
 

 

1 

Perceptual Dimensions of Wood Materials 1 

 2 

Jiří Filip, A 3 

Jiří Lukavský, B 4 

Filip Děchtěrenko, B 5 

Filipp Schmidt, C 6 

Roland W. Fleming, C 7 

 8 

A. The Czech Academy of Science, Institute of Information Theory and Automation 9 

Pod vodárenskou věží 4, 18200 Praha 8 10 

B. The Czech Academy of Science, Institute of Psychology 11 

Hybernská 8, 11000 Praha 1 12 

C. 1. Experimental Psychology, Justus Liebig University of Giessen Germany, 2. Centre for Mind, 13 

Brain and Behaviour, Universities of Marburg and Giessen 14 

Otto-Behaghel-Str 10, 35394 Giessen, Germany 15 

 16 

 17 

Abstract 18 

Materials exhibit an extraordinary range of visual appearances. Characterising and quantifying 19 

appearance is important not only for basic research on perceptual mechanisms, but also for computer 20 

graphics and a wide range of industrial applications. While methods exist for capturing and representing 21 

the optical properties of materials and how they vary across surfaces (Haindl & Filip., 2013), the 22 

representations are typically very high-dimensional, and how these representations relate to subjective 23 

perceptual impressions of material appearance remains poorly understood. Here, we used a data-driven 24 

approach to characterising the perceived appearance characteristics of 30 samples of wood veneer 25 

using a ‘visual fingerprint’ that describes each sample as a multidimensional feature vector, with each 26 

dimension capturing a different aspect of the appearance. Fifty-six crowd-sourced participants viewed 27 

triplets of movies depicting different wood samples as the sample rotated.  Their task was to report 28 

which of the two match samples was subjectively most similar to the test sample. In another online 29 

experiment 45 participants rated ten wood-related appearance characteristics for each of the samples. 30 

The results reveal a consistent embedding of the samples across both experiments and a set of 9 31 

perceptual dimensions capturing aspects including the roughness, directionality and spatial scale of the 32 

surface patterns. We also showed that a weighted linear combination of eleven image statistics, inspired 33 

by the rating characteristics, predicts perceptual dimensions well.  34 

 35 
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Introduction 38 

The visual appearance of materials results from a wide range of physical phenomena including the 39 

surface’s spectral and angular reflectance characteristics, subsurface light scattering, and spatial 40 

variations in pigmentation and surface relief. How the visual system estimates such characteristics 41 

remains poorly understood  (Anderson, 2011, Bracci & Op de Beeck, 2023) and it also remains unclear 42 

which perceptual dimensions the visual system uses to describe and compare different materials 43 

(Fleming, 2017). 44 

Capturing a comprehensive representation of a surface’s physical appearance requires observing it 45 

under a sufficient range of illumination and viewing geometries. Complex photorealistic appearances 46 

can be approximated by advanced image-based representations used in computer graphics such as the 47 

spatially varying bidirectional reflectance distribution function (SVBRDF; Nicodemus & Richmond & Hsia 48 

& Ginsburg & Limperis, 1977) or bidirectional texture function (BTF; Dana & van Ginneken & Nayar & 49 

Koenderink, 1999).  However, these representations are extremely high-dimensional and there is no 50 

straightforward mapping between such representations and subjective visual appearance 51 

characteristics. Somehow the visual system summarises the overall ‘look’ of complex, spatially-varying 52 

appearances to compare and contrast different materials. Everyday experience suggests that observers 53 

do not need to view a material from all possible view- and lighting-directions in order to obtain a distinct 54 

impression of its appearance.  Yet, although the perceptual representation of materials is surely lower-55 

dimensional than a complete physical description of the surface, there are nevertheless many potential 56 

dimensions that the visual system might draw on to describe materials (e.g., overall albedo, relief, 57 

glossiness, contrast of surface patterns).  58 

We still do not understand much about such dimensions and how they contribute to observers’ 59 

judgments of appearance. Which characteristics do observers use to compare different materials?  Is 60 

there a ‘ranking’ of characteristics, such that some aspects of appearance dominate comparisons 61 

between materials, while others play a secondary role? How specific are certain characteristics to 62 

particular classes of materials? Previous work on material perception has often focussed on highly 63 

constrained sets of stimuli varying in one or a small number of physical properties (Ferwerda, Pellacini, 64 

& Greenberg, 2001; Fleming, Dror, & Adelson, 2003; Fleming, Bülthoff, 2005; Motoyoshi, Nishida, 65 

Sharan, & Adelson, 2007; Wendt, Faul, & Mausfeld, 2008; Wendt, Faul, Ekroll, & Mausfeld, 2010; 66 

Fleming, Jäkel, & Maloney, 2011; Marlow, Kim, & Anderson, 2012; Paulun, Schmidt, van Assen, & 67 

Fleming, 2017; Van Assen, Barla, & Fleming, 2018). Other studies have investigated appearance 68 

judgments and categorization based on photographs (e.g., Bell, Upchurch, Snavely, & Bala, 2015; 69 

Fleming, Wiebel, & Gegenfurtner 2013; Sharan, Rosenholtz, & Adelson, 2009; Sharan, Liu, Rosenholtz, & 70 

Adelson, 2013; Sharan, Rosenholtz, & Adelson, 2014; Wiebel, Valsecchi, & Gegenfurtner, 2013). 71 

However, in most cases, it is the experimenters that define which characteristics are judged by 72 

participants. 73 

Here we combined this tradition with a more data-driven approach in order to identify  dimensions 74 

underlying appearance judgments for a set of thirty samples of planar wood veneer with distinctive 75 
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surface patterns and textures. Wood is a challenging material to characterise due to its complex and 76 

varied appearance.  It is associated with decorative attributes and is widely used for furniture and 77 

interior design. Its structure consists of elongated cells, which are radially oriented rays and longitudinal 78 

cells or vessels forming growth rings (Lewin & Goldstein, 1991). Hardwoods tend to have a tighter grain 79 

pattern compared to softwoods, resulting in various levels of texture, colour, smoothness, grain density 80 

and straightness. All these aspects are impacted by sawing direction and the sample location in the tree 81 

trunk. The final visual structure is given by an intersection of a sawing plane with three-dimensional 82 

wood structure. Wood has high natural variability in aesthetic characteristics  among different species 83 

and surface treatments. Previous studies have shown that patterns of anisotropy, colour variations and 84 

gloss are the major factors influencing the visual (Nakamura, Masuda, & Shinohara, 1999; Wan, Li, 85 

Zhang, Song, & Ke, 2021), multimodal (Fujisaki, Tokita, & Kariya, 2015) aesthetic appeal of wood with 86 

impacts on people’s preferences (Manuel, Leonhart, Broman, & Becker, 2015), and emotions related to 87 

wooden surfaces (Nordvik, Schütte, & Broman, 2009). To the best of our knowledge, all previous studies 88 

of wood appearance relied on static stimuli to derive subjective ratings of predefined attributes or their 89 

relationship to physical attributes of wood surfaces. This ignores how variable the appearance of even a 90 

single sample can be across changes in viewpoint relative to the surface and lighting. Our contribution 91 

above this work is twofold.  92 

First, our work uses dynamic (rotating) rather than static stimuli, showing the appearance of the wood 93 

samples across variable lighting and viewing conditions. This allowed participants in our experiments to 94 

take into account the look of the surface both with and without specular reflections. 95 

 96 

Second, instead of relying solely on a possibly incomplete list of predefined visual attributes, we also 97 

used similarity judgements to identify the core dimensions underlying judgments of wood. Similarity 98 

judgements are an established method for characterising the multidimensional space underlying mental 99 

representations, previously used to understand dimensions in object categories (Hebart, Zheng, Pereira, 100 

& Baker, 2020), materials (Schmidt, Hebart, & Fleming, 2022) or scenes (Josephs, Hebart, & Konkle, 101 

2023). In contrast to the previous studies, we search for dimensions underlying similarity judgments 102 

within a single category. 103 

Specifically, we sought to derive a relatively small number of perceptual dimensions that capture 104 

judgments of similarity between movies of the samples.  In order to do this, we first crowd-sourced 105 

1218 perceptual similarity judgments from 56 participants.  We then applied an analysis method based 106 

on sparse, non-negative matrix factorization (Variational Interpretable Concept Embeddings; 107 

Muttenthaler,  Zheng, McClure, Vandermeulen, Hebart, & Pereira, 2022) to infer a set of dimensions 108 

that can predict the similarity judgments.  We show that even with a small dataset of thirty samples the 109 

method was able to derive visual dimensions that predict the similarity judgments. Specifically, our 110 

model identified nine dimensions that together could explain over 75% of the variance in the similarity 111 

judgments.  Eventually, we showed that standard image statistics obtained from stimuli videos can 112 

predict similarity dimensions well. 113 

In addition to the similarity judgments, we also asked a set of 45 participants to judge ten experimenter-114 

defined appearance characteristics for each of the samples (Brightness, Glossiness, Colourfulness, 115 

Directionality, Complexity, Contrast, Roughness, Patchiness/regularity, Line elongation, Spatial scale).  116 
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The purpose of this was twofold.  First, we sought to use the values of these interpretable rating scales 117 

to  facilitate interpretation of the dimensions derived from the similarity judgments.  Second, we sought 118 

to cross-validate the embedding of the samples within the 9D space.  We reasoned that if different 119 

samples are represented in a multidimensional perceptual similarity space—with similar samples close 120 

to one another and dissimilar ones further apart—then it should be possible to probe this space through 121 

multiple complementary methods (i.e., similarity judgments and subjective feature ratings).  We find 122 

that the two approaches do indeed lead to similar embeddings of the stimuli, suggesting that they both 123 

tap into a common representation within the visual system. 124 

Experiment 1 125 

In the first experiment we collected sparse similarity judgements and used machine learning to infer the 126 

full pairwise similarity matrix and to test the embedding of samples in the latent space  of wood 127 

appearance. 128 

Methods 129 

Participants 130 

Fifty-six participants were recruited using the online crowdsourcing platform Prolific (mean age = 40.5, 131 

SD = 16.6, 35 males). All participants reported normal or corrected-to-normal vision and no colour vision 132 

impairments. On average, the experiment took 14.0 minutes (SD = 4.9). The participants were 133 

reimbursed with 2.1 GBP. All studies within this paper were approved by the Ethics Board of the 134 

Institute of Psychology, Academy of Sciences of the Czech Republic (PSU-308/Brno/2022).  135 

Apparatus and stimuli 136 

We used 30 flat standard wood veneer samples that are used for furniture manufacturing (wood species 137 

are listed in Tab.1). We captured  video sequences of slow rotations of the samples. Fig. 1 shows the 138 

initial (left) and final (right) frame of each video sequence, capturing specular and non-specular 139 

view/light geometries. Video samples and additional materials are available at https://osf.io/tz245.  140 

 141 

https://osf.io/tz245
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  142 
Fig. 1. All 30 samples of wood veneer for (left) specular, (right) non-specular (90 degree rotated) 143 

view/light geometries. 144 

All images in the video sequences were 42 x 42 mm areas of the samples, captured by the UTIA 145 

goniometer (Filip, Vávra, Haindl, Žid, Krupička, & Havran, 2013). In accordance with industry standards 146 

in material observation (McCamy, 1996), we fixed the polar angle of camera and light to 45 degrees and 147 

only varied azimuthal angles to allow for faster measurements. Each sequence starts with a difference of 148 

90 degrees between the azimuthal angles of light and camera and includes a movement of the camera 149 

by 90 degrees (arriving at a difference of 180 degrees between azimuthal angles), resulting in specular 150 

and non-specular material behaviour as shown in Fig. 1. Each 4-second sequence consists of 60 image 151 

frames, repeated in reverse order to create a continuous loop of rotating material. See supplementary 152 

video [movie_samples_stimuli.avi]. 153 

To allow for smooth presentation in the experiment, the image frames of all samples were cropped and 154 

downsampled to 400 x 260 pixels, and combined into single-trial frames with three samples on a black 155 

background at qHD (quarter high definition, 960 x 540 pixels) as shown in Fig. 2(a). Each sequence was 156 

started at a random time of the continuous loop to prevent participants from responding to initial 157 

frames of the video sequence.  158 

 159 
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  160 
(a) Experiment 1 (2AFC match-to-sample)   (b) Experiment 2 (Ratings) 161 

Fig. 2. Example of stimuli frames of (a) the similarity judgement experiment, where participants 162 

responded to: “Which of the bottom two materials appears most similar to the one on the top?”, and of 163 

(b) the rating experiment, where participants rated individual samples according to different visual 164 

attributes. 165 

 166 

Because data was collected online, we did not control  for viewing distance (viewing angles) or monitor 167 

settings. However, a post-hoc analysis of monitor settings showed a minimal screen resolution of 980  x 168 

577 pixels which allows for a full-resolution presentation of our stimuli. 169 

 170 

Experimental procedure 171 

Experiment 1 consisted of 93 trials. In each trial, participants judged the similarity of three presented 172 

samples as shown in Fig. 2(a), by deciding which of two match stimuli (at the bottom of the screen) was 173 

more similar to the test stimulus (at the top of the screen; 2AFC match-to-sample design). Because we 174 

do study similarity within a single material category (wood), we hypothesised a relatively low number of 175 

3 to 5 meaningful perceptual appearance dimensions. In line with the recommendations in (Haghiri,  176 

Rubisch, Geirhos, Wichmann, & von Luxburg, 2019) (30 samples and 3-5 dimensions: 900-1500 trials), 177 

we tested 1218 triplets, accounting for 10% of the full similarity matrix. 178 

Across all triplets, each sample was presented as a test stimulus in 160-164 trials and as a match 179 

stimulus in 304-344 trials. Each triplet was judged four times (i.e, by four different participants). Two out 180 

of four repetitions swapped the left and right match stimuli to control for a potential response bias. 181 

Each participant was presented with one of 28 unique trial sets or its copy with swapped match stimuli.  182 

Data were collected online using a custom script in the jsPsych framework (De Leeuw, 2015). After 183 

reading the instructions, participants completed three practice trials and 90 experimental trials (87 trials 184 

plus 3 catch trials). They initiated each trial by clicking the “Start” button after which a video with the 185 

three samples started looping (Fig. 2(a)). Participants responded to the instruction below the video 186 

(“Which of the bottom two materials appears most similar to the one on the top?”) by clicking on the 187 

“LEFT” or ”RIGHT” button at the bottom. The response stopped the loop and initiated the next trial, with 188 



 

 

7 

a progress bar at the top showing the number of remaining trials. Catch trials were presented at fixed 189 

positions (40th, 65th, and 84th trials) and featured the same sample presented twice, as standard and 190 

match stimulus, yielding a ground truth correct response. 191 

Data analysis 192 

All data is available from the following public repository: [link provided upon acceptance]. We next 193 

sought to identify a set of perceptual dimensions—with values for every sample—that could account for 194 

the observed pattern of similarity responses.  To do this, we analysed the responses using Variational 195 

Interpretable Concept Embeddings (VICE; Muttenthaler,  Zheng, McClure, Vandermeulen, Hebart, & 196 

Pereira, 2022). This algorithm takes as input the sparse (i.e., incomplete) similarity matrix obtained in 197 

the similarity rating experiment and estimates the full pairwise similarity matrix.  In the process, it 198 

iteratively estimates a set of underlying dimensions that could account for the observed responses. As 199 

our similarity judgement study comprises 2AFC task, we applied target matching instead of odd-one-out 200 

procedure.  201 

Several of the VICE algorithm’s hyperparameters can affect its results, including the number of 202 

dimensions. To validate the performance of the model, we created random splits of our participants’ 203 

similarity judgements into training (90% of responses) and test sets (10% of responses).  Then, we 204 

performed a limited grid search for selected hyperparameters of the model: learning rate [0.0005, 205 

0.001, 0.002], mixture of distributions in the spike-and-slab prior [Gaussians, Laplace], spike (a prior of 206 

probability at zero values) [0.125, 0.25, 0.75], slab (a prior of probability for the non-zero values) [0.2, 207 

0.5, 1.0], and probability of relative weighting of the distributions [0.4, 0.5, 0.6]. The training typically 208 

converged within 200 epochs, and typically resulted in between 8 and 11 dimensions (min. 4, max. 14 209 

dimensions). Details of the model selection and training process are reported in Section 1 of the 210 

supplementary material. 211 

Results 212 

Consistency of similarity judgement responses  213 

Our results show that participants were highly consistent in their similarity judgments. When analysing 214 

inter-individual consistency based on the four repetitions of each triplet, in 569 triplets (47%) all four 215 

responses were the same, in 439 triplets (36%) three responses were the same, and in 210 triplets (17%) 216 

responses were on par. This suggests that in the majority of trials (87%) subjects were consistent, only in 217 

the remaining 17% they were at chance. Also, when comparing sequences with their copies with 218 

swapped match stimuli, only in 61 trials (5%) swapping resulted in a different response. 219 

Deriving perceptual dimensions from similarity ratings  220 

Based on the parameter grid search (see Section 1 of the supplementary material), we picked the best 221 

performing model (9 dimensions; accuracy on the training set = 0.760; accuracy on the test set = 0.769). 222 

Importantly, even though the number of dimensions varied between different resulting models from the 223 
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parameter grid search, the meaning of those dimensions was highly preserved. Specifically, the 224 

embeddings obtained from the first five best VICE models (with 4-9 dimensions) were highly similar 225 

(mean correlation between similarity matrices of the 4 next best models to that of the best model was 226 

R=0.939). Thus, in the following we analyse the best performing VICE model under the justified 227 

assumption that it is representative of a family of models with similar embedding.  228 

The resulting embedding as shown in Fig. 3(a) is quite sparse, with on average only 6 values > 20% 229 

percentile in each similarity dimension. Fig. 3(b) shows the sum of loadings for individual dimensions 230 

and suggests that the first 5 dimensions have higher impact than the remaining 4. Fig. 3(c) compares 231 

how well the similarity responses from participants can be approximated by the values estimated from 232 

the VICE model.  Chance performance in the 2AFC match-to-sample task (red) is 50%, with the inter-233 

participant noise ceiling (grey) at 82%. The noise ceiling is computed as the average consistency across 234 

the four repetitions of each triplet, and represents the best possible prediction any model could achieve 235 

for our dataset, given the variation in the data.  236 

 237 

    238 
Fig. 3 Details on the 9 dimensions of the best VICE model: (a) estimated embedding, (b) dimensions 239 

loadings, and (c) average accuracy on test set (blue) with 95% confidence interval error-bar (red), noise 240 

ceiling (grey), and chance level (red). 241 

 242 

Fig. 4 shows samples rank-ordered by their embedding values in each of the 9 dimensions (highest 243 

values to the left). Each video sample is represented by its two most distinct frames, i.e. non-specular 244 

and specular reflection (refer to the supplementary to see the dynamic behaviour of the actual video 245 

samples). 246 

           247 
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 248 
Fig. 4 Five samples for each dimension rank-ordered based on embedding values. Each video sample is 249 

represented by both the most non-specular and most specular condition. See left side of the 250 

supplementary video [movie_similarity_vs_rating.avi]. 251 

 252 

The full pairwise similarity matrix of the wood samples that we obtained from the estimated embedding 253 

is shown in Fig. 5. We used hierarchical clustering (based on weighted average Euclidean distance) to 254 

cluster similar samples together, showing that samples had approximately three main visual modes, 255 

which might be visually interpreted as rough/contrast (M1), spatial frequency (M2), and directional 256 

(M3). These modes are present also in individual similarity dimensions in Fig. 4, where M1 is 257 

represented by dimensions 1, 5 and 9, M2 by 2 and 6, and M3 by 4, 8 and 3. Note that similar modes 258 

were also found using Louvain community detection method (Blondel, Guillaume, Lambiotte, & 259 

Lefebvre, 2008) as reported in Section 2 of the supplementary material. 260 

 261 

 262 
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 263 
Fig. 5 Estimated pairwise similarity matrix with samples ordered based on hierarchical clustering, and 264 

the depiction of the corresponding samples in the individual clusters. 265 

 266 

Discussion 267 

The analysis of participants’ similarity judgements using the VICE model provided us with 9 visual 268 

appearance dimensions of wood. However, even though visualising the embedding by ranking samples 269 

within each dimension may provide some intuition about the meaning of the dimensions, it is not clear 270 

whether these intuitions are the best description of the respective dimensions. For this reason we 271 

performed a second comparative experiment relying on standard attributes rating on a Likert scale. 272 

Experiment 2 273 

The main goal of the second experiment was to obtain perceptual judgements for all wood samples for a 274 

set of visual appearance attributes widely used in the field of material perception. By being able to 275 

describe our samples in terms of these specific perceptual attributes, we aimed to provide a more valid 276 

interpretation of the similarity dimensions from the first experiment–and a corresponding 277 

understanding of the main visual cues that naive observers use to describe and discriminate between 278 

types of wood. 279 

Methods 280 

Participants 281 

Forty five volunteer observers participated in the online experiment (age data were not collected). All 282 

participants reported normal or corrected-to-normal vision and no colour vision impairments. On 283 

average, the experiment took 22.0 minutes (SD = 17.6).  284 
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Apparatus and stimuli  285 

The stimuli used in Experiment 2 were the same as in Experiment 1. 286 

Procedure 287 

Participants were presented with 30 trials, each showing one of the sample videos from Experiment 1. 288 

The resolution of each stimuli image was 920 x 600 pixels. To make the task easier for participants, all 289 

other materials were simultaneously presented for comparison at a smaller scale at the top of the 290 

screen as shown in Fig. 2(b). Participants rated each material on ten visual appearance attributes 291 

(brightness, glossiness, colourfulness, directionality, complexity, contrast, roughness, 292 

patchiness/regularity, line elongation, and spatial scale), using a visual analog scale. The attributes were 293 

selected based on a review of previous research (Tamura, Mori, & Yamawaki, 1978; Rao & Lohse, 1996; 294 

Fleming, Wiebel, & Gegenfurtner 2013; Tanaka & Horiuchi, 2015, Nordvik, Schütte, & Broman, 2009) 295 

and salient differences between samples identified by the experimenters. For the participants, the 296 

meaning of each visual attribute was explained with a short sentence (e.g., brightness: “How bright is 297 

the material in comparison with the others?”). Also, the end points of each scale were labelled (e.g., 298 

brightness: “dark” and “bright”). A full description of each visual attribute and the corresponding 299 

endpoint labels is provided in Section 4 of the Supplementary Material.  300 

All attribute scales were on the screen simultaneously, and at the start of each trial all sliders  were set 301 

to the centre of each scale. Only after moving all sliders, participants could proceed to the next trial. 302 

Data analysis 303 

Again, a post-hoc analysis of monitor settings showed a sufficient minimum screen resolution of 980 x 304 

768 pixels. The inter-rater agreement was determined using intraclass correlation coefficient  (ICC; Koo 305 

& Li, 2016, with two-way random effects, based on mean rating and consistency). More detailed analysis 306 

of participants’ responses is provided in Section 5 of the Supplementary Material. 307 

Results 308 

The rating responses for each attribute formed unimodal distributions with mean values close to the 309 

central point (45.8 to 59.5) and similar SD values (21.7 to 29.6). The ICC indicated excellent reliability 310 

(ICC > 0.898) for all attributes but spatial scale where ICC = 0.659 indicated only moderate reliability.  311 

 312 
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 313 
Fig. 6 Five samples for each rating dimension rank-ordered based on average rating responses. Each 314 

video sample is represented by both the most non-specular and most specular condition. See right side 315 

of supplementary video [movie_similarity_vs_rating.avi]. 316 

 317 

Samples with the highest rating responses for each rating dimension are shown in Fig. 6, with visually 318 

intuitive results in the majority of dimensions (again with the exception of spatial scale).  319 

 320 

Note that these examples also suggest similarities between rating dimensions (i.e. overlap in samples for 321 

e.g. colorfulness and contrast). To measure these inter-class similarities, we computed Pearson 322 

correlations for mean rating values across all 30 samples. As shown in Fig. 7, we observe a high similarity 323 

between colorfulness-contrast, directionality-line elongations and complexity-patchiness/regularity. On 324 

the other hand, a high dissimilarity is observed for brightness-colorfulness and brightness-contrast. 325 

These similarities are also evident at the level of individual samples, as is shown in Fig. 10(a) which is 326 

showing similarity matrices for individual rating dimensions.  327 
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 328 

                         329 
Fig. 7 Inter-class similarity, computed as Pearson correlation across all samples, with the dendrogram 330 

showing the results of hierarchical clustering of attributes. 331 

 332 

See supplementary video http://staff.utia.cas.cz/filip/tmp/movie_similarity_vs_rating.avi with material 333 

samples ranking as a function of dimensions loadings of VICE (left) and rating responses having the 334 

highest and the lowest values.  335 

Discussion 336 

Our rating experiment provided reliable and visually intuitive data on the selected visual appearance 337 

attributes, but also highlighted mutual dependencies between some of the attributes. This suggests that 338 

our samples can be described by less than 10 attributes, that is, the latent visual dimensionality of our 339 

samples is lower than 10.  In the next section, we compare the visual dimensions obtained from the 340 

similarity and rating experiments. 341 

 342 

Interpretation of similarity dimensions 343 

As the meaning of the similarity dimensions discovered by the VICE model are not known, we used cross 344 

correlation and multilinear regressions between appearance ratings and similarity judgements as well as 345 

between their respective similarity matrices. This allowed us to assign meaning to the similarity 346 

dimensions by relating them to the meaningful appearance ratings.  347 

Cross-correlation of similarity and rating dimensions 348 

Across all appearance attributes, the correlation between similarity matrices from ratings and similarity 349 

judgements is relatively low (Pearson R=0.335; exclusion of matrix diagonal), with the highest 350 

correlations for  directionality (R=0.448) and contrast (R=0.462). This confirmed our expectation that the 351 

similarity embedding cannot be explained using a single rating dimension. 352 

http://staff.utia.cas.cz/filip/tmp/movie_similarity_vs_rating.avi


 

 

14 

For a direct correlation between all ratings and all similarity dimensions see Fig. 8(a). The highest 353 

positive correlation was R=0.744 and the highest negative correlation was R=-0.813. Notably, similarity 354 

dimensions 1, 3, 4 and 5 show similar patterns of correlation to rating attributes colourfulness, 355 

directionality, complexity and roughness. On the other hand, similarity dimension 7 is not correlated 356 

strongly with any rating attribute, which suggests that none of them can explain the visual appearance 357 

captured by this particular dimension.  To test whether the similar pattern of correlations across 358 

similarity dimensions follows from a strong dependency between individual rating attributes, we 359 

computed PCA on our rating data. Fig. 8(b) shows that only four PCA components explain 91.1% of the 360 

variance, suggesting that the effective number of main visual appearance dimensions for our set of 361 

wood samples is about 5-10. We confirm this hypothesis by using a statistical approach to estimate the 362 

number of dimensions based on triplet embedding accuracy of ordinal triplets embedding  (Künstle, von 363 

Luxburg, & Wichmann, 2022) – which identifies 6 as the inherent dimensionality of our data (see details 364 

on this analysis in Section 3 of the supplementary material). This is also supported by the steep drop of 365 

similarity embedding factor loadings with more than five dimensions (Fig. 3(b)). 366 

 367 

         368 
Fig. 8 (a) Correlations of rating dimensions (rows) to similarity dimensions (columns), with negative 369 

correlations in red and positive correlations in green (range [-1,1]). (b) Cumulative singular values 370 

loadings of PCA computed on correlations across rating dimensions (a). 371 

 372 

A more quantitative comparison between similarity dimensions and rating attributes is shown in Fig. 9. 373 

For each similarity dimension, we ordered and scaled samples according to their dimension values. The 374 

inset shows how well the variation in each similarity dimension is correlated with different rating 375 

attributes. Here we observe similar patterns for dimensions 1, 3, 4, and 5 while dimension 7 is virtually 376 

constant across rating attributes. R2 scores in the legend demonstrate how well each similarity 377 

dimension can be predicted by a linear regression of rating attributes.  378 

 379 
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 380 
Fig. 9 Sample rank-ordered by embedding values in VICE similarity dimensions. Inset: Correlations 381 

between similarity (VICE) and rating attributes, obtained from linear regressions (R2 scores provide 382 

information on how well the linear regression using rating dimensions explained individual similarity 383 

dimensions. See the supplementary video [movie_similarity_scaled.avi]. 384 

 385 

To evaluate similarity of results obtained from both experiments, we computed the rating similarity 386 

matrix as Euclidean distance across all attributes. A direct correlation between similarity matrices 387 

obtained from similarity judgement and attributes rating (excluding diagonal elements) was R=0.627 (R2 388 

= 0.393). The matrices are shown in the first row of Fig. 10(a,b).  389 

 390 

To assess the main visual dimensions for similarity judgements, we computed multidimensional scaling 391 

MDS (Carroll & Arabie, 1998) on the VICE similarity matrix. The MDS projection of samples onto the first 392 

two dimensions are shown in Fig. 10(d). In line with our visual interpretation of the three main visual 393 

modes in Fig. 5, the first MDS dimension can be interpreted as related to roughness, the second to 394 

directionality and the third to spatial frequency. For clarity, we also included these plots with the video 395 

samples as presented to observers. We compared MDS results over the similarity matrices and 396 

coordinates of all 30 samples for the first two MDS dimensions after Procrustes alignment are shown in 397 
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Fig. 10(e). For MDS of VICE similarity matrix into all 3 dimensions see a top part of the supplementary 398 

video [movie_MDS_simmat_linreg.avi]. 399 

                  400 

 401 
Fig. 10 A comparison of similarity matrices obtained by (a) similarity judgements and (b,c) ratings using 402 

L2-norm and linear regression, respectively. The correlation between matrices is for (b) R=0.627 (R2 = 403 

0.393) and for (c) R=0.723 (R2=0.523). Corresponding embeddings of samples in the first two MDS 404 

dimensions for (d) similarity judgement and (e,f) ratings (after Procrustes alignment).  405 

 406 

Prediction of similarity matrix from rating attributes 407 

Beyond simple correlations between individual ratings and similarity dimensions, we can test how well a 408 

combination of rating attributes predict similarity judgements. To this end, we used multilinear 409 

regression to predict the similarity judgement matrix by a linear combination of the rating attribute 410 

similarity matrices shown in Fig. 11(a). The matrices’ diagonals were kept to anchor scaling. The 411 

regression model explains about 52% of the variance in similarity judgements (R=0.723, R2=0.523), while 412 

still preserving the major similarity modes as shown in Fig. 11(a). To evaluate the importance of 413 

individual rating attributes for the reconstruction, we performed leave-one-out regressions and the 414 

resulting drops in explained variance. Fig. 11(b) shows that the most important attributes are brightness, 415 

directionality, and roughness. A comparison of the obtained multi-dimensional scaling over the similarity 416 

matrices and coordinates of all 30 samples for the first two MDS dimensions after Procrustes alignment 417 
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are shown in Fig. 10(f). Also see a Section 6 of the supplementary material for samples alignment 418 

according to MDS and video [movie_MDS_simmat_linreg.avi], comparing three MDS dimensions of 419 

similarity judgements similarity matrix (top) with its linear regression using rating attributes (bottom). 420 

 421 

 422 

 423 
Fig. 11 (a) Similarity matrices of individual rating attributes compared to the VICE similarity matrix and 424 

the result of the linear combination of the 10 rating similarity matrices. (b) Results of leave-one-out 425 

regression analyses showing the respective drops in correlation below the red baseline due to individual 426 

attributes removal.  427 

Prediction of similarity dimensions from rating attributes 428 

Finally, we used linear regression to predict individual similarity dimensions by a linear combination of 429 

the rating attributes. Across all dimensions, ratings can well explain similarity dimensions, with an 430 

average of R=0.851 (R2=0.731). R2 scores of similarity dimensions represented by the regression model 431 

are shown in Fig. 12(a). All dimensions except 7 and 9 can be well explained by a combination of rating 432 

attributes. As reported previously, dimension 7 is not well predicted by any of the rating attributes. This 433 

might be for two reasons: either none of our predefined attributes is not capturing the same visual 434 

appearance as that dimension, or there is a general bias in our rating data  that is introduced by a 435 

particular interpretation of the to-be-rated attributes. For instance line elongation, patchiness/regularity 436 

or spatial scale might have different meanings at different frequency scales. For instance samples 22 437 

and  30 (see Fig. 1) both share a fine detail structure and a distinct low-frequency stripy pattern. As a 438 

result, observers might be confused as to whether these attributes should be evaluated on a fine or 439 

coarse scale, resulting in overall ambiguous ratings. In Fig. 12(b), we are plotting normalised regression 440 

values to visualise the contribution of rating attributes to each of the similarity dimensions. For example, 441 

dimension 1 is strongly negatively related to colorfulness and roughness, but strongly positively related 442 

to contrast, regularity and directionality; while dimension 5 represents materials that were judged low 443 

on line elongation, brightness and glossiness (see samples rank ordering along dimensions in Fig. 9). 444 

 445 
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 446 
Fig. 12 (a) R2 scores of similarity dimensions regression of rating dimensions (blue) and regression of 447 

computational image statistics, with corresponding normalised regression coefficients showing 448 

contribution of rating dimensions (b) and computational statistics (c) for reconstruction of each 449 

similarity dimension. 450 

 451 

Relationship to computational statistics  452 

To relate similarity dimensions to computational statistics, we used standard image statistics used in 453 

texture synthesis related to human low-level perception of textures (Portilla & Simoncelli, 2000, 454 

Motoyoshi, Nishida, Sharan, & Adelson, 2007), namely minimum, maximum, mean, variance, skewness, 455 

and kurtosis. We supplied additional statistics evaluating image directionality (Maskey & Newman, 2021) 456 

and frequency content in three bands (low, mid, and high frequencies) computed from PSD of image 457 

converted to the Fourier domain. The final values of statistics were averaged across all frames of movie 458 

sequence. We used these statistics for linear regression of similarity ratings and R2 scores of results are 459 

shown as yellow bars in Fig. 12(a). We observe similar values of R2 scores to those obtained from rating 460 

regression and in general all similarity dimensions, except 7 and 9, can be represented reasonably well 461 

using our statistics. Mean R2 score across all dimensions was 0.65 (R=0.73). Normalised regression 462 

coefficients of individual statistics are shown in Fig. 12(c). For example dimension 1 has the highest 463 

coefficients for maximum and minimum, which relates to contrast, while dimension 2 has the highest 464 

coefficients for minimum and  variance which relates to spatial variations within the structure as we can 465 

observe in typical representants in respective dimensions in Fig. 9. Also see a supplementary video 466 

[movie_MDS_simmat_stats.avi], comparing three MDS dimensions of similarity judgements similarity 467 

matrix (top) with a similarity matrix obtained as Euclidean distance of all eleven statistics (bottom). 468 
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General discussion 469 

In this study, we set out to identify the perceptual core characteristics of wood. Characterising the visual 470 

appearance of wood is complex because of the variety in factors like colour, grain patterns, fine-scale 471 

relief and reflectance behaviour. Accordingly, a description in physical terms requires very high-472 

dimensional measurements that capture the image projected by the material surface across all possible 473 

lighting conditions and viewing angles. Yet, we reasoned that when human observers are asked to 474 

compare samples—or judge the appearance of a single sample—they would rely on a relatively small 475 

number of dimensions that together summarise the overall ‘look’ of each surface and its texture—what 476 

we might call a ‘visual signature’ of the material (Sharan, Liu, Rosenholtz, & Adelson, 2013; Schmidt, 477 

Hebart, & Fleming, 2022).   478 

Here, we wanted to estimate such an internal multidimensional representation by asking 479 

observers to make comparisons between samples. A secondary goal was to test the extent to which 480 

different methods of probing this putative representation yielded similar embeddings of the material 481 

samples.  We reasoned that if observers draw on shared, core perceptual dimensions to judge the 482 

appearance of wood, it should be possible to probe this representation using distinct tasks. 483 

To test this, we performed two experiments using movies of thirty samples of different wood 484 

veneers, rotating in such a way as to reveal both non-specular and specular appearance modes.  In the 485 

first experiment, we took a data-driven approach, asking participants to make relative similarity 486 

judgments in a 2AFC task, from which we sought to derive underlying dimensions using the VICE 487 

algorithm (Muttenthaler,  Zheng, McClure, Vandermeulen, Hebart, & Pereira, 2022). In the second 488 

experiment, we defined a set of ten appearance characteristics and asked participants to rate each 489 

sample in terms of all ten characteristics, effectively directly stating the location of each sample in a ten-490 

dimensional appearance space.  Our main findings can be summarised as follows: 491 

● In Experiment 1, the VICE algorithm revealed that nine dimensions could account for 75% of the 492 

variance in the similarity judgments, consistent with the notion of a low-dimensional ‘visual 493 

fingerprint’ summary representation of their appearance. 494 

● In Experiment 2, participants were consistent in their judgments of the ten appearance 495 

characteristics, suggesting agreement about the embedding of samples relative to one another. 496 

● Comparisons between the two experiments showed a significant overlap between embeddings 497 

of the samples derived from the two tasks, providing further evidence for a core representation 498 

of wood materials, with similar-looking samples close to one another, and more distinct ones 499 

further away from one another within the multidimensional appearance space. 500 

● The consistency between the two experiments can also be demonstrated  by approximating the 501 

dimensions inferred from Experiment 1 as a weighted linear combination of the ratings in 502 

Experiment 2. 503 

● Finally, a set of quite simple low-level image features, designed to capture similar appearance 504 

characteristics as the rating dimensions predict the ratings and VICE dimensions surprisingly 505 

well,  using simple linear regression.  Although these image features will not be the exact 506 

quantities that the visual system uses to represent and compare the wood samples, this shows 507 

how we can use straightforward image-computable models to predict perceived differences in 508 
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appearance (under constant viewing conditions).  This has potential practical applications in 509 

many areas. 510 

Our study also provides a proof-of-principle demonstration that it is possible to establish embeddings of 511 

items from a single basic-level category (here: wood) within a perceptual space using either a subset of 512 

all possible similarity comparisons, or through direct rating of particular features.  The study differed 513 

from previous investigations in the use of movies rather than static images, capturing a wide range of 514 

appearances for each sample, and in the comparison between similarity and appearance ratings. 515 

Limitations and future directions 516 

Although our study provides a first proof-of-principle for identifying perceptual dimensions within 517 

categories, there are a number of important limitations of the approach, which we consider here. 518 

Limited number of wooden samples 519 

The stimulus set considered here consisted of only thirty samples of different wood veneers, as listed in 520 

Table 1. This is one of the largest sets of wooden samples used in a psychophysical analysis to date, and 521 

we carefully selected this set from a catalogue of over one hundred wood veneers so as to provide as 522 

broad and uniform a range of appearances as possible. However, including a larger number of samples 523 

would necessarily provide additional information about the embedding, and would potentially reveal 524 

additional perceptual dimensions by covering a wider range of appearances. It would also be particularly 525 

interesting to include in future work multiple samples of each species (see Table 1), to capture within-526 

item variability as well.  We would expect that although different samples would be clearly 527 

discriminable, generally they would tend to occupy very close locations within the multidimensional 528 

perceptual space. 529 

Limited observation and illumination geometry 530 

By using dynamic stimuli, in contrast to previous studies, which tended to offer only a single view of 531 

each sample, we were able to provide observers with some information about how the appearance of 532 

the samples changed depending on viewing conditions, including both specular and non-specular 533 

conditions. Nevertheless, this still represented a limited subset of all possible lighting-sample-viewer 534 

configurations.  We had to limit camera and light trajectories so that movies were of reasonable 535 

duration. Based on pilot work with a range of different sampling parameters, we identified a rotation 536 

that was of acceptable durations and that was intuitive for observers. As the appearance of wood does 537 

not typically change much with polar angle, we limited polar viewing angles to 45o and changed 538 

azimuthal angles only. A comparison of image histograms from our videos with those of the full BTF for 539 

the same material (at polar angles 45o including over 400 images for different combinations of 540 

illumination and view azimuthal angles) provided mean differences of X2 lower than 0.10.  This leaves us 541 

confident that the selected views were representative of the overall appearance. 542 

 543 

 544 
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Table 1 A complete list of wood species used in the experiment. 545 

01 afzelia 11 white ash 21 rosewood 

02 masur birch 12 ash heartwood 22 plane 

03 pommele bubinga 13 maple burl 23 satinwood 

04 oak 14 European lime (linden) 24 spruce 

05 burr oak 15 macassar ebony 25 spruce knotted 

06 smoked oak 16 movingui (lemon) 26 tineo 

07 eucalyptus 17 olive 27 American cherry 

08 gaboon 18 European walnut 28 tulipwood 

09 pear 19 Peruvian walnut 29 wenge 

10 European apple 20 padauk 30 zebrawood 

 546 

Limited size of samples 547 

On a related point, the visible area of the samples was around 50x50mm. This size was selected to 548 

deliver fine surface details. On the other hand, for certain species, there may be low-frequency content 549 

that was excluded by the small size. To compensate for this during video acquisition the location of the 550 

captured area on the veneer specimen was carefully selected to demonstrate the main sample’s 551 

characteristics. A similar comparison of histogram statistics with BTF data over a large scale of image 552 

plane resulted in similarly low differences in histograms, again indicating that the patch was 553 

representative of the sample as a whole.  554 

Limited coverage of triplets for similarity judgements 555 

In Experiment 1, we measured only a small subset of all possible stimulus triplets.  Specifically, our 556 

experiment had a coverage of 10%, which is nevertheless far greater than the less than 2% coverage 557 

used in other studies using related data analyses (Hebart, Zheng, Pereira, & Baker, 2020). On the other 558 

hand, our number of samples is considerably lower, greatly reducing the number of necessary trials. We 559 

followed the recommendations in (Haghiri, Wichmann, & von Luxburg, 2020) to estimate the number of 560 

judgements, although future studies could potentially increase the coverage further for small stimulus 561 

sets like ours. 562 

Stability of dimensions 563 

Statistical inference methods like VICE are stochastic, so repeated runs of the algorithm on the same 564 

data can deliver slightly different outcomes.  This naturally raises questions about the stability and 565 

interpretation of the outcome. We tested a wide range of hyperparameter values, and found the values 566 



 

 

22 

we used delivered representative results. Importantly, although the exact number of dimensions varied 567 

across runs, the meanings of those dimensions (i.e., the loadings across samples) were highly conserved.  568 

This, along with the high extent to which the dimensions could predict similarity ratings gives high 569 

confidence that the analysis delivered robust results.  Increasing the number and diversity of samples, as 570 

well as the coverage would lead to even greater stability, although with obvious practical costs.  It is 571 

nevertheless important to emphasise that in interpreting results on small and constrained stimulus sets 572 

like ours, greater emphasis should be placed on the embedding of items within the multidimensional 573 

space than on the precise number or direction of the dimensions returned by VICE (or related 574 

algorithms).  The convergence between the ratings and the VICE analysis supports this view. 575 

Intuitive interpretability of individual dimensions 576 

While some studies (e.g., Hebart, Zheng, Pereira, & Baker, 2020; Josephs, Hebart, & Konkle, 2023; 577 

Schmidt, Hebart, & Fleming, 2022) have found that analyses similar to VICE deliver dimensions that are 578 

highly intuitively interpretable, in our case, most of the dimensions appeared to be better understood as 579 

weighted combinations of more intuitive factors. This can be seen in Fig. 9, for example, in which 580 

samples are ranked by their values of the nine dimensions returned by VICE. Some of the dimensions 581 

seem to capture intuitive concepts.  For example, dimensions 4 appears related to stripiness, and this is 582 

consistent with the high loading of the ‘Directionality’ and ‘Line’ features in the multiple regression for 583 

this feature.  Dimension 6, in contrast, seems to be approximately the opposite, with an emphasis on 584 

samples with turbulent texture patterns rather than linear grain. However, for most of the other 585 

dimensions the interpretation is less intuitive. This is likely due to the small and constrained sample set.  586 

With diverse image sets that span the entire range of commonly occurring objects, for example (Hebart, 587 

Zheng, Pereira, & Baker, 2020), almost all samples will have near-zero values of any given attribute, 588 

while there are still sufficient numbers of images with high values to enable a dimension to emerge from 589 

the analysis.  Indeed, such datasets are particularly well suited for seemingly meaningful individual 590 

dimensions to be recovered by the sparse nonnegative matrix factorization. By contrast, within-category 591 

samples, as in our experiments, tend to involve characteristics that are more uniformly distributed 592 

across samples.  This is likely to be one of the reasons that the recovered dimensions were composites 593 

of multiple factors.  Nevertheless, again it should be noted that we place greater emphasis on the 594 

embedding of items within the space than on the exact orientation of the underlying dimensions. 595 

Choice of rating dimensions 596 

There are practical limits to the number of appearance attributes that participants can feasibly be asked 597 

to rate for each sample.  As with the majority of previous perceptual studies of wood surfaces 598 

(Nakamura, Masuda, & Shinohara, 1999; Nordvik, Schütte, & Broman, 2009; Fujisaki, Tokita, & Kariya, 599 

2015; Manuel, Leonhart, Broman, & Becker, 2015, Wan, Li, Zhang, Song, & Ke, 2021) we preselected a 600 

list of visual properties in our rating experiment.  This list, of course, is likely to be incomplete as there 601 

are potentially infinitely many ways of describing samples, including those that may make intuitive visual 602 

sense, but which cannot easily be put into words. Nevertheless, we find that this set of dimensions leads 603 

to intuitive and repeatable judgments, which are sufficient to capture an embedding of the samples 604 

similar to that revealed by the similarity ratings and VICE analysis.  Future studies could also ask 605 
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participants, rather than the experimenters, to provide terms that describe important appearance 606 

differences between samples, which other participants would then rate (see, e.g., Van Assen, Barla, & 607 

Fleming, 2018). 608 

Conclusions 609 

Our study sought to identify core perceptual dimensions underlying the appearance of wood.  Using 610 

thirty movies of rotating planar wooden veneer samples, we asked participants to judge the similarity 611 

between items and rate each sample along ten predefined dimensions.  The results revealed a 612 

consistent embedding of samples between the two tasks, suggesting a core internal representation of 613 

the samples, capturing the overall ‘look’ of the samples in a relatively small number of dimensions.  614 

These could be expressed as a weighted linear combination of the following ten attributes: brightness, 615 

glossiness, colourfulness, directionality, complexity, contrast, roughness, patchiness/regularity, line 616 

elongation, and spatial scale.  The results not only reveal the core dimensions underlying the perception 617 

of wood, they also provide a proof of concept demonstration for how perceptual dimensions underlying 618 

judgments within a single basic-level category can be probed using multiple tasks.     619 

 620 



 

 

24 

Acknowledgements 621 

This research has been supported by the Czech Science Foundation grant GA22-17529S as well as the 622 

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation—project number 222641018—623 

SFB/TRR 135 TP C1), and by the Research Cluster 'The Adaptive Mind', funded by the Excellence Program 624 

of the Hessian Ministry of Higher Education, Science, Research and Art.  625 

 626 

References  627 
 628 

Anderson, B. L. (2011). Visual perception of materials and surfaces. Current biology, 21(24), R978-R983. 629 

Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2015). Material recognition in the wild with the materials in 630 

context database. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 631 

3479-3487). 632 

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in 633 

large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008. 634 

Bracci, S., & Op de Beeck, H.P. (2023). Understanding Human Object Vision: A Picture is Worth a 635 

Thousand Representations. Annual Review of Psychology, 74, pp.113-135. 636 

Carroll, J. D., & Arabie, P. (1998). Multidimensional scaling. Measurement, judgment and decision 637 

making, 179-250. 638 

Dana, K.J., van Ginneken, B., Nayar, S.K., &  Koenderink, J.J. (1999). Reflectance and texture of real-world 639 

surfaces, ACM Transactions on Graphics, Vol.18, Issue 18, pp.1-34 640 

De Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web 641 

browser. Behavior research methods, 47, 1-12. 642 

Ferwerda, J. A., Pellacini, F., & Greenberg, D. P. (2001). Psychophysically based model of surface gloss 643 

perception. In SPIE Human vision and electronic imaging vi, Vol. 4299, pp. 291-301. 644 

Filip, J., Vavra, R., Haindl, M., Zid, P., Krupicka, M., & Havran, V. (2013). BRDF slices: Accurate adaptive 645 

anisotropic appearance acquisition. In Proceedings of the IEEE Conference on Computer Vision and 646 

Pattern Recognition (pp. 1468-1473). 647 

Fleming, R. W., Dror, R. O., & Adelson, E. H. (2003). Real-world illumination and the perception of 648 

surface reflectance properties. Journal of vision, 3(5), 3-3. 649 

Fleming, R. W., & Bülthoff, H. H. (2005). Low-level image cues in the perception of translucent materials. 650 

ACM Transactions on Applied Perception, 2(3), 346-382. 651 



 

 

25 

Fleming, R. W., Jäkel, F., & Maloney, L. T. (2011). Visual perception of thick transparent materials. 652 

Psychological science, 22(6), 812-820. 653 

Fleming, R. W., Wiebel, C., & Gegenfurtner, K. (2013). Perceptual qualities and material classes. Journal 654 

of vision, 13(8), 9-9. 655 

Fleming, R. W. (2017). Material perception. Annual review of vision science, 3, 365-388. 656 

Fujisaki, W., Tokita, M., & Kariya, K. (2015). Perception of the material properties of wood based on 657 

vision, audition, and touch. Vision research, 109, 185-200. 658 

Haghiri, S., Rubisch, P., Geirhos, R., Wichmann, F., & von Luxburg, U. (2019). Comparison-based 659 

framework for psychophysics: Lab versus crowdsourcing. arXiv preprint arXiv:1905.07234. 660 

Haghiri, S., Wichmann, F. A., & von Luxburg, U. (2020). Estimation of perceptual scales using ordinal 661 

embedding. Journal of vision, 20(9), 14-14. 662 

Haindl, M., & Filip J. (2013). Visual Texture: Accurate Material Appearance Measurement, 663 

Representation and Modeling. Advances in Computer Vision and Pattern Recognition,  Springer-Verlag 664 

London 665 

Hebart, M. N., Zheng, C. Y., Pereira, F., & Baker, C. I. (2020). Revealing the multidimensional mental 666 

representations of natural objects underlying human similarity judgements. Nature human behaviour, 667 

4(11), 1173-1185. 668 

Josephs, E. L., Hebart, M. N., & Konkle, T. (2023). Dimensions underlying human understanding of the 669 

reachable world. Cognition, 234, 105368. 670 

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for 671 

reliability research. Journal of chiropractic medicine, 15(2), 155-163. 672 

Künstle, D. E., von Luxburg, U., & Wichmann, F. A. (2022). Estimating the perceived dimension of 673 

psychophysical stimuli using triplet accuracy and hypothesis testing. Journal of Vision, 22(13), 5-5. 674 

Lewin, M., & Goldstein, I.S. (1991). Wood Structure and Composition,  International Fiber Science and 675 

Technology, CRC Press 676 

Manuel, A., Leonhart, R., Broman, O., & Becker, G. (2015). Consumers’ perceptions and preference 677 

profiles for wood surfaces tested with pairwise comparison in Germany. Annals of forest science, 72(6), 678 

741-751. 679 

Marlow, P. J., Kim, J., & Anderson, B. L. (2012). The perception and misperception of specular surface 680 

reflectance. Current Biology, 22(20), 1909-1913. 681 



 

 

26 

Maskey, M., & Newman, T. S. (2021). On measuring and employing texture directionality for image 682 

classification. Pattern Analysis and Applications, 24(4), 1649-1665. 683 

McCamy, C. S. (1996). Observation and measurement of the appearance of metallic materials. Part I. 684 

Macro appearance. Color Research & Application, 21(4), 292-304. 685 

Motoyoshi, I., Nishida, S. Y., Sharan, L., & Adelson, E. H. (2007). Image statistics and the perception of 686 

surface qualities. Nature, 447(7141), 206-209. 687 

Muttenthaler, L., Zheng, C. Y., McClure, P., Vandermeulen, R. A., Hebart, M. N., & Pereira, F. (2022). 688 

VICE: Variational Interpretable Concept Embeddings. Advances in Neural Information Processing 689 

Systems, 35, 33661-33675. 690 

Nakamura, M., Masuda, M., & Shinohara, K. (1999). Multiresolutional image analysis of wood and other 691 

materials. Journal of wood science, 45, 10-18. 692 

Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsburg, I.W., & Limperis, T. (1977). Geometrical 693 

considerations and nomenclature for reflectance. NBS Monograph 160, pp. 1-52 694 

Nordvik, E., Schütte, S., & Broman, N. O. (2009). People’s perceptions of the visual appearance of wood 695 

flooring: A kansei engineering approach. Forest products journal, 59(11-12), 67-74. 696 

Paulun, V. C., Schmidt, F., van Assen, J. J. R., & Fleming, R. W. (2017). Shape, motion, and optical cues to 697 

stiffness of elastic objects. Journal of vision, 17(1), 20-20. 698 

Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex 699 

wavelet coefficients. International journal of computer vision, 40, 49-70. 700 

Rao, A. R., & Lohse, G. L. (1996). Towards a texture naming system: Identifying relevant dimensions of 701 

texture. Vision Research, 36(11), 1649-1669. 702 

Schmidt, F., Hebart, M. N., & Fleming, R. W. (2022). Core dimensions of human material perception. 703 

PsyArXiv. doi:10.31234/osf.io/jz8ks 704 

Sharan, L., Liu, C., Rosenholtz, R., & Adelson, E. H. (2013). Recognizing materials using perceptually 705 

inspired features. International journal of computer vision, 103, 348-371. 706 

Sharan, L., Rosenholtz, R., & Adelson, E. (2009). Material perception: What can you see in a brief 707 

glance?. Journal of Vision, 9(8), 784-784. 708 

Sharan, L., Rosenholtz, R., & Adelson, E. H. (2014). Accuracy and speed of material categorization in real-709 

world images. Journal of vision, 14(9), 12-12. 710 



 

 

27 

Tamura, H., Mori, S., & Yamawaki, T. (1978). Textural features corresponding to visual perception. IEEE 711 

Transactions on Systems, man, and cybernetics, 8(6), 460-473. 712 

Tanaka, M., & Horiuchi, T. (2015). Investigating perceptual qualities of static surface appearance using 713 

real materials and displayed images. Vision research, 115, 246-258. 714 

Van Assen, J. J. R., Barla, P., & Fleming, R. W. (2018). Visual features in the perception of liquids. Current 715 

biology, 28(3), 452-458. 716 

Wan, Q., Li, X., Zhang, Y., Song, S., & Ke, Q. (2021). Visual perception of different wood surfaces: an 717 

event-related potentials study. Annals of Forest Science, 78, 1-18. 718 

Wendt, G., Faul, F., & Mausfeld, R. (2008). Highlight disparity contributes to the authenticity and 719 

strength of perceived glossiness. Journal of Vision, 8(1), 14-14. 720 

Wendt, G., Faul, F., Ekroll, V., & Mausfeld, R. (2010). Disparity, motion, and color information improve 721 

gloss constancy performance. Journal of vision, 10(9), 7-7. 722 

Wiebel, C. B., Valsecchi, M., & Gegenfurtner, K. R. (2013). The speed and accuracy of material 723 

recognition in natural images. Attention, Perception, & Psychophysics, 75, 954-966. 724 

 725 

 726 

 727 



 

 

28 

Supplementary material 728 

 729 

1. VICE algorithm training 730 

 731 

We tested the VICE model on 76 different combinations of input parameters such as et, spike, slab, pi 732 

and distribution (gaussian, laplace) (cf. Muttenthaler,  Zheng, McClure, Vandermeulen, Hebart, & 733 

Pereira, 2022). Results are shown in Fig. S1(a), where the tested models are rank ordered according to 734 

test accuracy (red), with the corresponding training accuracy (blue). The converged models are 735 

highlighted as circles. Fig. S1(b) shows that the number of dimensions is relatively stable, within a range 736 

between 5 to 14 and a typical value of 10 dimensions. 737 

           738 

  739 

             740 
Fig. S1 Results of grid search across different VICE model parameters. (a) Model accuracies on train 741 

(blue) and test (red) sets (across all tested models) sorted according to accuracy on test set (red), and (b) 742 

corresponding obtained numbers of dimensions for converged models (also denoted as circles in (a)).  743 

 744 

Fig. S2 shows the training process of the best performing converged model with the highest accuracy.  745 

 746 

 747 

 748 
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 749 
Fig. S2 Training process of the best performing model. (a) Model accuracy on the training (blue) and test 750 

(orange) dataset, (b) dimensionality reduction over 200 epochs of VICE algorithm. 751 

 752 

2. Louvain community detection 753 

 754 

We also applied the community detection method (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) on 755 

the estimated similarity matrix. The resulting three clusters visualised in Fig. S3 can be interpreted as (1) 756 

contrast/roughness, (2) non-directional/low frequency, (3) directional/high frequency modes. These 757 

results are in agreement with the results of hierarchical clustering and MDS analysis. 758 

 759 

 760 
Fig. S3 Clustering based on the Louvain community detection method divided the material samples into 761 

three clusters. See supplementary video [movie_Louvain.avi]. 762 

 763 

 764 

3. Similarity judgement data dimensionality analysis 765 

 766 

As the dimensionality of our dataset is unknown, we follow a recent approach by (Künstle, von Luxburg, 767 

& Wichmann, 2022) to estimate the number of perceived dimensions from triplet experiments, based 768 

on triplet embedding accuracy. When splitting our triplet dataset into 90% training and 10% test 769 

samples, we obtain an ordinal Euclidean embedding (Haghiri, Wichmann, & von Luxburg, 2020) for the 770 

perceptual ratings. This procedure always leads to a decreasing triplet error (cross-validated on the 771 

validation set) with an increasing number of dimensions until a sufficient number of dimensions has 772 
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been reached. We ran a cross-validation with 10 repetitions, resulting in a drop of accuracy  with more 773 

than 6 dimensions. This suggests that inherent dimensionality of our dataset is close to 6 perceptual 774 

dimensions. Note that our analysis shown in Fig. S1(b) reports a dimensionality of the typical estimated 775 

similarity embedding between 8 and 10 dimensions. This seems to contradict the estimate of the 776 

inherent dimensionality of 6 as reported above (and shown in Fig. S4). However, our linear regression 777 

analysis (blue bars in Fig. 12(a)) suggests that several of our similarity dimensions (namely dimension 7) 778 

cannot be reliably predicted from the appearance ratings, which might suggest that: (1) our rating 779 

dimensions do lack some important visual features, or (2) the number of representational dimensions is 780 

lower than the estimate of the VICE algorithm. In favour of the latter, the factor loadings of individual 781 

dimensions (Fig. 3(b)) show a drop in loadings for dimensions higher than 5. Also, when using PCA on the 782 

rating data to test whether intercorrelations (Fig. 8(b)) allow us to reduce the dimensionality, we end up 783 

with not more than 6 dimensions. 784 

 785 

 786 

Fig. S4 Triplet ordinal embedding error as a function of the number of dimensions for training and test 787 

set of triplets from our similarity experiment. 788 

 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 
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 797 

4. Rating experiment details 798 

 799 

The interface of the rating experiment is shown in Fig. S5. 800 

 801 
Fig. S5 Example stimulus frame from the rating experiment. 802 

 803 

Instructions of the rating experiment were as follows: “Below the video, there are 10 sliders for the 804 

visual material attributes. Your task is to adjust the slider position for each material. You may consider 805 

the appearance of the other materials (at the top of the screen) to choose your rating appropriately 806 

within the range we are testing.” 807 

The following visual attributes are evaluated: 808 

1. Brightness - how bright is the material? 809 

2. Glossiness - how shiny is the material? 810 

3. Colourfulness - how colourful is the material? 811 

4. Directionality - presence of directional structures in the texture 812 

5. Complexity - how complex are the patterns on the surface? 813 

6. Contrast - difference in brightness of surfaces patterns 814 

7. Roughness - smoothness of surface profile, range of surface heights 815 

8. Patchiness/Regularity - how uniform is the pattern? 816 

9. Line elongation - are line elements shorter dashes or extended lines? 817 

10. Spatial scale - are patterns large and broad, or small and fine? 818 

 819 
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5. Rating results analysis 820 

 821 

Mean values of participant responses for each resting attribute, and normalised distribution of allpooled 822 

ratings is shown in Fig. S6. 823 

 824 

             825 
Fig. S6 Rating data analysis. (a) Mean values of participant responses across all materials with SD values, 826 

and (b) normalised distribution of all pooled ratings. 827 

 828 

To evaluate the consistency between participants, we correlate the ratings of each participant within a 829 

scale to the corresponding mean rating (Fig. S7). Although overall correlations are pretty high, there is a 830 

heavy tail towards zero and even some negative correlations. Also, the consistency between participants 831 

varies between rating dimensions, for example, with more consistent judgements for brightness 832 

(stronger correlations and less variability). Tab. S1 shows intra-class correlations for individual rating 833 

dimensions. 834 

 835 
Fig. S7 Correlations between individual ratings of participants to the mean ratings, within each rating 836 

dimension. (a) Results across all attributes and (b) within individual dimensions. 837 

 838 

 839 

 840 

 841 
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Tab.S1 Intra-class correlations for individual rating dimensions. 842 

 843 

rating dimension single 

random 

raters 

average 

random  

raters 

brightness 0.618 0.986 

glossiness 0.219 0.927 

colourfulness 0.262 0.941 

directionality 0.416 0.970 

complexity 0.197 0.917 

contrast 0.301 0.951 

roughness 0.220 0.927 

patchiness/regularity 0.164 0.898 

line 0.386 0.966 

spatial scale 0.041 0.659 

 844 

 845 

 846 

6. Samples alignment along MDS dimensions 847 

 848 

The MDS analysis distributed our 30 samples to three dimensional space. Distribution of samples along 849 

these dimensions is shown in Fig. S8, where red points represent MDS of VICE similarity model and blue 850 

MDS of rating attributes (the first two rows) and computational statistics (the third row). 851 
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 852 
Fig. S8 Procrustes alignment of MDS dimensions computed from similarity matrices. (red) VICE model 853 

similarity MDS, (blue) MDS of similarity matrix obtained by L2- norm of rating attributes (the first row), 854 

linear regression of rating attributes similarity matrices (the second row), and computational statistics 855 

MDS (the third row). 856 

 857 

 858 

  859 
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List of supplementary movies 860 

1. [movie_samples_stimuli.avi] - 30 test wood video sequences used in the experiments 861 

2. [movie_similarity_vs_rating.avi] - rank ordered samples (left) according to loadings values of 862 

similarity dimensions, (right) mean rating attributes (the five closes and 5 the most distant)   863 

3. [movie_MDS_simmat_linreg.avi] - distribution of samples along three MDS dimensions (top) for 864 

similarity judgements, (bottom) for rating study 865 

4. [movie_MDS_simmat_stat.avi] - distribution of samples along three MDS dimensions (top) for 866 

similarity judgements, (bottom) for computational statistics obtained from image sequence. 867 

5. [movie_similarity_scaled.avi] - rank ordered samples scaled according to loadings values of 868 

similarity dimensions 869 

6. [movie_Louvain.avi] - result of community detection using Louvain method (computed from 870 

similarity matrices), distributing samples to three clusters for (top) similarity judgements and 871 

(bottom) rating study.  872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 


