibit a better calibration with the actual task performance.
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A OVERVIEW OF ATTRIBUTES FOR AID SIMULATION

Table 11. Variables used within the AID Simulation.

Attribute Description Relevance

Current Tissue
Glucose

The glucose level of interstitial fluid

currently measured by the sensor.

It is the proxy for current blood glucose level. Needs

to be in a defined range to avoid high and low blood

sugar in the short term, as well as long-term problems

associated with chronically high blood sugar.

Current Insulin
in Body

The amount of active insulin in the

body.

Lowers glucose level short term, therefore reduces the

amount of insulin needed.

Current Carbo-
hydrates in Body

The amount carbohydrates yet to be

used by the body, e.g., carbohydrates

in the digestive tract.

Raises glucose level (quickly or slowly depending largely

on absorption rate), therefore raises the amount of in-

sulin needed.

Current Activity The level of physical activity of the

user.

A higher activity level raises sensitivity to insulin, leads

to carbohydrates being used up more quickly and thus

generally lowers blood glucose, meaning it lowers the

amount of insulin needed.

Tissue Glucose
Target

Target amount of Glucose to be mea-

sured by the sensor as proxy for blood

glucose target.

Trying to reach the blood glucose target is the primary

outcome of insulin therapy for T1DM. Target value may

depend on current circumstances.

Avoid Hypo-
glycemia

Lowers risk of low blood sugar (hy-

poglycemia) when activated.

Automatically reduces aggressiveness and raises glucose

target, therefore reduces amount of insulin given.

Duration of In-
sulin Action

The time in which insulin will still be

active in the body.

When insulin stays longer active or has an effect, cal-

culations need to integrate remaining effect or effect of

physical activity for remaining insulin levels .

Correction Inten-
sity

How fast the glucose target ought

to be reached. Higher aggressiveness

means the glucose target ought to be

reached fast.

If target glucose is below current glucose reading, high

aggressiveness leads to an increased amount of insulin

needed. Raises risk of hypoglycemia.

Risk of Hypo-
glycemia in next
hour

Probability of the user experiencing

hypoglycemia (low blood sugar, < 3.9

mmol/l) during the next hour.

Hypoglycemia is most likely to interfere with the user’s

ability to function in everyday life. A high risk of hypo-

glycemia therefore lets the system reduce the amount

of insulin that should be given to mitigate the risk.

Blood Glucose
lowering per 1
Unit Insulin

How much 1 insulin unit lowers

blood glucose level. High value indi-

cates high insulin sensitivity.

The more 1 insulin unit lowers blood glucose, the less

insulin is needed.

Insulin Units per
10 grams Carbo-
hydrates

How many insulin units need to be

injected to metabolize 10 grams of

carbohydrates. High value indicates

low insulin sensitivity.

The more insulin units are needed to metabolize 10

grams of carbohydrates, the more insulin is needed.

Predicted Exer-
cise

System estimate whether its expect

users to exercise in the next hours.

Exercise in most cases lowers blood glucose via en-

ergy consumption and increasing insulin sensitivity.

Raises glucose target automatically and thus reduces

the amount of insulin given in preparation for exercise.
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B DESCRIPTIVE DATA FOR ALL REPEATED MEASURES VARIABLES

Table 12. Descriptive Data for all variables measured repeatedtly at all point of measurement

SIPA Transparency SIPA Understandability SIPA Predictability FOST NASA-TLX

M SD Range M SD Range M SD Range M SD Range M SD Range
Observation Block 1 LowID 5.08 1.31 4.50 4.35 1.46 5.00 3.48 1.21 4.00 4.23 1.31 4.40 4.85 1.11 4.00

MedID 4.59 1.34 4.50 3.95 1.40 5.00 3.80 1.31 4.00 4.02 1.01 4.20 3.87 1.25 3.60

HighID 5.10 0.82 3.00 3.90 1.13 4.00 3.90 0.96 4.00 4.33 0.86 3.40 3.57 1.25 4.60

Observation Block 2 LowID 4.40 1.40 4.50 4.04 1.47 5.00 3.35 1.25 4.50 3.90 1.32 4.40 4.82 1.36 5.00

MedID 4.36 1.43 4.50 3.59 1.26 4.50 3.25 1.21 4.50 3.72 1.18 3.80 3.72 1.09 4.00

HighID 5.04 0.79 2.50 3.83 0.97 4.00 3.77 1.07 4.50 4.02 1.04 4.20 3.67 1.42 5.20

Observation Block 3 LowID 4.23 1.28 5.00 3.69 1.24 5.00 3.52 1.16 5.00 3.88 1.29 4.40 4.53 1.48 6.00

MedID 4.50 1.23 4.50 3.86 1.16 4.50 3.66 1.14 4.00 4.05 1.15 3.80 3.84 1.28 5.00

HighID 5.02 0.87 3.00 3.94 1.35 4.50 3.67 1.50 5.00 4.13 1.30 5.00 3.84 1.43 5.20

Observation Block 4 LowID 4.23 1.36 5.00 3.77 1.32 5.00 3.35 1.13 4.50 3.75 1.41 4.60 4.67 1.43 5.80

MedID 4.66 1.24 4.50 3.86 1.34 4.50 3.64 1.38 4.50 4.11 1.39 4.60 4.15 1.39 5.60

HighID 5.08 0.75 3.00 4.00 1.53 5.00 3.83 1.52 5.00 4.29 1.26 4.60 4.00 1.48 5.20

Performance LowID 4.08 1.69 5.00 3.42 1.59 5.00 3.06 1.36 4.00 3.86 1.57 4.60 3.97 1.14 4.20

MedID 4.02 1.59 5.00 3.11 1.30 4.00 2.89 1.13 4.00 3.76 1.12 4.00 2.85 1.26 4.60

HighID 5.02 0.83 2.50 3.98 1.36 5.00 3.77 1.31 5.00 4.42 0.90 3.60 3.41 1.30 5.40

C KNOWLEDGE QUESTIONS ON DIABETES MANAGEMENT

Table 13. KnowledgeQuestions on diabetes management (translated from German)

Please indicate, whether the following statements are correct or not True False I don’t know

1 Even without eating, type 1 diabetics need insulin.

2
When treating hypoglycemia, the most important goal is to get back to a level

above 70 mg/dl as quickly as possible.

3
When treating hyperglycemia, the most important goal is to get back to a level

below 180 mg/dl as quickly as possible.

4 If I am unsure of my insulin needs, I should inject too much rather than too little.

5
Since alcohol consumption causes sugar levels to rise sharply, insulin should be

administered particularly generously during a night of partying.

6
How long insulin has an effect in the body depends, among other things,

on the amount administered.

7
"Rapid" insulin refers to insulin that takes effect immediately after injection

without any delay.

8
I can recognize increased insulin sensitivity by the fact that sugar levels

drop more slowly after insulin is administered.

9 FGM and CGM sensors measure blood glucose.

10
The Dawn phenomenon describes how some diabetics are at high risk for

hypoglycemia early in the morning (around 5 a.m.).
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