

[waiting peer review]

Presheaf (of abelian groups) on a topological space

Open Mathematics Collaboration*†

February 17, 2021

Abstract

PRESHEAF and its underlying definitions are presented in this white paper (knowledge base).

keywords: sheaf theory, abelian group, topological space, knowledge base

The most updated version of this white paper is available at https://osf.io/2y5s4/download

^{*}All authors with their affiliations appear at the end of this white paper.

[†]Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

Definition

1. Presheaf (of abelian groups) on a topological space X

$$f:U\to A(U)$$

$$r_{U,V}: A(V) \to A(U)$$

- (a) $r_{U,U} = 1$
- (b) $r_{U,V}$ $r_{V,W} = r_{U,W}$ when $U \subset V \subset W$

 $f, r_{U,V} := \text{functions}$

 $U, V \coloneqq \text{open sets}$

 $X \coloneqq \text{topological space}$

 $U \subset V$

 $U \subset X$

 $A \coloneqq \text{presheaf}$

A(U) := abelian group

 $r_{U,V} \equiv \text{homomorphism (restriction)}$

[1]

Prerequisites

2. Ordered pair

(a,b)

a :=first coordinate

b := second coordinate

[2]

3. Cartesian product

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

 $A, B \coloneqq sets$

 $A \times B \coloneqq \text{Cartesian product}$

[2]

4. Binary operation

$$\star: S \times S \to S$$

 $S \coloneqq \operatorname{set}$

 $S \times S \coloneqq \text{Cartesian product}$

[3]

5. Group

$$(G,\star)$$

- (a) Associativity: $\forall x, y, z \in G$, $(x \star y) \star z = x \star (y \star z)$
- (b) Identity: $\exists e \in G : \forall x \in G, e \star x = x \star e = x$
- (c) Inverse: $\forall x \in G \ \exists y \in G : \ x \star y = y \star x = e$

 $G \coloneqq \operatorname{set}$

★ := binary operation

[3]

6. Abelian group

 G_b

$$\forall g_1, g_2 \in G_b, \ g_1g_2 = g_2g_1$$

 $G_b := \text{group}$

[4]

7. Open interval

 $(a,b) = \{x \in X \mid a < x < b\}$

 $X \coloneqq \operatorname{set}$

[5]

8. Open set

 $X \coloneqq \text{open set in } Y$

(a)
$$X \subseteq Y$$

(b)
$$\forall x \in X, \exists (a,b): x \in (a,b), (a,b) \subseteq X$$

 $X,Y \coloneqq \operatorname{sets}$

(a,b) := open interval

[5]

9. Arbitrary Union

 $\bigcup X$

 $X \coloneqq \text{collection of sets}$

$$\bigcup X \coloneqq \{y \mid \exists Y \in X, \ y \in Y\}$$

[5]

10. Arbitrary Intersection

 $\bigcap X$

 $X \coloneqq \text{collection of sets}$

$$\bigcap X \coloneqq \{y \mid \forall Y \in X, \ y \in Y\}$$

[5]

11. **Topology** on S

 \mathcal{T}

 $S \coloneqq \operatorname{set}$

 $\mathcal{T} \coloneqq \text{collection of open subsets of } S$

 $X,Y\coloneqq \text{collection of sets}$

 $\bigcup X \coloneqq \text{arbitrary union}$

 $\bigcap Y := \text{arbitrary intersection}$

- (a) $\emptyset, S \in \mathcal{T}$
- (b) $(X \subseteq \mathcal{T}) \to (\bigcup X \in \mathcal{T})$ [\mathcal{T} is closed under arbitrary unions]
- (c) $(Y \subseteq \mathcal{T}, Y \text{ finite}) \to (\bigcap Y \in \mathcal{T})$ [\mathcal{T} is closed under finite intersections]

[5, 6]

12. Topological space

 (S, \mathcal{T})

 $S \coloneqq \operatorname{set}$

 $\mathcal{T} \coloneqq \text{topology on } S$

[5, 6]

13. Homomorphism

$$f^h$$

(a)
$$f^h: G \to H$$

 $\forall x, y \in G: f^h(x * y) = f^h(x) \circ f^h(y)$
 $f^h:=$ function
 $G, H:=$ sets
 $*, \circ :=$ binary operations
 $(G, *), (H, \circ) :=$ groups
 $[3, 4, 7]$

Open Invitation

Review, add content, and co-author this white paper [8,9]. Join the Open Mathematics Collaboration. Send your contribution to mplobo@uft.edu.br.

Open Science

The **latex file** for this *white paper* together with other *supplementary* files are available in [10].

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [11], please cite it accordingly [12]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

Acknowledgement

- + Center for Open Science https://cos.io
- + Open Science Framework https://osf.io

References

- [1] Bredon, Glen E. *Sheaf theory*. Vol. 170. Springer Science & Business Media, 2012.
 - https://books.google.com/books?id=JFXSBwAAQBAJ
- [2] Velleman, Daniel J. How to prove it: A structured approach. Cambridge University Press, 2019.

 https://books.google.com/books?id=sXt-ROLLNHcC
- [3] Warner, Steve. Abstract Algebra for Beginners. GET 800, 2018. https://books.google.com/books?id=UFleyAEACAAJ
- [4] Dummit, David Steven, and Richard M. Foote. Abstract Algebra. Vol. 3. Hoboken: Wiley, 2004. https://books.google.com/books?id=znzJygAACAAJ
- [5] Warner, Steve. Topology for Beginners. GET 800, 2019. https://books.google.com/books?id=pNAvxQEACAAJ
- [6] Munkres, James R. *Elements of algebraic topology*. CRC press, 2018. https://books.google.com/books?id=-mdQDwAAQBAJ
- [7] Rotman, Joseph J. A first course in abstract algebra. Pearson College Division, 2000.

 https://books.google.com/books?id=ctEZAQAAIAAJ

- [8] Lobo, Matheus P. "Microarticles." OSF Preprints, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- [9] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." OSF Preprints, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- [10] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." *OSF*, 21 Apr. 2020. https://doi.org/10.17605/osf.io/6hzyp

https://osf.io/6hzyp/files

- [11] COS. Open Science Framework. https://osf.io
- [12] Lobo, Matheus P. "Presheaf (of Abelian Groups) on a Topological Space." OSF Preprints, 3 Feb. 2021. https://doi.org/10.31219/osf.io/2y5s4

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br)^{1,2} https://orcid.org/0000-0003-4554-1372

¹Federal University of Tocantins (Brazil)

²Universidade Aberta (UAb, Portugal)