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ABSTRACT 
Lactoferrin is a nutrient classically found in mammalian milk. It binds iron and is transferred 

into and between cells, serum, bile and cerebrospinal fluid, via a variety of receptors. It has 

important immunological properties, and is both antibacterial and antiviral. In particular, there 

is evidence that it can bind to at least some of the receptors used by coronaviruses and thereby 

block their entry. It may consequently be of preventive and therapeutic value during the 

present COVID-19 pandemic. 

 

KEYWORDS 
Lactoferrin; Coronaviruses; Iron, Membrane Receptors 

 

ABBREVIATIONS 
LF: Lactoferrin; lactotransferrin 

SARS-CoV: acute respiratory syndrome coronavirus  

LRP-1/CD91: LDL receptor-related protein-1  

TLR2 and 4: Toll-like receptor 2 and 4  

CXCR4: cytokine receptor 4 

GAG: glycosaminoglycan 

AP-1: activator protein 1 

NF-κB: NF-kappa beta 

IRF: Interferon regulatory factor 

MAPK: Mitogen-activated protein kinase 

HSPG: Heparan sulfate proteoglycans 

ACE2: Angiotensin-converting enzyme 2 

IL: Interleukin 

G-CSF: Granulocyte colony-stimulating factor 

GM-CSF: Granulocyte-Macrophage Colony Stimulating Factor  

IFN: Interferon  

TNFα: Tumour necrosis factor alpha 

IP10: Interferon gamma-induced protein 10 

MCP1: Monocyte Chemoattractant Protein-1  

(MIP1) A and B: Macrophage inflammatory protein 1 (A and B) 

LMWH: Low molecular weight heparin 

vWF: von Willebrand Factor 

PAD4: protein arginine deiminase 4 

NETS: Neutrophil extracellular traps  
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INTRODUCTION  
Lactoferrin (LF) or lactotransferrin has recently come under the spotlight, particularly with 

regards to the new coronavirus pandemic that started in 2019 (COVID-19).  Diet and 

supplements support a well-functioning immune system, and favourably influence the body’s 

ability to fight infection. Although LF is produced by the body itself, as a secretion by exocrine 

glands (such as maternal milk or tears) and secondary granules of human neutrophils (Okubo 

et al., 2016), it can also be taken as a supplement, where it then acts as nutraceutical or 

functional food.  Here we collate some of the evidence that shows how LF may be an important 

nutrient to support host immunity, including as an antibacterial and antiviral agent, but 

particularly with the current COVID-19 pandemic in mind.  Our particular focus is on its role as 

an oral supplement. We summarise the layout of this paper in Figure 1. 

 

DISCOVERY AND STRUCTURE 
Human LF is a cationic glycosylated protein consisting of 691 amino acids (Anderson et al., 

1990) folded into two globular lobes (80 kDa bi-lobal glycoprotein) (Vogel, 2012), that are 

connected by an α–helix (Karav et al., 2017, Karav, 2018).    Bovine LF contains 689 amino 

acids (Moore et al., 1997). LF was first discovered and isolated from bovine milk in 1939 

(Sorensen and Sorensen, 1939), and is a member of the transferrin family (60% amino acid 

sequence identity with serum transferrin) (Karav et al., 2017).   LF and transferrin have similar 

amino acid compositions, secondary structures (including their disulphide linkages), and 

tertiary structures, although they differ in terms of biological functions (Karav et al., 2017, 

Querinjean et al., 1971, Bluard-Deconinck et al., 1974) (see Figure 2).  There are also 3 

different isoforms:  LF-α is the iron-binding isoform, while LF- β and LF-γ both have 

ribonuclease activity but do not bind iron (Karav et al., 2017, Furmanski et al., 1989). When it 

is iron-rich it is referred to hololactoferrin and when iron-free apolactoferrin  (Jameson et al., 

1998). The tertiary structures of the two forms are significantly different: apolactoferrin is 

characterized by an open conformation of the N-lobe and a closed conformation of the C-lobe, 

while both lobes are closed in the hololactoferrin (Jameson et al., 1998).  Human LF and 

bovine LF possess high sequence homology and have very similar antibacterial, antifungal, 

antiviral, antiparasitic, anti-inflammatory and immunomodulatory activities (Rosa et al., 2017, 

Teraguchi et al., 2004, Togawa et al., 2002). Consequently, it is common to give the bovine 

form rather than say a recombinant human form as a supplement. Bovine LF is also deemed 

a “generally recognized as safe” substance by the Food and Drug Administration (FDA, USA), 

and is commercially available in large quantities (Rosa et al., 2017). 
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Figure 1: Overview of this review of lactoferrin (LF). We discuss 1) discovery and structure of 

LF; 2) LF membrane receptors and some of the bacteria, their products and viruses that might 

also bind to these receptors, 3) including how acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) (causing COVID-19) may interact with host cells (see Figure 6 and 

Conclusion for a detailed discussion); 4) and how LF assists with host immunity. Diagram 

created with BioRender (www.biorender.com).   

 

http://www.biorender.com/


6 

Figure 2:  Crystal structures of bovine lactoferrin (PDB code = 1BLF), human lactoferrin 

(1B0L), and rabbit serum transferrin (1JNF). Adapted from (Vogel, 2012). Pink spheres 

represent ferric iron (Fe3+) binding sites. 

 
 

Due to its similarities to transferrin,  which is the main iron transporting molecule in serum 

(Ashall et al., 2009, Anderberg et al., 2015), α-LF possesses iron binding capabilities (Brock, 

2002, Brock, 2012), and it can chelate two ferric irons (Fe3+) (Lepanto et al., 2019). LF binds 

one ferric iron atom in each of its two lobes; however, an important attribute is that it does not 

release its iron, even at pH 3.5.  This is of importance as this property assures iron 

sequestration in infected tissues where the pH is commonly acidic (Ganz, 2018). In the context 

of its iron-binding capabilities, it means that when it binds ferric and siderophore-bound iron, 

it limits the availability of essential iron to microbes (Ganz, 2018).   

 

In healthy individuals, iron is largely intracellular and sequestered within ferritin or as a co-

factor of cytochromes and FeS proteins, and as haem complexed to haemoglobin within 

erythrocytes.  Circulating iron is rapidly bound by transferrin (Kell, 2009, Kell and Pretorius, 

2014).  When erythrocytes lyse and haemoglobin or haem is released into the circulation, their 

haemoglobin is captured by haptoglobin, and haem by hemopexin (Skaar, 2010).  Here, 

circulating serum ferroxidase ceruloplasmin is of importance, as  LF can bind to ceruloplasmin, 

such that a direct transfer of ferric iron between the two proteins is possible (White et al., 

2012).     A direct transfer of ferric iron from ceruloplasmin to lactoferrin prevents both the 

formation of potentially toxic hydroxyl radicals (Kell and Pretorius, 2018) and the utilization of 

iron by pathogenic bacteria.    LF is therefore an important player in preventing bacteria from 

acquiring and sequestering iron, which (with the possible exception of Borrelia burgdorferi 

(Posey and Gherardini, 2000)); they require for growth and virulence.   LF also acts as 

biomarker, as it is commonly upregulated when the host is suffering from various kinds of 

disease. See Table 1 for selected references. 
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Table 1: Lactoferrin as a major player in host defence and iron binding, and its use as 

biomarker for various diseases. 

Area of action References 

Protecting neonates via breast milk (Telang, 2018, Chow et al., 2016, Hettinga et 

al., 2011, Ballard and Morrow, 2013, 

Woodman et al., 2018, Czosnykowska-

Łukacka et al., 2019, Lönnerdal, 2016, Cai et 

al., 2018) 

LF in cervicovaginal mucosa and female 

reproductive tract; antibacterial, antifungal 

antiparasitic, antiviral 

(Valenti et al., 2018, Cole, 2006, Bard et al., 

2003, Boesch et al., 2013) 

LF in the airways (Laube et al., 2006, Vargas Buonfiglio et al., 

2018) 

Mucosal surfaces, allergen-induces skin 

infections 

(Ward et al., 2002) 

Neutrophil extracellular trap (NET) 

production 

(Delgado-Rizo et al., 2017) 

Saliva and its antimicrobial activities and iron 

binding. 

(Lynge Pedersen and Belstrøm, 2019, van 

Leeuwen et al., 2019, Wang et al., 2018) 

Saliva as biomarker for neurological 

diseases 

(Farah et al., 2018, Gleerup et al., 2019, 

Carro et al., 2017) 

Saliva as biomarker for periodontal disease 

and oral dryness 

(Koshi et al., 2018, Mizuhashi et al., 2015, 

Glimvall et al., 2012, Jalil et al., 1993) 

 

LACTOFERRIN AND ITS MEMBRANE RECEPTORS 
LF is thought to exert its main biological activities following interaction with receptors on target 

cells. There are in fact many LF receptors, though sometimes one is referred to as ‘the’ 

lactoferrin receptor. They have been detected in multiple tissues and cell types including 

intestinal epithelial cells and lymphocytes  (Jiang et al., 2011, Suzuki et al., 2005).  Receptors 

that bind LF include CD14 (Rawat et al., 2012), LDL receptor-related protein-1 (LRP-1/CD91) 

(Fillebeen et al., 1999, Grey et al., 2004, Ikoma-Seki et al., 2015) intelectin-1 (omentin-1)  

(Shin et al., 2008), Toll-like receptor 2 and 4 (TLR4)(Gao et al., 2018)  and cytokine receptor 

4 (CXCR4) (Takayama et al., 2017) (see Table 2).   Importantly, LF also binds to heparan 

sulfate proteoglycans (HSPGs), which are cell-surface and extracellular matrix 

macromolecules that are composed of a core protein decorated with covalently linked 
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glycosaminoglycan (GAG) chains  (Sarrazin et al., 2011, Frankel and Pabo, 1988, Lang et al., 

2011, Milewska et al., 2014). See Table 2. Different receptors express at vastly different levels 

in different tissues; thus intelectin-1 is really expressed only in the intestine 

(https://www.proteinatlas.org/ENSG00000179914-ITLN1/tissue), while LRP1 is far more 

widely distributed https://www.proteinatlas.org/ENSG00000123384-LRP1/tissue. These 

multiple receptors arguably underpin the substantial and widespread effects that LF can 

induce, since only when multiple targets are hit simultaneously can one normally have major 

effects (Cornish-Bowden et al., 1995, Kell and Knowles, 2006). 

 

The entry of bacteria, bacterial products or viruses into host cells may also occur via some of 

these receptors.   Such binding evokes signalling systems and pathways involving, amongst 

others,  mitogen-activated protein kinase (MAPK) (Liu et al., 2019), NF-κB (Zhou et al., 2018), 

activator protein 1 (AP-1) (Srivastava et al., 2019), and various interferon regulatory factors  

(IRFs) (for a comprehensive review see (Futosi et al., 2013)).  During infection, activation of 

these signalling pathways results in a cellular response that shares multiple cytoplasmic 

components, leading ultimately to the activation of a complex biomolecular network. 

Phosphorylation of relevant substrates (e.g. enzymes, microtubules, histones, and 

transcription factors)  plays a crucial role in determining the host’s cellular response (Dreyfuss 

et al., 2009).  Viruses (Christianson and Belting, 2014, Milewska et al., 2018), as well as 

bacteria (Xu et al., 2015), interact with and bind to HSPGs, using this proteoglycan as entry 

into the cell (see also Figure 1). LF acts as an important element in host defence mechanisms 

by binding to these receptors, but also binding to HSPG on cells, since these are locations 

where binding to bacteria and their cell wall products as well as viruses occur. The membrane-

penetrating peptide HIV-tat, released from HIV-infected cells, also enters surrounding cells 

using HSPGs (Sarrazin et al., 2011, Frankel and Pabo, 1988).  This binding capacity allows 

LF to compete with such molecules for receptor occupancy (Elass-Rochard et al., 1998, 

Baveye et al., 1999), and therefore plays a vital role in host immunity (Teraguchi et al., 2004).  

LF can also serve to prevent nephrotoxicity, e.g. of cisplatin (Kimoto et al., 2013).  

 

Table 2: Receptors for lactoferrin, cells where these receptors are present, and other 

molecules and/or components that might bind to these receptors. 

Receptor for 

lactoferrin 

Cell types where receptor are 

present 

Selected references 

   

Lactoferrin receptor/ 

LRP-1/CD91/ 

Multiple tissues and cell types 

including intestinal epithelial cell 

(Rawat et al., 2012) 

https://www.proteinatlas.org/ENSG00000179914-ITLN1/tissue
https://www.proteinatlas.org/ENSG00000123384-LRP1/tissue
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apoE receptor or the 

chyclomicron 

remnant receptor 

lymphocytes, fibroblasts, 

neurons, hepatocytes,  

endothelial cells 

(Patel and Shah, 2017, Tamaki 

et al., 2007, Yan et al., 2008, 

Jiang et al., 2011) 

Intelectin-1 

(omentin-1) 

Visceral (omental and epicardial) 

fat, mesothelial cells, vascular 

cells, airway goblet cells, small 

intestine, colon, ovary, and 

plasma 

(Watanabe et al., 2017, Shin et 

al., 2008) 

TLR2 and TLR4 Endothelial cells, platelets, 

neutrophils 

(Tang et al., 2017, Vogel and 

Thein, 2018, Olumuyiwa-

Akeredolu et al., 2019, 

Pretorius, 2019, García-

Culebras et al., 2019, Page and 

Pretorius, 2020, Assinger et al., 

2012, He et al., 2016) 

CXCR4 Platelets, endothelial cells, 

neutrophils, T-cells 

(Page and Pretorius, 2020, 

Zhang et al., 2009, De Filippo 

and Rankin, 2018, Seo et al., 

2019) 

CD14 Macrophages, neutrophils (Rawat et al., 2012, Sanui et al., 

2017, Palipane et al., 2019) 

Heparan sulfate 

proteoglycans 

(HSPGs), 

Epithelial cells, endothelial cells, 

fibroblasts, lymphocytes 

(Sarrazin et al., 2011, Milewska 

et al., 2014) 

Interleukin 1  Various cells 
 

Selected molecules and entities that bind to these receptors, other than lactoferrin 
Receptor Molecule or cellular entity Reference 

Lactoferrin receptor bacteria (Skaar, 2010) 

LRP-1 Amyloid beta (Aβ)  

 

(Kim et al., 2016, Patel and 

Shah, 2017, Liu et al., 2007, 

Kanekiyo et al., 2013) 

Intelectin-1 

(omentin-1) 

Microbial sugars, including β-D-

galactofuranose (β-Galf), D-

glycerol 1-phosphate, d-glycero-

D-talo-oct-2-ulosonic acid (KO), 

(McMahon et al., 2020) 
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and 3-deoxy-d-manno-oct-2-

ulosonic acid (KDO) 

TLR4 Bacterial lipopolysaccharides 

(LPSs) 

Herpex simplex,  

(Kell and Pretorius, 2015, 

Singer-Englar et al., 2019, Lv et 

al., 2018, Page and Pretorius, 

2020) 

CXCR4 Viruses (including HIV)  (Page and Pretorius, 2020, 

Chen, 2019, Mehrbod et al., 

2019) 

CD14 LPS, H7N9 Influenza virus (Kell and Pretorius, 2015, Lee et 

al., 2019) 

Heparan sulfate 

proteoglycans 

(HSPGs) 

Various viruses, including HIV 

and SARS-CoV 

(Sarrazin et al., 2011, Frankel 

and Pabo, 1988, Lang et al., 

2011, Milewska et al., 2014, 

Naskalska et al., 2019, Cagno et 

al., 2019, Szczepanski et al., 

2019) 

 

LACTOFERRIN TRANSPORT  
Small molecules, including pharmaceutical drugs, require solute carriers of the SLC family 

(Hediger et al., 2013) to effect their uptake (Dobson and Kell, 2008, Kell, 2015b, Kell, 2015a, 

Kell et al., 2013, Kell et al., 2011, Kell and Oliver, 2014, Superti-Furga et al., 2020, Girardi et 

al., 2020). Lactoferrin, as a protein, is far too large to exploit such a route, and instead passes 

from the stomach via epithelial cells and into the blood via endocytosis (Harada et al., 1999, 

Matsuzaki et al., 2019), especially via Peyer’s patches  (Talukder et al., 2003a), and especially 

when it is encapsulated (‘enterically formulated’) in liposomes (Takeuchi et al., 2006, Ishikado 

et al., 2005, Roseanu et al., 2010). This uptake then occurs mostly via the lymphatic rather 

than the portal circulation  (Takeuchi et al., 2004, Wakabayashi et al., 2004).  LF can also 

enter, and be reabsorbed from, the bile (Harada et al., 1999). Blood LF can further be 

transported to the CNS via cerebrospinal fluid (Kamemori et al., 2008, Talukder et al., 2003b) 

and via the Blood Brain Barrier (Kamemori et al., 2008, Fillebeen et al., 1999). 

 

LACTOFERRIN: AN IMPORTANT ELEMENT IN HOST DEFENCE 
Neutrophils and lactoferrin 
LF plays an important role in host defence, upon its release from the neutrophil (Lepanto et 

al., 2019).  As part of the host’s inflammatory response, leucocytes, including neutrophils, 
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release LF from their granules, where it is normally stored. Activated neutrophils also release 

chromatin fibres, known as neutrophil extracellular traps (NETs), which trap and kill, amongst 

others, bacteria (Okubo et al., 2016, Brinkmann et al., 2004).  These NETs likewise modulate 

both acute and chronic inflammation (Castanheira and Kubes, 2019, Hahn et al., 2016). NETs 

are also found in various autoimmune conditions such as rheumatoid arthritis, systemic lupus 

erythematosus (Lee et al., 2017, Papayannopoulos, 2018).  Interestingly, 106 human 

neutrophils can release 15 µg of LF (Lepanto et al., 2019).   In addition to DNA and histones, 

NET fibers contain extranuclear proteins and proteins such as elastase, myeloperoxidase 

(MPO), and LF (Urban et al., 2009).  LF may also serve as an intrinsic inhibitor of NETs release 

into the circulation, and may therefore be a central in  controlling NETs release (Okubo et al., 

2016).  See Figure 3. 

 

Figure 3: Bacterial binding to various receptors, e.g. Toll-like receptors 2 and 4 (TLR2 and 4), 

as well as complement receptors, leads to  protein arginine deiminase 4 (PAD4) activation, 

followed by chromatin decondensation, hypercitrullination of histones 3 and 4 in the nucleus, 

and nuclear membrane disruption.  Granules also release lactoferrin. Neutrophil Extracellular 

Traps (NETs) and their protein constituents (including lactoferrin) are released from the 

neutrophil. Adapted from (Jorch and Kubes, 2017, Law and Gray, 2017).  Bacteria are expelled 

and trapped in the NETs. Diagram created with BioRender (https://biorender.com/).  

 

https://biorender.com/)
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Bacteria and lactoferrin 
One of the most well-known characteristics of LF is that it is antibacterial (Rosa et al., 2017, 

Petrik et al., 2017, Beddek and Schryvers, 2010, Pogoutse and Moraes, 2017, Wandersman 

and Stojiljkovic, 2000, Huang and Wilks, 2017), antiviral (Redwan et al., 2014, Lang et al., 

2011, Chen et al., 2017, Carvalho et al., 2017), antifungal (Fernandes and Carter, 2017, Liao 

et al., 2019, Andrés et al., 2016), anti-inflammatory (Lepanto et al., 2019) and anti-

carcinogenic (Wang et al., 2019).    Its ability to of limit iron availability to microbes is one of 

its crucial amicrobial properties. Bacteria have, however, developed various ways to sequester 

iron (Nairz et al., 2010).  Figure 4 shows how bacteria acquire iron through receptor-mediated 

recognition of transferrin, hemopexin, haemoglobin or haemoglobin-haptoglobin complexes  

and also LF (Skaar, 2010). As well as binding it directly from the environment, bacterial 

siderophores can obtain iron by removing it from transferrin, lactoferrin or ferritin(Kell and 

Pretorius, 2018).  These siderophore-iron complexes are then recognized by receptors on the 

bacterium (Skaar, 2010). Host innate immune functions are supported by the circulating 

protein, siderocalin, also known as Neutrophil gelatinase-associated lipocalin (NGAL), 

lipocalin2 or Lcn2 as it inhibits siderophore-mediated iron acquisition and release (Skaar, 

2010).    
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Figure 4: Ways by which bacteria acquire iron (adapted from (Skaar, 2010, Rosa et al., 

2017)). Transferrin receptor, lactoferrin receptor, hemophore (Hp), hemophore receptor and 

hemopexin. Siderophores remove iron from lactoferrin, ferritin and transferrin, and also from 

the environment.  Stealth siderophores are modified in such a way as to prevent siderocalin 

binding. A primary bacterial defence against siderocalin involves the production of stealth 

siderophores. Modified from  (Skaar, 2010, Rosa et al., 2017). Diagram created with 

BioRender (https://biorender.com/).   

.    

 
 

Although LF has various means to counteract bacteria as part of its immune function (Takeuchi 

et al., 2004), it is also capable of being hijacked to benefit the activities of bacteria. Thus, 

bacteria can also exploit LF by removing its bound ferric iron  (Skaar, 2010, Rosa et al., 2017).  

This process involves 1) synthesis of high-affinity ferric ion chelators by bacteria, 2) iron 

acquisition through LF or transferrin binding, mediated by bacterial-specific surface bacterial 

receptors,  3) or iron acquisition through bacterial reductases, which are able to reduce ferric 

https://biorender.com/)
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to ferrous ions (Rosa et al., 2017, Petrik et al., 2017, Beddek and Schryvers, 2010, Pogoutse 

and Moraes, 2017, Wandersman and Stojiljkovic, 2000, Huang and Wilks, 2017).   

 

Several Gram-negative pathogens including members of the 

genera Neisseria and Moraxella have evolved two-component systems that can extract iron 

from the host LF and transferrin (Brooks et al., 2014). N. meningitidis is a principal cause of 

bacterial meningitis in children. While the majority of pathogenic bacteria employ siderophores 

to chelate and scavenge iron (Weinberg, 2009), Neisseria has evolved a series of protein 

transporters that directly hijack iron sequestered in host transferrin, lactoferrin and 

haemoglobin (Schryvers and Stojiljkovic, 1999).  The system consists of a membrane-bound 

transporter that extracts and transports iron across the outer membrane (TbpA for transferrin 

and LbpA for lactoferrin), and a lipoprotein that delivers iron-loaded lactoferrin/transferrin to 

the transporter (TbpB for transferrin and LbpB for lactoferrin) (Brooks et al., 2014).  LbpB binds 

the N-lobe of lactoferrin, whereas TbpB binds the C-lobe of transferrin (Brooks et al., 

2014).  However, more than 90% of LF in human milk is in the form of apolactoferrin (Fransson 

and Lönnerdal, 1980), which competes with siderophilic bacteria for ferric iron, and disrupts 

the proliferation of these microbial pathogens.  Similarly LF supplements may play an 

important role to counteract bacterial processes.  LF is consequently a significant element of 

host defence (Rosa et al., 2017), and its levels may vary in health and during disease.  It is 

hence known to be a modulator of  innate and adaptive immune responses (Legrand, 2016).   

 

Viruses and lactoferrin 
LF has strong antiviral activity against a broad spectrum of both naked and enveloped DNA 

and RNA viruses (Redwan et al., 2014, Lang et al., 2011, Chen et al., 2017, Carvalho et al., 

2017).  LF inhibits the entry of viral particles into host cells, either by direct attachment to the 

viral particles or by blocking their cellular receptors (discussed in previous paragraphs) 

(Redwan et al., 2014).   Some of the viruses that LF prevents from entering host cells e.g. 

Herpes simplex virus (Belting, 2003), human papillomavirus (Drobni et al., 2004), human 

immunodeficiency virus (HIV) (Puddu et al., 1998) and rotavirus (Superti et al., 2001).  These 

viruses typically utilize common molecules on the cell membrane to facilitate their invasion 

into cells, including HSPGs (Figure 1).  HSPGs provide the first anchoring sites on the host 

cell surface, and help the virus make primary contact with these cells (Belting, 2003, Lang et 

al., 2011).   HSPGs can be either membrane bound, or in secretory vesicles and in the 

extracellular matrix (Sarrazin et al., 2011). It has been shown that LF is able to prevent the 

internalization of some viruses by binding to HSPGs (Sarrazin et al., 2011).      

 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-virus
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-virus
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COVID-19 and lactoferrin 
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 

Many COVID-19 patients develop acute respiratory distress syndrome (ARDS), which leads 

to pulmonary edema and lung failure, and have liver, heart, and kidney damages. These 

symptoms are associated with a cytokine storm (Mehta et al., 2020, Kell and Pretorius, 2016) 

manifesting elevated serum levels of interleukin (IL) IL-1β, IL-2, IL-7, IL-8, IL-9, IL-10, IL-17, 

granulocyte colony-stimulating factor (G-CSF), Granulocyte-Macrophage Colony Stimulating 

Factor (GM-CSF), interferon (IFN)γ, tumour necrosis factor (TNF)α, Interferon gamma-

induced protein 10 (IP10), Monocyte Chemoattractant Protein-1 (MCP1), macrophage 

inflammatory protein 1(MIP1)A and MIP1B (Wu and Yang, 2020). IL-22, in collaboration with 

IL-17 and TNFα, induces antimicrobial peptides in the mucosal organs. IL-22 also upregulates 

mucins, fibrinogen, anti-apoptotic proteins, serum amyloid A, and LPS binding protein 

(Zenewicz, 2018); therefore, IL-22 may contribute to the formation of life-threatening oedema 

with mucins and fibrin (Tse et al., 2004), seen in SARS-CoV-22 and SARS-CoV patients (Wu 

and Yang, 2020). 

 

The 2003 SARS-CoV strain, that also causes severe acute respiratory syndrome, attaches to 

host cells via host receptor angiotensin-converting enzyme 2 (ACE2) (Wan et al., 2020).  This 

type I integral membrane protein receptor is a well-known receptor for respiratory viruses, and  

is abundantly expressed in tissues lining the respiratory tract (Milewska et al., 2018). During 

COVID-19 infection, SARS-CoV-2  also enters host cells via the ACE2 receptor (Baig et al., 

2020).  ACE2 is highly expressed on human lung alveolar epithelial cells, enterocytes of the 

small intestine, and the brush border of the proximal tubular cells of the kidney (Lang et al., 

2011).  HSPGs are also one of the preliminary docking sites on the host cell surface and play 

an important role in the process of SARS-CoV cell entry (Lang et al., 2011).   There is no 

current confirmed information that SARS-CoV-2 binds to HSPGs; however, LF blocks the 

infection of SARS-CoV by binding to HSPGs (Lang et al., 2011). It is not presently known 

whether LF binds to ACE2, but it does bind to HSPGs (Lang et al., 2011). Whether SARS-

CoV-2 also enters host cells via HPSGs in the same way, as does (the 2003) SARS-CoV 

clearly warrants further investigation. 

 

Of particular interest, and in the context of this paper, is the set of interactions between SARS-

CoV-2 and host platelets. This is of importance, as COVID-19 infection, can cause 

hyperinflammation due to a cytokine storm (Mehta et al., 2020).   
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Pathogens like the influenza virus and Francisella tularensis, do trigger life-threatening 

cytokine storms (D'Elia et al., 2013).  Such a cytokine storm will significantly affect platelets, 

as platelets have many receptors where these inflammatory molecules may bind  (D'Elia et 

al., 2013) (see Figure 5). Circulating cytokines and inflammagens will hyperactivate platelets, 

causing low platelet count (thrombocytopenia), and a significant chance of hypercoagulation. 

Thrombocytopenia is associated with increased risk of severe disease and mortality in patients 

with COVID-19, and thus serves as clinical indicator of worsening illness during hospitalization 

(Lippi et al., 2020, Zhang et al., 2020).    Patients with type 2 diabetes are also particularly 

prone to increased levels of circulating inflammatory cytokines and hypercoagulation 

(Pretorius, 2019).  COVID-19 patients without other comorbidities but with diabetes are at 

higher risk of severe pneumonia, excessive uncontrolled inflammatory responses and a 

hypercoagulable state (Guo et al., 2020). Guo and co-workers in 2020 also found that serum 

levels of IL-6, C-reactive protein, serum ferritin, and D-dimer, were significantly higher in 

diabetic patients compared with those without, suggesting that patients with diabetes are more 

susceptible to an inflammatory storm eventually leading to rapid deterioration of the patient 

with COVID-19 (Papayannopoulos, 2018).  Acute pulmonary embolism has also been 

reported in COVID-19 infection (Danzi et al., 2020).   Focal accumulation of activated platelets 

within the oedematous area ex vivo correlated well with the size of the pulmonary embolism 

(Heidt et al., 2016). Interestingly, anticoagulant therapy, mainly with (intravenous) heparin 

(and mainly with low molecular weight heparin, LMWH),  appears to be associated with better 

prognosis in severe COVID-19 patients (Tang et al., 2020).   

 

In COVID-19 infection, LF may have a role to play in not only sequestering iron and 

inflammatory molecules that are severely increased during the cytokine burst, but also 

possibly in assisting in occupying receptors and HSPGs to prevent virus binding.  Receptor 

occupancy is an important characteristic of LF, when taken as supplement.  Furthermore, it 

may assist in preventing thrombocytopenia, and hypercoagulation, both prominent features of 

COVID-19 infection.  
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Figure 5: Simplified platelet signalling and receptor activation during disease with main 

dysregulated molecules thrombin, fibrin(ogen), von Willebrand Factor (vWF) interleukins (IL)  

like IL-1α, IL-1β, and IL17A  and cytokines like TNF-α. Diagram created with 

BioRender (https://biorender.com/).   

 
 

LACTOFERRIN AS A NUTRACEUTICAL  
There is little doubt that oral LF can be of health benefits to the host, and while it is not 

considered to be absolutely necessary for mammalian life (so it is not a vitamin), it is 

reasonable to class it as a nutraceutical along with a variety of other molecules such as those 

in (Ames, 2018, Borodina et al., 2020). 

 

Nutritional sources, availability and uses for lactoferrin as supplement 
There is considerable LF availability in various forms and sources. Table 3 shows some of the 

sources and the references to research where it has been used to treat various conditions. 

 
 

https://biorender.com/)
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Table 3:  Lactoferrin sources as supplements, and examples where it has been used to treat 

various conditions.  

Lactoferrin sources as supplements 
Product References 

Bovine and human milk Morinaga Industries in Japan (Bellamy et al., 

1992) 

DoMO Food Ingredients, a subsidiary of 

Friesland Dairy Foods, in the Netherlands 

(Pammi and Suresh, 2017) 

Human recombinant lactoferrin Talactoferrin from Agennix, Inc., Houston, 

Texas, USA 

(Pammi and Suresh, 2017) 

Lactoferrin expression in transgenic rice Ventrus Biosciences, New York City, New 

York, USA 

(Pammi and Suresh, 2017) 

Transgenic cattle expressing human 

lactoferrin 

(Cooper et al., 2013, Wang et al., 2017) 

Transgenic maize Meristem Therapeutics, Clermont‐Ferrand, 

France 

(Pammi and Suresh, 2017) 

Lactoferrin supplementation in treatment of various diseases 
Might be useful in treating sepsis or 

necrotizing enterocolitis in preterm 

neonates 

(Pammi and Suresh, 2017) 

Support for vaginal healthy (Russo et al., 2018) 

LF may play a protective role in host 

defence against SARS-CoV infection 

through binding to HSPGs and blocking the 

preliminary interaction between SARS-CoV 

and host cells (cell culture study) 

(Lang et al., 2011) 

LF is a modulator of innate immune 

responses in the urinary tract and has 

potential application in novel therapeutic 

design for urinary tract infection (animal 

study) 

(Patras et al., 2019) 
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Possible therapy against Candida albicans 

in the oral cavity (a hypothesis 

(Chanda et al., 2017) 

Protection against Chlamydia trachomatis 

(cell culture study) 

(Sessa et al., 2017) 

Treatment of  taste and smell abnormalities 

after chemotherapy 

(Wang et al., 2018) 

LF supplements and food with high levels 

of LF for oral health 

(Lang et al., 2011, Morita et al., 2017) 

LF treatment of black stain associated with 

of iron metabolism disorders with lactoferrin 

(Sangermano et al., 2019) 

Aerosolized bovine LF counteracts 

infection, inflammation and iron dysbalance 

in a cystic fibrosis mouse model 

of Pseudomonas aeruginosa chronic lung 

infection 

 

(Cutone et al., 2019) 

LF inhalations for lung health (Marshall et al., 2016) 

LF for optimal skin moisture (Oda et al., 2019) 

 

CONCLUSIONS   
Lactoferrin clearly has immunological benefits, as well as having an important antibacterial 

and antiviral role. Because it is known to interfere with some of the receptors used by 

coronaviruses, it may contribute usefully to the prevention and treatment of coronavirus 

infections.  Figure 6 shows a possible scheme on how LF might interfere with SARS-CoV-2 

binding.  The binding of LF to HSPGs prevents the first contact between virus and host cells 

and thus prevents subsequent infection (Lang et al., 2011).  HSPGs themselves are not  

sufficient for SARS-CoV entry. However, in SARS-CoV infections, the HSPGs play an 

important role in the process of cell entry (Lang et al., 2011).  The anchoring sites provided by 

HSPGs permit initial contact between the virus and host cells and the concentration of virus 

particles on cell surface. SARS-CoV bound to HSPGs then rolls onto the cell membrane and 

scans for specific entry receptors, which leads to subsequent cell entry (Lang et al., 2011).  LF 

enhances natural killer cell activity and stimulates neutrophil aggregation and adhesion in 

immune defence (Reghunathan et al., 2005) can  restrict the entry of the virus into host cells 

during infection.  We suggest that this process might be the same for COVID-19 (see Figure 

6 for a visual representation), thereby offering useful strategies for prevention and treatment. 
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Figure 6:  Possible action of 1) lactoferrin by occupying binding sites of 2) SARS-CoV-2 that 

causes COVID-19. 3) Entry into host cells occur when SARS-CoV-2 first attaches to Heparan 

sulfate proteoglycans (HSPGs).  This attachment initiates the first contact between the cell 

and the virus, concentrating the virus on the cell surface, 4) followed attaching of the virus to 

the host receptor (ACE2) and association and entering are then facilitated via clathrin-coated 

pits 5) Virus replication can then happens inside the cell. 6) One of the characteristics of 

Lactoferrin, is that it attaches to HSPGs. 7) Currently we do not know if ACE2 is also a receptor 

for lactoferrin. 8) Lactoferrin may block the entry of SARS-CoV-2 into the host cell, by 

occupying HPSGs, thereby preventing SARS-CoV-2 initial attachment and accumulation on 

the host cell membrane. COVID-19 infection template adjusted from www. biorender.com. 
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TABLE AND FIGURE LEGENDS 
Table 1: Lactoferrin as a key player in host defence and iron binding, and its use as biomarker 

for various diseases. 

 
Table 2: Receptors for lactoferrin, cells where these receptors are present, and other 

molecules and/or components that might bind to these receptors. 

 
Table 3:  Lactoferrin sources as supplements, and examples where it has been used to treat 

various conditions.  

 

Figure 1: Overview of this review of lactoferrin (LF). We discuss 1) discovery and structure of 

LF; 2) LF membrane receptors and some of the bacteria, their products and viruses that might 

also bind to these receptors, 3) including how acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) (causing COVID-19) may interact with host cells (see Figure 6 and 

Conclusion for a detailed discussion); 4) and how LF assists with host immunity. Diagram 

created with BioRender (www.biorender.com).   

 
Figure 2:  Crystal structures of bovine lactoferrin (PDB code = 1BLF), human lactoferrin 

(1B0L), and rabbit serum transferrin (1JNF); adapted from (Vogel, 2012). Pink areas represent 

ferric iron (Fe3+) binding sites. 

 

Figure 3: Bacterial binding to various receptors, e.g. Toll-like receptors 2 and 4 (TLR2 and 4), 

as well as complement receptors, leads to  protein arginine deiminase 4 (PAD4) activation, 

followed by chromatin decondensation, hypercitrullination of histones 3 and 4 in the nucleus, 

and nuclear membrane disruption.  Granules also release lactoferrin. Neutrophil Extracellular 

http://www.biorender.com/
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Traps (NETs) and its protein constituents (including lactoferrin) are released from the 

neutrophil. Adapted from (Jorch and Kubes, 2017, Law and Gray, 2017).  Bacteria are expelled 

and trapped in the NETs. Diagram created with BioRender (https://biorender.com/).  

 
Figure 4: Ways by which bacteria acquire iron (adapted from (Skaar, 2010, Rosa et al., 

2017)). Transferrin receptor, lactoferrin receptor, hemophore (Hp), hemophore receptor and 

hemopexin. Siderophores remove iron from lactoferrin, ferritin and transferrin, and also from 

the environment.  Stealth siderophores are modified in such a way as to prevent siderocalin 

binding. A primary bacterial defence against siderocalin involves the production of stealth 

siderophores. Modified from  (Skaar, 2010, Rosa et al., 2017). Diagram created with 

BioRender (https://biorender.com/).   

 
Figure 5: Simplified platelet signalling and receptor activation during disease with main 

dysregulated molecules thrombin, fibrin(ogen), von Willebrand Factor (vWF) interleukins (IL)  

like IL-1α, IL-1β, and IL17A  and cytokines like TNF-α. Diagram created with 

BioRender (https://biorender.com/).   
 
Figure 6:  Possible action of 1) lactoferrin by occupying binding sites of 2) SARS-CoV-2 that 

causes COVID-19. 3) Entry into host cells occur when SARS-CoV-2 first attaches to Heparan 

sulfate proteoglycans (HSPGs).  This attachment initiates the first contact between the cell 

and the virus, concentrating the virus on the cell surface, 4) followed attaching of the virus to 

the host receptor (ACE2) and association and entering are then facilitated via clathrin-coated 

pits 5) Virus replication can then happens inside the cell. 6) One of the characteristics of 

Lactoferrin, is that it attaches to HSPGs. 7) Currently we do not know if ACE2 is also a receptor 

for lactoferrin. 8) Lactoferrin may block the entry of SARS-CoV-2 into the host cell, by 

occupying HPSGs, thereby preventing SARS-CoV-2 initial attachment and accumulation on 

the host cell membrane. COVID-19 infection template adjusted from www. biorender.com. 

https://biorender.com/)
https://biorender.com/)
https://biorender.com/)
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