Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: In meta-analyses, it is critical to assess the extent to which publication bias might have compromised the results. Classical methods based on the funnel plot, including Egger’s test and Trim-and-Fill, have become the de facto default methods to do so, with a large majority of recent meta-analyses in top medical journals (85\%) assessing for publication bias exclusively using these methods. However, these funnel plot methods have crucial limitations when used as the sole means of assessing publication bias: they essentially assume that the publication process favors large point estimates for small studies and does not affect the largest studies, and they can perform poorly when effects are heterogeneous. In light of these limitations, we recommend that meta-analyses routinely apply other publication bias methods in addition to or instead of classical funnel plot methods. To this end, we describe how to use and interpret selection models. These methods make the often more realistic assumption that publication bias favors “statistically significant” results and directly accommodate effect heterogeneity. Selection models are well-established in the statistics literature and are supported by user-friendly software, yet remain rarely reported in many disciplines. We use previously published meta-analyses to demonstrate that selection models can yield insights that extend beyond those provided by funnel plot methods, suggesting the importance of establishing more comprehensive reporting practices for publication bias assessment.

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.