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Abstract

Novelty assessment is central to the study and management of innovation. Here we argue that new tech-
nologies, discoveries, and cultural products are deemed novel insofar as they seem unlikely or improbable,
conditional on perceptions of prior knowledge and estimations of the inventive search process. This implies
that novelty has different manifestations in fields with distinct prior knowledge and processes of invention;
that measuring novelty is sensitive to context and therefore “objectively subjective.” Consequently, different
novelty measures will be appropriate for different fields. We then survey and systematize existing ez ante
novelty measures. We array them according to the speed of simulated search and the complexity of the
space over which search is simulated. Using data from 157,595 U.S. patents granted in 2000 and 90,421
patents granted in 1990, we demonstrate that inventive fields vary in their distribution of novelty measures.
We also find that familiar impact-based correlates of novelty are predicted by distinct characterizations of
novelty in different fields. Consistent with our hypothesis that different inventive processes imply different
novelty measures, we find that nearby fields, which share similar inventive processes, also manifest similar
profiles in the relationship between novelty and impact. We conclude with principles of measure selection
that could lead to more credible analyses of innovation.
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1. Introduction

Novelty is a critical concept in the study of innovation. Research in innovation studies, the sociology of
science, economics, economic sociology, management, and allied disciplines highlights the role of novel dis-
coveries, technologies, and cultural products across many settings, e.g., scientific and technological advance,
economic growth, and corporate strategy. The modern academy defines itself through novel contributions to
human understanding. Entire economic sectors are devoted to the creation and exploitation of novel devices
and designs.

Yet the measurement and modeling of novelty reveals a paradox. On the one hand, researchers—including
ourselves—often invent new measurements rather than build upon previous ones, or select from among the
broad field of measures with limited justification for one over the others. Uzzi et al. (2013) makes a pivotal
contribution to our understanding of atypical combinations and scientific impact, but does so through
introducing an atypical novelty measure. Cokol et al. (2005) introduces a novel, network-based measure of
novelty with no reference to prior approaches, as do many others (Chen et al. 2009, Schilling and Green
2011, Leahey and Moody 2014). Novelty measures are extremely heterogeneous and sometimes correlate
negatively, as we show below. On the other hand, such measures are typically introduced as transcending
particular empirical contexts, implying broad or even universal identification of novelty. Both conditions
cannot hold. Either each measure captures a distinctive but largely unspecified aspect of novelty, or all
measures capture the same thing, which varies by inventive and evaluative context. In this essay, we will
argue for and empirically demonstrate the latter.

Novelty measurement contradicts the pattern in many areas where social scientists have been systematic
in developing measures for key constructs like income inequality (Cowell 2000) and residential segregation
(Hutchens 2001). Invention, innovation, and discovery are multi-faceted, and defy simple, singular descrip-
tion. Yet the flexibility in measurement choice raises a temptation to cherry-pick the measure that produces
the “best result”. Here we seek to identify and build connections between existing novelty measures by ex-
ploring the conceptual underpinnings of novelty assessments in the service of making novelty measurement
more systematic, cumulative, accurate, and conceptually clear.

We first provide a formal theory of novelty production and perception as a phenomenon that varies
by context (Section 2). Our theory is grounded in prevailing contemporary accounts of cognition, which
place prediction at the heart of most cognitive processes (Clark 2015). Our central claim is that the
production of novelty is grounded in the inventive process within a particular domain, and that novelty
assessment derives from situated mental models of that process. What is deemed novel corresponds to what
is surprising, given those models. There can be no universally objective novelty measurement because an
object’s novelty is defined as new in relation to the perceived (or measured) qualities of other objects with
which it is compared. But there is no object collection universally relevant across all times and domains.
Novelty without context is a numerator without denominator or a difference without subtrahend. Moreover,
perceptions and measurements are themselves collected with respect to anticipated evaluations, constraining
our awareness of perceivable novelty. !

Measures of novelty implicitly translate models of invention into formal measures®. We review the many
existing approaches to novelty measurement from this perspective (Section 3), placing them within a common
conceptual framework by noting that these measures operationalize distinct ideas about (i) the way that
inventors search and (ii) the complexity of the space in which they do so. Clearly stating the assumptions
behind each class of measures suggests that different novelty measures will be most appropriate for different
fields of invention.

We demonstrate this claim empirically in Section 4, using data from 90,421 U.S. utility patents granted
in 1990 and 157,595 granted in 2000; with detailed results in the Appendix. We find that patents from
different technology areas vary substantially in their distribution of novelty scores across measures. We

1Was the asteroid believed responsible for the extinction of 75% of the earth’s plant and animal species 66 million years ago
novel? To generations of dinosaurs, yes; to the solar system over billions of years, no.

2By the same token, judgments of novelty, such as those made by patent examiners when evaluating patent applications,
are also conditioned on implicit mental models of invention.



further find that in different technology areas, distinct measures are important to the prediction of various
dimensions of impact. Consistent with our claim that novelty measures capture perceived novelty when
they identify features of the inventive process, we find that fields where patents most intensively cite one
another—and presumably share inventive processes—have greater similarity in predictive novelty measures.
This also allows us to characterize areas by the appropriateness of novelty measure. Finally, we compare
predictive novelty measures across different US PTO technical centers, showing that the relationship be-
tween novelty measures and impact varies systematically across inventive domains. This analysis supports
two methodological inferences. First, there is no hope for “one novelty measure to rule them all.” Hence any
novelty measure should be approached with skepticism. For a given analysis, the choice of novelty measure
should be justified by showing that it (a) maps onto domain-specific knowledge structures and inventive pro-
cesses; (b) is most predictive of novelty correlates like impact; and/or (¢) correctly tracks actor perceptions
of novelty. Second, novelty measurement will become better and more useful insofar as we develop better
formal representations of knowledge and inventive processes.

In the last part of the paper, we turn to this second methodological implication. In Section 5.1, we
argue that enriching the space of features used to characterize inventions can bring novelty measures closer
to reality, allowing analysts to trace evolution in the structure of existing knowledge and how this channels
new exploration across it. We discuss the “black-boxing” process whereby frequent combinations collapse
into single components, accelerating the creation of new, complex combinations. In Section 5.2, we return to
the subjective character of novelty assessment, and show how to give rigorous, objective treatment to that
subjectivity: Bayesian surprisal allows scholars to explicitly incorporate individual variation in knowledge,
beliefs, and experience into measures of perceived novelty.

We hope our theorization of novelty and synthesis of novelty assessment will improve evaluation of
novelty, invention, and innovation, checking the natural tendency to (inadvertently) cherry-pick measures
that best tell a preferred story. Above all, we hope it will inspire renewed attention by innovation scholars
to the measurement of novelty, drawing on insights from the psychology and cognitive science of creativity,
invention, and novelty perception. Better novelty measurement will lead to better novelty management,
with profound implications for technology, science, commerce, art, and culture.

2. What is novelty? How should we measure it?

Novelty is easy to define but hard to measure. The OED defines it as “the quality or state of being
novel.” Novel is a bit more interesting: “young, fresh; newly made or created; of a new kind or nature;
strange; previously unknown; original” (OED 2007). This definition draws our attention to two crucial facets
of novelty: first, that it is bound up with processes of making or creating; and second, that its evaluation
has a context-sensitive and subjective dimension—what is “previously unknown” or unfamiliar to one may
not be to another.

Scholars of innovation often distinguish ex post measures, which make reference to events that happen
after an invention appears, from ex ante measures, which refer only to events that lead up to its debut. Fx
post measures like diffusion and impact are appropriate for measuring the success or failure of an invention,
such as whether it becomes an innovation by spreading or altering the scientific or technical landscape
(Benner and Tushman 2003, Christensen 2011, Tushman et al. 1986, Padgett and Powell 2012). Such
measures implicitly or explicitly model the process by which an invention becomes important (Wang et al.
2013, Gerrish and Blei 2010). For examples of ex post measurement, consider the frequent use of patent
and paper citations to identify critical innovations, or the disruption measure by Funk and Owen-Smith
that identifies breakthrough technologies by identifying cases where a new patent eclipses citation attention
to the contributions on which it built (Funk and Owen-Smith 2016, Wu et al. 2019, Lin et al. 2021)3.
Note that such ex post measures cannot quantify the potential for an idea or technology to be influential

3An increasing trend is to use both ez post measures of innovation and ez ante measures of novelty by measuring the
(un)predictability of future from past (i.e., novelty) and the (un)predictability of past from future (i.e., persistent innovation)
(Kelly et al. under review, Barron et al. 2018).



or transformative until after it begins to diffuse and disrupt. Measuring what happens after an invention
appears does not independently measure its novelty, but confounds this with whether that novelty becomes
important.

By contrast, exr ante measures of novelty do not require observations of the subsequent career of an
invention (Verhoeven et al. 2016). Unlike ex post measures, which capture how an invention is received,
exr ante measures assess how its qualities relate to earlier work, and how it is perceived as a result. In
characterizing the relationship between an invention and prior art or knowledge, ex ante measures, in turn,
implicitly or explicitly make claims about and hence model the process through which an invention or a
discovery is made.

We note another important class of novelty measures focus on novelty intentions (or voluntate measures
if we insist on Latin approbatives), such as investments in or intensity of original research and development
(Lee et al. 2015, Lee 2015, Cohen 2010, Romer 1986, 1994, Kemp and Pearson 2008). While these measures
likely elucidate a critical source of novelty, the intention and resources required to explore techno-scientific
novelty likely has a complex relationship with realized novelty that is beyond the scope of this article. In
this paper, we focus on measures of ex ante novelty, not on investments in novelty and not ez post measures
of diffusion, innovation and impact .

For the purposes of this paper, we pragmatically define discovery as synonymous with invention and
the creation of cultural artifacts. New technologies, enterprises, theories, paintings, symphonies—all result
from creative human effort and involve some novel deviation from prior work, which makes them “new”
(North 2013). How do social actors recognize this new-ness? Consistent with contemporary theories of
predictive coding, we propose that they judge a creation as novel when it violates expectations (Rohrmeier
and Koelsch 2012, Clark 2015). The more expectations are violated, the more novel a creation seems. What
sets expectations? Familiarity with prior art and beliefs about the process of invention. To take a musical
example, the mature works of Arnold Schoenberg were perceived as radically new. They represented a
massive break with prevailing compositional methods, violating expectations set by prior art and standard
compositional process (Ross 2007). The works of Maurice Ravel, his contemporary, violate expectations less,
and consequently seem less novel. Ravel’s work includes techniques outside the familiar inventive process
(e.g., gamelan music), but far fewer such techniques than Schoenberg’s (Mawer 2000). Schoenberg was
perceived as more novel than Ravel because his music was more improbable given the “normal” creative
process®.

This experiential account of novelty can also be grounded in the anthropologist Alfred Gell’s work on
art (Gell 1998) ©. Gell argued that our experience of works of art is mediated by an attempt to infer
(via abduction) the generative processes that produced them. Art that “enchants” is precisely the art
whose generative processes cannot be inferred. The analogy to invention, discovery, and other forms of
creation is straightforward. The role of abduction in Gell’s account also helps to clarify the importance of
context. Abductive inference depends precisely on the stock of familiar ideas and procedures out of which an
explanatory process can be assembled. The ancients were astonished by the work of a legendary glassmaker
who could produce “flexible glass;” as Isidore of Seville reports, because they could not fathom how he had
done it, they killed him to stop the novelty from spreading. Contemporary manufacturers, familiar with
recent techniques for producing fiber optic cables and Gorilla glass, would presumably have a less lethal
response.

Formally, we claim that perceived novelty is a decreasing function g of the mentally simulated probability
of a discovery or invention D, conditional on the prior knowledge or art K and the creative/search process
S through which discoveries or inventions are typically conceived and achieved”:

4Like all dichotomies, the novelty /impact dichotomy is somewhat artificial. Novelty affects impact, and impact—over
time—mnecessarily shapes perceptions of novelty.

5There are, of course, scope conditions here. Improbable outcomes may be perceived as “crazy” if they violate expectations
so thoroughly that they are not decipherable under current practices. But this can change with time. For example, quantum
biology has shifted from “crazy idea” to intriguing possibility over the past decade.

6We thank Christo Sims for bringing this work to our attention.

"The conditioning is necessary because the probability of a discovery depends on what is already known (K) and on the

4



Nov =g(P(D|K,S)), dg <0. (1)
dP

If the estimated probability of a discovery D is low, given prior knowledge K and inventive process S, then
its perceived novelty is high: it is surprising®. If the probability is high, then perceived novelty is low:
the invention was an obvious or expected extension of prior work. On this account, measures of novelty
simultaneously assess (1) the degree of perceived difference between a new object and the population of pre-
existing objects and (2) the perceived improbability of arriving at the new object, assuming that components
from previous objects constitute most of the raw materials. In short, measures of novelty assess the surprise
induced by a focal object.

This connection can be made even tighter using explicit formalizations of surprise. An early, information-
theoretic formalization reinterpreted the notion of self-information as surprise. Myron Tribus renamed self-
information “surprisal” to signal the surprise experienced by the receiver of a message or the observer of
an experiment upon observing a particular outcome (Tribus 1961). If I is the self-information or surprisal
associated with experiencing outcome x; of random variable X, then I(z;) = —log(P(X = z;)).

Surprise is a decreasing function of the probability of experiencing a given outcome from a random
variable, such that high probability events are banal and low probability events are surprising. This approach
has been used in measures of the surprise associated with scientific discovery (Foster et al. 2015) and the
surprise experienced by viewers of movies and sports matches (Ely et al. 2015). Variations of this basic idea
will show up in many of the measures discussed in 3; this is unsurprising, given that existing measurements of
novelty can be interpreted as simulations of the process by which discoveries or inventions have been achieved.
If novelty measures are based on models of discovery and invention, however, is there any organization to
those models? We claim that there is.

3. Organizing Novelty Measures

As we noted in the introduction, a plethora of data representations and algorithms have been used to
measure technological, scientific and cultural novelty. Many of these measures do not explicitly articulate a
simulation of discovery. Nevertheless, all measures capture some distance or divergence between a product
and its predecessors, i.e., between the discovery D and pre-existing knowledge K. We argue that each
implies a model of the process S by which a new creation was invented. A first set of measures, which
we call categorical, identifies novelty with the presence of any indisputably novel component. Categorical
measures have a simple implicit model of discovery: novel inventions simply pop into the minds of their
inventors at some rate. Other measures, which capture gradations of novelty, have richer models of the
discovery process. These complez models vary along two primary dimensions shown in Figure 1: (1) the
speed of simulated search underlying discovery and invention; and (2) the complexity of the space over which
search is simulated. Note that these two dimensions track the two factors on which actors condition when
estimating the probability of some invention: the nature of the search process S and the structure of the
space of pre-existing knowledge K. In other words, our conceptualization of novelty spells out the two axes
along which we expect novelty measures to vary. Of these two axes, speed of search S is the principle axis
of variation. We consider three approaches positioned along this axis, from slow to fast: configurational,
structural, and combinatorial novelty. We consider each of these approaches in turn, providing examples
and describing the assumptions under which they might be expected to work.

3.1. Categorical

The simplest family of measures captures categorical novelty: the determination that something is new
because it includes a new component or combination thereof. For example, consider patent counts, which

“search” process (5) involved in creation. Anton Webern’s music presumably struck his teacher Schoenberg as less novel than
it did the average listener.
80f the discovery of the muon, I.I. Rabi famously said, “Who ordered that?”
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represent technical combinations that have passed the innovation “novel” and “nonobvious” criteria required
for their prosecution (Jaffe et al. 1993, Cohen 2010), counts of innovations identified through expert appraisal
(Geroski and Pomroy 1990, Blundell et al. 1999), counts of new product announcements in trade journals
and magazines (Coombs et al. 1996, Fosfuri and Giarratana 2009), clinical trials, counts of drug products,
journal articles, or number of new molecular entities (Dubois et al. 2015), or worlds fairs and related
exhibitions of new technology (Moser 2005). Other categorical novelty measures define novelty as a function
of unprecedented content, such as Cokol et al. (2005) who defined novel biomedical research articles as those
that introduced new chemicals. In their simplest form, assessments of categorical novelty are binary: an
invention includes “something” new or it does not. Categorical assignments can be broadened to include
multiple, graded categories of novelty. In Cokol et al. (2005) and Foster et al. (2015), articles that did
not debut new chemicals but asserted new relationships between existing chemicals were scored as less
novel, but nonetheless judged more novel than articles that introduced no new relationships at all. This
simple tripartite novelty taxonomy lies atop a simple implicit simulation of discovery: that introducing a
new chemical is more improbable than searching for a new chemical relationship, which is more improbable
than tuning a known relationship”?. These measures have been used in cases where the underlying inventive
components are clear, well-defined, and easily identified.

This categorical approach runs roughshod over important detail. When creative products are opened
up and their internal complexity examined, no component is ever completely new (North 2013). More
sophisticated measures are needed to identify combinations of components that are more or less probable.
We turn now to these complex novelty measures, describing them in order of inventive search speed implied.
In other words, we array these measures along the S axis, corresponding to coarse-grained models of the
search and discovery process.

3.2. Configurational Novelty

Configurational approaches to novelty assessment directly assess differences between present and past
inventions in terms of their configuration of components. By explicitly using past knowledge and art as the
baseline, these approaches assume that the inventive process reflects creativity in proportion to the distance
traveled from that past. Configuration-based approaches represent inventions as sets of features and embed
them in an “inventive space” spanned by these features. Discovery involves moving from established to
novel positions in this space via shifts in feature values. Configurational approaches assume that search is
typically slow, encoding a gradual, tinkering mode of invention, rather than radical recombination. Large
movements in this space are highly improbable; they correspond to substantial departures from existing
inventions, which were presumably used as template.

3.2.1. Feature Sets.

The most common configurational measures assess an object’s novelty relative to prior objects in a “bag
of features” representation that ignores an invention’s internal structure. These measures build on the idea
that each discrete feature of the invention (e.g., transistor, heat sink, word, image or musical motif) can be
viewed as a dimension. An invention can then be characterized as a feature vector, registering a location
within the high-dimensional feature space. In the simplest case, features are binary: present or absent.
Inventions are then described by strings of binary features. For example, invention X is described as the
feature string: £X = 5 f55 .. X of fixed length, where n is the total number of possible features and
f7¥ € {0,1}. Inventions in this framework correspond to vertices on the hypercube of dimension n (Foster
et al. 2013a) and distance between them is the Hamming distance. As a result, Nov(f' [£¥) = 3" | — £,
where the novelty of invention f* is assessed in comparison to earlier invention f~. This distance could be
averaged across several previous inventions, or calculated with respect to the closest previous invention.

More nuanced measures assess difference by weighting the features, perhaps as a function of the frequency
with which each feature appears in past and present inventions. This weighting process still represents

9Note that measures that produce categorical variables are not necessarily categorical novelty measures as defined here; all
the measures below can be converted into a formally categorical measure by establishing a cutoff, everything above which is
novel and below which is not.



inventions as a feature vector. For example, Kelly et al. (under review) and Nanda et al. (2013) both use
the cosine distance between document feature vectors to score the novelty of patents relative to the field of
prior patents. Patent features comprised the full space of words in patent descriptions, scaling each patent’s
feature values with term frequency-inverse document frequency weightings (¢f.idf). Under this weighting
scheme, more distinguishing features make a larger contribution to an invention’s position in the space of
all possible inventions. This measure allowed Kelly and colleagues to improve the prediction of company
valuations, just as Nanda, Younge and Fleming demonstrate how venture capital-backed start-ups in the
renewable energy sector generate more novel patents than incumbent firms (Nanda et al. 2013). In practice,
analysts commonly reduce the number of dimensions using matrix factorization approaches like singular
value (or some other spectral) decomposition (Deerwester et al. 1990), latent variable methods like factor
analysis or topic modeling (Blei et al. 2003), or neural networks like Google’s popular word2vec family of
word embedding routines (Mikolov et al. 2013b,a) and recent alternatives (Pennington et al. 2014, Joulin
et al. 2016, Devlin et al. 2018). A threshold-based variant of this approach using Bi-directional Encoder
Representations from Transformers (BERT) was recently used to measure the novelty of research produced
during the COVID crisis, identifying an increase in the average distance between paper elements (Liu et al.
2020). Specifically, Liu et al calculated the distance between bio-entities extracted from a paper within the
BioBERT model (Lee et al. 2020), then counted the number of entity pairs in which their distance was in
the 90th percentile of the pairwise distance distribution, normalized by the number of such pairs in the

paper. Such approaches weight and merge similar features to generate reduced representations ?A, ?B of the
objects in question, on which familiar similarity measures can then be deployed as continuous measurements
or through cutoffs. See Table 1 for stylized formalisms and a thumbnail characterization.

Feature vectors can also be treated as draws from an underlying (multinomial) distribution 7. Novelty
is operationalized as the difference between past T4 and present T8 probability distributions over features,
using measures like the Kullback-Leibler divergence, Jensen-Shannon distance ', or Wasserstein / “earth-
mover’s” distance. This approach is common in information retrieval tasks seeking to retrieve novel results
against a repeated query (Larkey et al. 2002). As with the feature vector approach, analysts typically reduce
the dimension of the space in which inventions are located as described above. The novelty of new inventions
or documents can then be assessed based on their divergence or probability shift from older ones (Delort and
Alfonseca 2012). Consider how Barron et al. (2018) used LDA topic modeling to factor words from 40,000
speeches delivered during the French Revolution’s first parliament into 100 topics (i.e., word distributions).
They then identified novel speeches and speakers (e.g., the revolutionary proposals of the leftist Robespierre)
as a function of their historical unpredictability, based on the KL divergence between the topic loadings for

that speech and those prior: Nov(?B\f'A) = — ZfiBlog <§;> (see Klingenstein et al. 2014, Murdock et al.

2015, for similar applications).

Feature set approaches are most useful when inventions can be well-described as collections of features,
ignoring the detailed relationship between features. Distance is associated with novelty, and novelty with
improbability. The most probable inventions are ones that make modest, incremental changes in a few
features, relative to the pool of established inventions. Highly improbable inventions “travel far” from
established invention, dramatically shifting the distribution of features. Alternatively, when inventions are
viewed as draws from an underlying probability distribution of feature co-appearance, incremental invention
involves a small tweak to that distribution—a little more of this, a little less of that—while low probability,
high novelty invention involves significant change, such as from Pride and Prejudice (Austen 1813) to Pride
and Prejudice and Zombies (Austen and Grahame-Smith 2009).

10The Kullback-Leibler divergence is commonly used to measure the “distance” between two distributions P and Q, but it is
asymmetric, i.e., KL(P, Q) # KL(Q, P), and it does not satisfy the triangle inequality. For this reason, it is not a true metric
(technically, it is a premetric). The symmetrical Jensen-Shannon divergence can be used to define a metric, but effectively
assesses the distance of each distribution to a midpoint.



3.2.2. Sequences and Complex Configurations

More complex configurational measures account not only for unstructured presence, absence, frequency
or likelihood of features, but also their precise position in space and time. Consider an analysis of the
evolution of quotes on social media, where Simmons, Adamic, and Adar (Simmons et al. 2011) calculate the
edits required to transform an original quote s into one being passed along s®. The number of insertions,
deletions and substitutions needed to transform source string s4 into string s® provides a measure of
its relative novelty, Nov(s®|s#). This measure deviates from a feature-based approach by detecting the
difference between quotes containing the same components assembled in distinct sequences.

Economist Daniel Gross uses configuration-based methods not on one-dimensional sequences but two-
dimensional (2D) raster images to investigate the relationship between competition and creativity in an
online logo design challenge. Gross measures the novelty of an artist’s logo design as a function of its 2D
difference from prior submissions, including their own (Gross 2014). He uses two algorithms to compute that
difference: perceptual hash and difference hash, which perform a 2D edit-distance on the new logo image
and its predecessors.

We note that in both examples, the precise internal configuration of new inventions is critical. Edits
occur at particular positions along the string or in the image. As more fine-grained data on the internal
structure of inventions becomes available, analysts can and should develop more detailed, configuration-
based approaches to novelty measurement that take into account positions in three dimensional space or
four dimensional space-time (e.g., when two components of a transistor are materially interconnected within
a new radio-signaling device). These novelty measures would allow analysts to operationalize classic notions
like architectural innovation (Henderson and Clark 1990) at scale. Such approaches make sense when
inventions can be defined by a set of topological or geometric adjacencies among their components (e.g.,
component A is connected to or a certain distance from component B at time t) and when invention occurs
through local alterations to that structure. In such a context, inventions with few shifts are more probable
than those with many, because each edit incurs a cost of time, effort, creativity, etc. With the maturation of
deep-learning approaches (e.g., Deep auto-encoders, Long Short-Term Memory neural networks, Generative
Adversarial Networks, etc.) that infer a generative model capable of producing novel instances of inventive
objects (Goodfellow et al. 2016) such as music, images, text, or video, novelty analysts can now make novelty
assessments that take advantage of complete configurational information in their models of discovery.

3.2.8. Summary.

Configuration-based novelty measurements can be pursued with features of various kinds; with any low-
rank description of the data (e.g., factors, spectra, clusters, partitions); and, increasingly, with detailed maps
of internal configurations. For each configurational novelty measure, a distance or divergence in feature space
is computed between the configuration of components in a new technical, scientific or cultural product and
one or more predecessors. These measures correspond to a simulated inventive process in which a creator
searches for new products by making incremental modifications to past ones. Longer searches require more
effort, luck, or creative genius than short ones. Perceived novelty is then proportional to the configurational
distance traversed by those simulated searches.
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Category Sub-category Stylized Formalism / Instance(s)  Mental Model Example
Configurational Foreground: Inventions as collections of features.
Invention by replacing features.
Binary features  Nov(fP|f4) = Sl — fE Features are present or absent. (Foster et al. 2013b)
Hamming distance Invention by adding/subtracting features.
Feature vector ~ Nov(fP|f*) =1 — % Features may be weighted (e.g., tf.idf). (Kelly et al. under review)
Cosine distance Invention by moving in feature-space.
Reduced vector Nov(f‘BﬁA) =1- % Low-dimensional feature representation (e.g., PCA). (Pennington et al. 2014)
Cosine distance Invention by moving in relevant feature-space.
Distribution Nov(TB|T4) =3, TP log ;j Features drawn from distribution or mixture (7'4). (Murdock et al. 2015)
Kullback-Leibler divergence ' Invention by moving in distribution or mixture-space.
Sequence Nov(sB|s?) = # local changes. Location of features matters (e.g., string, image). (Simmons et al. 2011)
Edit distance Invention by local editing.
Structural Foreground: Network structure of prior knowledge.
Invention by linking features in clusters.
Bridging Nov(i,j) =1-46(C;, Cj) Frequently-linked components ¢ form clusters C. (Foster et al. 2015)
Categorical community distance Invention by combining features (easier within cluster).
Structural holes  Nov(i) < Y, Zt‘ Knowledge forms clusters; spanning is rare and difficult. (Chen et al. 2009)
Betweenness ceﬁtrality Invention by combining features (most novel span clusters).
Emergent Q=5 > (Aij — kanJ )6(C;,C;)  New structures emerge from linking patterns. (Rosvall and Bergstrom 201(
Modularity, map equation, etc. Novel contributions re-organize network structure.
Combinatorial Foreground: Recombinant process of invention.
Invention by recombining features.
Unipartite Nov(i,j,...) = g(ki, kj,...) Components i, j characterized by combinability k;. (Fleming 2001)
e.g., o (>, ki)~ t or ﬁ Combining rarely-combined components more novel. (Uzzi et al. 2013)
Multipartite Nov(i, j) = fleo+ >, caP*(i,7)] Multiple types of component densely interwoven. (Shi et al. 2015)

Random walks on hypergraphs

Invention through more- and less-likely paths.
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3.8. Structural Nowvelty

Structural approaches to novelty measurement place the relational structure of prior knowledge in the
foreground. Instead of representing inventions as feature vectors in a high-dimensional feature space, struc-
tural approaches represent inventions as networks comprised of links between more fundamental features
(network nodes). In other words, structural approaches represent inventions as patterns of relations rather
than as points in feature space. Network edges usually capture the relationship of components in the space of
prior knowledge and practice, such as the co-presence of chemicals within a research article or technological
subclasses within a patent. Nodes may also be used to represent individual inventions connected within a
larger knowledge network, e.g., by co-citation (Chen et al. 2009).

Structural measures assume that the typical search for new discoveries or inventions is sufficiently incre-
mental that existing structures in the knowledge graph (e.g., cliques or clusters) are not typically violated.
These knowledge structures constitute the baseline against which novelty is established. If the discovery
process is routinely slow, then a scientist or inventor familiar with the structure of this space would assess a
combination of inventive elements that violates or bridges distinct clusters as less expected and more novel
than combinations forged within clusters. This resonates with the claim made by Henri Poincaré (Poincaré
1952) and many since (Carnabuci and Bruggeman 2009) that the most generative combinations are “drawn
from domains that are far apart” (Poincaré 1952, 24). When components under investigation are more
distant in the network, more effort may be required to imagine and coordinate their combinations (Lea-
hey et al. 2015). Hence structural approaches to novelty measurement lie literally between configurational
and combinatorial approaches: They imagine invention as a process that is typically local but occasionally
combinatorial across knowledge boundaries.

3.8.1. Bridging and Structural Holes.

In many structural measures, the current structure of the knowledge network is modeled at a relatively
high level. A “community” of components C; is a collection of inventive elements i, j, ... densely connected
to each other, but loosely tied to the rest of the network. In a scientific discipline, such communities might
correspond to the knowledge clusters in various subfields, while in patented technology they might correspond
to broad product or process categories like “telecommunications” or “pharmaceuticals” or “manufacture of
plastic goods.” There are a variety of procedures for identifying communities in complex networks (Fortunato

and Hric 2016), such as maximizing the modularity,’* @ = 7 i (A — ’Z:j )6(C;, C;), or minimizing the
description length (Rosvall and Bergstrom 2010). Once knowledge clusters are identified, new links can
either reinforce this prior structure (if placed within existing clusters) or violate it (if placed between existing
clusters, bridging them). The former mode of invention is local and presumably less novel, especially when
links connect components already joined in the past. The latter bridging mode is more novel and presumably
more difficult, leading to a simple bridging measure for novelty: Nov(i,j) = 1 — 6(C;, C;), where novelty
is assigned to the combination of inventive component ¢ and inventive component j. Now(i,j) has value 0
when C; and C; are the same—components ¢ and j are in the same cluster—and value 1 when ¢ and j are in
different clusters. For an invention D containing n components with link set links(D) = {(4,J), (¢, k), ...},
we can calculate its novelty as the number of cross community links it contains, normalized by the number
of components:

1
Nov(D) = — > Nov(i, j). (2)
(i,7)€links(D)

These bridging approaches to novelty measurement share a basic intuition with the “structural holes”
approach to social network analysis (Burt 2004). Scientists or engineers who connect components in two
distinct communities span a structural hole between them; they arbitrage unexploited technical opportunities
that link resources in both. Structural hole measures quantify the degree to which node or edge ¢ spans a

HHere m gives the number of edges in the network; A;; are elements of the adjacency matrix representing the network, with
Ai; = 1if an edge connects ¢ and j and 0 otherwise; k; is the degree (number of network neighbors) for node ¢; and C; is the
community to which node ¢ belongs, with the other quantities defined mutatis mutandis.
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structural hole by calculating constraint (Burt 2004) or betweenness centrality Nov(i) oc Y, Z—:S:, where ni,
is the number of shortest paths between pairs of nodes s, ¢ that pass through node/edge i and g4 counts all
shortest paths between s and ¢ (Chen et al. 2009, Cheng et al. 2010). Intuitively, a node that sits on a high
fraction of shortest paths is likely to sit between and exclusively connect multiple knowledge clusters.

The components used to model knowledge structure need not be given in advance (e.g., patent codes or
chemical annotations). As with distance measures, researchers have built networks out of induced, data-
driven components, like the mixture of LDA topics estimated to describe a particular grant proposal. For
example, Nichols (2014) argued that grant proposals featuring more rarely combined LDA topics represent
novel interdisciplinary contributions.

Structural measures are especially appropriate for inventive domains where the structure of prior knowl-
edge is important and well-organized. This organization manifests in clusters of inventive components, where
most inventions draw their components from within a cluster. Consider a typical scientific paper, which
must be sufficiently novel to merit publication, but nevertheless draw on components traditionally combined
within an established field to gain acceptance. Such “within cluster” combinations should be more probable
and less novel. Connecting things that have not been well-connected before is novel and, per Burt (2004),
likely to be rewarded.

Foster et al. (2015) explored such an approach to novelty measurement in biomedical chemistry. They
infer ties between chemicals co-appearing in published papers and assess the rewards associated with different
forms of structural novelty. They find that bridging novelty—the introduction of new links connecting
distinct knowledge clusters—positively anticipates citations and scientific awards. They found a stronger
association with categorical novelty, however, which involved growing the knowledge structure by introducing
new chemicals. 2 There is a similar intuition behind Verhoeven et al. (2016)’s “Novelty in Scientific
Origins” indicator; in this case, they score patents based on novel connections between International Patent
Classification codes and Web of Science subject categories. While the knowledge clusters are expert-identified
rather than data-driven, the underlying idea is the same; they also find a positive association between
structural novelty and mean impact.

3.3.2. Emergent.

A generalization of this structural approach goes beyond the transgression of prior structure by individual
connections. New, emergent knowledge clusters violate the community partitions of the past. Such novel
structures compete with and sometimes displace earlier ones. Grossman et al. (2008) use an explicit network
partitioning approach to identify novel clusters of emergent behavior in an Internet IP packet network as
targets for investigation. Rosvall and Bergstrom (2010) use network partitioning over journal citation
networks to identify the emergence of new academic disciplines. For example, they locate the birth of
neuroscience as a product of neurology fused with parts of molecular and cell biology. In the sociology
of organizations and networks, Padgett and Powell’s model of emergence by autocatalysis has become a
key approach in the analysis of institutional novelty (Padgett and Powell 2012), from the rise of the early
modern state (Padgett and Ansell 1992) to the genesis of the biotechnology sector (Powell et al. 1996). Such
measures are most appropriate when prior knowledge or invention is well-organized, structures persist over
time, and longitudinal data is available for researchers to detect gradual transformations in the structure of
knowledge.

3.8.83. Summary

Structural approaches assume that the search for new cultural, technological, or scientific products is
gradual, so that prior structure is the essential baseline and existing knowledge clusters (typically represented
through network communities) are generally respected. This is similar to the incremental search model
underlying configurational approaches. Structural approaches differ in imagining the wviolation of structure

12They also found that new ties within an established knowledge cluster were more strongly rewarded than new bridges
between them. Note, however, that in this case bridging ties between clusters were more common than filling in gaps within
clusters, and consequently less surprising and rewarded.

12



as both possible and more frequent. Measures based on bridging or structural holes permit the occasional
recombination of components across knowledge structures. This roughly corresponds to a long-distance
move in feature space through which an invention samples from two distant feature vectors. Measures based
on emergence permit something even more radical: the large-scale recombination of components to create
new technologies or knowledge structures. This corresponds to the restructuring of feature space to create
short cuts that accelerate discovery in new directions.

If structural approaches allow the periodic violation of prior knowledge through bridging events—slow
search punctuated by faster recombination—combinatorial measures assume that the precise structure of
present knowledge is largely irrelevant.

3.4. Combinatorial Novelty

Structural approaches to novelty measurement are popular among scholars of scientific knowledge (e.g.,
(Chen et al. 2009, Rosvall and Bergstrom 2010, Foster et al. 2015)), reflecting the importance of disciplinary
knowledge structures. Scholars of technological innovation, however, favor combinatorial measures, reflecting
a tradition that views invention as a recombination process (Fleming and Sorenson 2001, Arthur 2009,
Verhoeven et al. 2016). Combinatorial novelty measures highlight components’ past history of recombination
and the rules by which they are combined.

Combinatorial measures assume that search involves rapid recombination of inventive components. In-
ventors draw from the space of known components and try to assemble a valid combination. Combinations
might involve chemical compounds that interact to create a robust disease therapy (Rzhetsky et al. 2015)
or hardware components that interoperate to produce a useful new computer (Fleming 2001). Components
are joined together as a function of their “combinability”: the likelihood that they will successfully combine
with other components. Combinability is a complex function of component affordances, popularity, etc.
Different combinatorial measures highlight distinct facets. New combinations between infrequent or unlikely
combiners are judged unexpected and novel.

3.4.1. Peculiarity

The simplest combinatorial approach approximates the probability of a particular invention as propor-
tional to the average combinability of its components—whether they have many distinct opportunities for
combination. Fleming and Sorenson (2004) begin with the unweighted degree k; of a component, or the
number of different and distinct components that have been linked with it in the past. That quantity is
divided by the total number of inventions in which the component has appeared, p;, to measure the combin-
ability of the component (e.g., a component that is connected to few distinct components, but used in many
patents, is inert and not very combinable). The novelty of a new invention is the inverse of the average
combinability of its components: Nov(X) = %, where nx counts the number of components in X.
Inventions with high average combinability are less novel than those that break expectations by assembling a
number of hard-to-combine, finicky components. We call this measure “peculiarity” because high values are
achieved by assembling peculiar components: those that do not play well with others. Extensions have in-
corporated the date of origin for components, allowing analysts to more precisely account for recombination
opportunities over shorter and longer histories (Evans 2010).

3.4.2. Atypicality

Another approach (Uzzi et al. 2013, Lee et al. 2015, Fontana et al. 2020) assesses the probability of
combining pairs of components. If the (weighted) degree of each node w; is treated as its combination
potential and edges are randomly wired until each node’s combination potential is exhausted, then the
probability that two randomly drawn components are connected is proportional to the configuration model
estimate of the edge probability from random graph theory (Foster et al. 2007, Newman 2003): Pr(i,j,t) =
%, where ¢ and j label two nodes, w; and w; are their network degrees (combinability) at time ¢,
and E represents that total number of edges in the (undirected) network. This approach is used by Uzzi
et al. (2013) to model the assumption that elements frequently combined in the past are likely to recombine
in the future: they are typical combinations. Uzzi et al. (2013) used journals cited in the reference list
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of scientific papers as the elements of combination. They simulate a version of this random combinatorial
process by fixing the network in- and out-degree of each article and randomly rewiring the citation network to
establish the baseline probabilities of journal co-appearance, against which empirical co-appearances are seen
as variation (quantified by a z score, with positive z scores corresponding to typical pairings and negative
z scores to atypical ones). Uzzi et al. (2013) then use the 10th and 50th percentiles (“tail novelty” and
“median conventionality”) of a paper’s z score distribution to characterize its blend of atypical and typical
combinations of prior work, respectively. (Lee et al. 2015) introduced a related approach that substantially
relaxed the computational burden of atypicality measures by using the configuration model approximation
directly, rather than rewiring. In Section 4, we implement an extension of this approach to undirected
networks, combining Uzzi et al. (2013)’s basic framework with Lee et al. (2015)’s computational speedup.

Uzzi’s atypicality meausure can also be reformulated for computational efficiency using a vector-space
calculation that interoperates well with contemporary, continuous embedding spaces (Devlin et al. 2018,
Mikolov et al. 2013b). Levy and Goldberg analytically proved that pointwise mutual information (PMI), a
revised z-score, equals the distance between vectorized items embedded in latent spaces as calculated by their
inner product (Levy and Goldberg 2014). In this way, scientific or technological embedding spaces trained
on words in technical documents or journals in reference lists learn scientific conventions and unexplored
research opportunities, which can be used to facilitate exploration of scientific frontiers (Tshitoyan et al.
2019). Lin et al. (2021) demonstrate that z-score for journal pairs correlates strongly (0.74, p < .001) with
the inner product between journal embeddings. Although this PMI reformulation is an ez ante measurement
like the others we review, it also enables us to analyze the evolution of perceived novelty as PMI changes
with a temporal sequence of embeddings (Garg et al. 2018, Kozlowski et al. 2019).

3.4.3. Obscurity

Rzhetsky et al. (2015) validated the intuition behind the combinatorial discovery model by demonstrating
that most links in a network of biomedical knowledge connect drugs, proteins, and other chemicals with
relatively high combinability, as measured by weighted degree. They interpret this as connecting relatively
“popular” chemicals to each other. They add nuance to a basic preferential attachment picture, showing
that biomedical scientists have a preference for connecting a highly combinable, popular chemical with a
less popular, somewhat obscure one, in effect “building out” islands of knowledge around popular anchor
chemicals—even though this strategy substantially slows the speed at which scientists collectively uncover
the network of possible chemical relationships (Rzhetsky et al. 2015). In Section 4, we implement a simple
version of this popularity measure; the “obscure” novelty (obscurity) of an invention D is the log of the
reciprocal of the product of its weighted component degrees w;, divided by the number of components n:
Nov(D) = —+log([], wi), where we have converted this to a surprisal measure by taking the negative log,
and the product of component degrees is a proxy for the probability of the combination. Patents that score
high on this measure combine many obscure, low-degree components.

In Figure 1, we illustrate how this combinatorial picture could be generalized to account for the rich
combinatorial complexity of networks. For example, if we characterize a component’s combinability not
by its degree, but by the combinability of its neighbors (measured through an eigenvector-based PageRank
(Langville and Meyer 2006) or Bonacich Centrality measure (Bonacich 1987, Bonacich and Lloyd 2001)),
then this characterization could alter which products are assessed as more and less novel. For example,
components that combine with other highly combinatorial components might be transitively assumed to
have higher combination potential than those that do not.

3.4.4. Multipartite Measures

Artists, inventors and scientists use heuristics beyond prior combination to assess combinability. For
example, Shi et al. (2015) show that when biomedical scientists combine chemicals, diseases, methods and
team members, their search is sensitive to the different probabilities P(i,j) of connecting two entities ¢
and j through an intermediary of type o = {chemicals, diseases, methods, authors}. For example, the
probability of combining two previously disconnected diseases in a paper is more sensitive to connecting
paths through shared methods (e.g., X-ray tomography) or chemical substances than through other diseases
(Shi et al. 2015), suggesting that scientists are more attached to their methods than topics. It further
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implies that when methods are combined because they enable better understanding of the same disease,
this represents a more unexpected inventive process, improbable and novel relative to the normal pathway
of discovery. To generalize, if artists, engineers, or scientists engage in any common search process, and a
new discovery is viewed as unlikely to be produced by that process, the discovery will be deemed novel as a
decreasing function of that likelihood. As before, this can be quantified using the surprisal —log P(D|K, S)
of a particular discovery D conditioned on prior knowledge K and discovery process S.

3.4.5. Summary

Combinatorial approaches to novelty measurement assume that new discoveries and inventions are shaped
more by the nature and pace of the search process than by the structure of prior knowledge and art. They also
assume that search is “fast” relative to the structure of prior knowledge. Components are less characterized
by their detailed positioning in some vast knowledge network, than by their combinatorial propensities.

3.5. Conceptual Summary through a Simple Model

We summarize the conceptual foundations of these novelty measures by considering a simple random
walk process over the space of components and the inventions they compose. An appropriate random
walk process can be defined for configurational, structural and combinatorial measures and their underlying
representations (feature spaces, knowledge networks, etc.).

Suppose that the typical scientist, inventor, or designer discovers new products by drifting randomly
through the network of known inventive components, testing and rejecting possible links. The more unlikely
it is that a scientist exploring at random will reach from one inventive component i to another j, the
more difficult it is to uncover a valid combination between them (Chen et al. 2009). A random walk
will tend to stay within a local neighborhood of densely connected ties, rather than venturing to loosely
connected domains, allowing it to capture structural features (see Rosvall and Bergstrom 2010, ’s approach
to community detection).

A random walk interpolates between local, configuration and structure-based search, on the one hand,
and non-local, combinatorial search, on the other. To keep track of how many times elements have been
combined in previous inventions, we encode the network of inventive combination in a weighted adjacency
matrix. At time ¢, the novelty of a combination (i, ) is a decreasing function of the probability to diffuse

Wi,

from i to j at t. Formally, if Pj; = <=5, then the probability for a random walker originating at

r=1 "Vir

component ¢ to be at component j after n steps is Pr(i, jin) = (P™);;. Now consider the continuous-time
version in which X (¢) provides the position of the random walker at time ¢:
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where A is the diffusion rate and At fixes the average number of steps h taken in time ¢ (Montroll and Scher
1973). We can estimate the most likely diffusion parameter A, given time-stamped data, via maximum
likelihood procedures (Cokol et al. 2005:200; Gilks, Richardson, and Spiegelhalter 1996) to parameterize
the scientific discovery process. Random walks with a large A describe a rapid exploration process, largely
insensitive to distance and structure, and as A\ — oo, the probability of landing on a specific element becomes
proportional to its degree 3. Assuming that components are chosen by periodically stopping this high speed
random walk, then the probability of reaching between two components will be proportional to the product
of their degrees, which mimics combinatorial novelty measures like those proposed in (Fleming and Sorenson
2004) and (Uzzi et al. 2013). By contrast, random walks with a small A (e.g., A = 0.01) will explore slowly,

13Technically, the stationary distribution of the random walk process will be proportional to the degree of each node, such
that the probability for a walk begun from any node i to end at another node j will be proportional to the degree of j, so long
as ¢ and j are in the same connected component.
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making local connections highly probable, just as in bridging or emergence models. We can then define the
novelty of combinations as some decreasing function of their probability, as in Equation 1'4.

We note that random walk measures are computationally expensive relative to existing approaches. We
propose the model as a device for illustrating the relationship between novelty measures and showing how
they all rely implicitly or explicitly on an underlying model of the discovery process. Insofar as our random
walk model, under different As, corresponds to our distinct novelty measures, it will confirm the accuracy
of our characterization of those measures as simulations of search processes with varying speed. Insofar
as our measures reveal variations in the inventive process across technological sectors, it will justify the
importance of adapting measurement to sector-specific search processes and knowledge structures in order
to capture the perceived novelty of any new invention. We turn to such variation in the next section, testing
our framework on the analysis of novelty in U.S. Patents.

4. Testing the Framework: Novelty Measures in U.S. Patents

Here we use inventions disclosed in U.S. patents to demonstrate the value of our framework for novelty
measurement. We draw on data from approximately 2.5 million U.S. utility patents, accessed through
Patentsview '®. We represent prior knowledge using the 2,259,119 patents granted between 1976 and 2000;
and assess the novelty of 157,595 patents granted in 2000. To check the robustness of our findings, we
repeat our analyses on 90,421 patents granted in 1990, representing prior knowledge with the 958,817
patents granted between 1976 and 1990. Findings are broadly similar across these two cases.

We use codes from the United States Patent Classification (USPC) system as basic invention components.
The USPC is a two-layer classification system. The top layer consists of terms called classes. According
to USPTO, a class generally delineates one technology from another. Every patent is assigned a main
class. Each class also contains subcomponents called subclasses. Subclasses delineate processes, structural
features, and functional features of the subject matter encompassed within the scope of a class. In total,
there are 496 class codes and 158,073 subclass codes.

We implement 5 novelty measures drawn from the three categories discussed above, and calculate the
novelty scores for each patent in our population of interest. First, we show that technology areas vary in the
way novelty measures are distributed. This result follows from our claim that different novelty measures rest
on different ‘conceptions’ of the inventive process. Second, we document the relationship between different
novelty measures and the mean, tail, and variance of impact in each technology (i.e., class) as well as higher-
order groupings of technologies associated with USPTO “technology centers.” We find that technologies
and technology centers vary widely in which novelty measures predict impact. More importantly, we find
that technology fields closer in inventive practice have much more similar relationships between novelty
and impact than those further apart. Given well-established associations between novelty and impact, e.g.,
(Fleming 2001, Uzzi et al. 2013, Foster et al. 2015, Lee et al. 2015), this suggests that similar inventive
processes are best captured by similar novelty measures. Finally, we show that our simple random walk
model tracks associated novelty measures as walk speed is varied, justifying our characterization of inventive
domains and associated models as fast or slow.

4.1. Nowelty Measures Used

We implement five measures from the literature as illustrative examples of the configurational, structural,
and combinatorial approaches to novelty measurement. Brief definitions of the measures are given below;
see Section 3 for detailed exposition and discussion.

14X\ can be estimated even more precisely; we need not assume that the adjacency matrix is static. For example, we could
divide the time interval T into intervals At¢s during which the weighted adjacency matrix is fixed as W(s), but at the end
of each time interval, a new adjacency matrix is used, taking into account new combinations discovered in the intervening
interval. The probability that a continuous-time random walk starting at node 7 will be at node j at time ¢ = T is then given
by Pr(X(T) = j|X(0) = i) = [[] e*Q(s)Ats]i]_ where >, At; =T.

LBhttps://www.patentsview.org/
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Configurational novelty. Following the literature on patents (Fleming 2001), we use subclasses from
the USPC system as features for specific patents. Each patent X is thus represented by a feature vector
X = (%, fX) of subclasses, where fX = 1 if patent X is associated with subclass i and fX = 0
otherwise. The simple, configurational novelty of patent X is defined as the median Hamming distance from
X to all patents Y granted prior to X in the same main class:

Nov(X) = Median{z If~ — fY|, V Ygranted prior to X in the same class}.

This measure is common in the biology literature (Gavrilets 1999, Foster et al. 2013a, Erwin 2020); it is
closely related to novelty measures based on cosine distance (Nanda et al. 2013), and variants have been
used for patent classification (Seneviratne et al. 2015).

For other novelty measures, we construct a co-occurrence network of subclasses to represent the under-
lying search space. Two subclasses are connected if they have ever co-appeared in a patent granted before
2000; the link is weighted by the number of patents in which they co-appear. Accordingly, a patent is
represented not only by the subclasses associated with a patent, but also by pairwise links between those
subclasses. A specific patent is, in essence, a clique (complete graph) across its subclasses, as in (Foster
et al. 2015, Verhoeven et al. 2016).

Structural novelty. We use the Louvain method (Blondel et al. 2008) to find communities in the
subclass network. A patent’s structural novelty is calculated as the number of cross-community links in the
patent, normalized by its total count of subclasses (Equation 2). This measure is a continuous version of the
one in (Foster et al. 2015), and a close conceptual analog of the “scientific origins” measure in (Verhoeven
et al. 2016)16.

Atypicality, our first combinatorial measure, captures how “unusual” the combinations in an inventive
product are. It is defined as the negative of the 10th percentile of z-scores for combinations in the inventive
product, as in (Uzzi et al. 2013). Recall that atypical combinations have a negative z-score; a product
with several unusual combinations will have a large negative value for the 10th percentile of its z-scores
and thus large atypicality. The measure developed in (Uzzi et al. 2013) requires a few modifications to be
used on the patent network. Links represent co-appearances between patent subclasses instead of citations
between papers, and hence are undirected. Consequently, we can calculate the z-score of a link (k, 1) directly
el
deviation of wy; under the configuration model'”; see section 3.4.2 for detailed discussions). We then assign
the novelty of a patent as the negative 10th percentile of z-scores for all links in the patent 8.

Obscurity, our second combinatorial measure, is defined as — ), log(wy)/nx, where wy, is the weighted
degree of subclass k associated with patent X. The normalizing factor nx is the number of subclasses in X.

Pecularity, our third combinatorial measure, is an exact replica of the well-known measure used in
(Fleming and Sorenson 2004). It is defined as nx /Y, (di/pr), where dj, is the unweighted degree of subclass
k and pj is the number of patents already associated with subclass k.

as (where wy; is the weight of link (k,1), Elwg] and o(wy;) are the expectation and standard

4.2. Distribution of Measures Across Main Classes
In Figure 2, we plot the distributions of different patent novelties for technology classes drawn from 8
of the 9 USPTO “technology centers”. Each technology center examines patents across a range of related

16Qur version is normalized, uses data-driven knowledge clusters, and examines connections within technological clusters
rather than between technological and scientific knowledge. Our approach finds 12 substantial communities in prior knowledge
from 1976-2000, which map onto broad technical domains, as well as four small and less coherent communities. We provide a
brief gloss of the coherent communities here: traditional manufacturing and industry; telecommunications; electricity/electrical;
industrial chemistry, heating, and refrigeration; fine metal manufacture; plastic goods; pharmaceuticals and biomedicine;
computer hardware; resins, rubbers, and coatings; molecular biology, microbiology, and food; ammunition and explosives; and
(amusingly) beekeeping.

7"With mean-field approximation, Efwy;] =~ % where sy, is the strength (i.e., weighted degree) of k and m is the total

sEsy/m
1—2s35;/m2

18This strategy is very similar to the approach of Lee et al. (2015), who likewise use a configuration-model approximation,
but do not use it to approximate z-scores as we do here.

strength of the network, and o(wg;) ~
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classes; by looking at a typical class from each center, we are effectively looking across the landscape of
inventive domains, as seen from the USPTO. We exclude the center focused on design patents, as their use
of class annotations differs from utility patents '°. We also exclude design patents and design classes, in the
analyses below, for the same reason.

Across technology classes and novelty measures, most distributions take on a rough inverse-U shape.
This is consistent with the intuition that most patents are “normal,” with very few being highly novel or
trivial. Marked differences are revealed between fields, however. For example, inventions in the class “502.
Catalyst, solid sorbent or support therefor” exhibit great variation in structural novelty, suggesting that
invention in this domain often involves the transgression of knowledge clusters. By contrast, patents from
“370. Multiplex Communication” show little such variation, implying that invention in this domain almost
entirely respects knowledge cluster boundaries, which is unsurprising as one of the clusters corresponds
to telecommunications. Several classes have broad distributions of Peculiar novelty, suggesting that some
patents put together several “hard-to-combine” components). Others have tightly peaked distributions,
meaning that patents in these domains tend not to vary much in the combinability of their components.

To verify that these differences are not due to randomness or measurement noise, we perform a series of
statistical tests. First, for each novelty measure, we perform an ANOVA between all 473 classes?® to test the
difference in the first moments. As a robustness check, we then perform the Kruskal test on our measures
to test differences in their medians. Similarly, we perform both Levene’s test and the Brown-Forsythe test
for the second moments (or variance) of the measures between classes. All results are significant at p < .001
(see Appendix Table B.2 for detailed results), rejecting the null hypothesis that the measures have equal
mean, median, or variance across the classes.

While these novelty measures have been successfully deployed to measure various inventive processes,
the different distributions shown in Figure 2 underline that they measure different aspects of invention and
its relationship to prior knowledge. This result follows from our core argument; these measures have been
developed for specific research questions, rely on distinct assumptions, and do not trivially generalize to
different domains (even within the space of technology). Insofar as different technology areas have distinct
inventive processes and differently structured prior knowledge, we would expect their patents to exhibit
different ranges and distributions of novelty across various measures. That is exactly what we see here.

4.8. Nowelty Measures and Impact

Novelty measures are often used to characterize and predict influential discoveries, inventions, and prod-
ucts. Indeed, the use of ex ante novelty measures to identify potential breakthroughs and blockbusters is
one of the primary reasons to study novelty. Deep characterization of the association between novelty and
impact contributes directly to the study and management of invention and innovation, as well as the crafting
of science and technology policy. Here we explore the relationship between distinct novelty measures and
patent impact, using citation as a proxy for impact. All evaluated patents are published the same year
(2000), and we count the citations they have accumulated from 2000 to 2010 from other granted patents
21 Although of course a simplification, citation is still the best widely available quantitative measure of
impact. It has a demonstrated association with the diffusion of ideas (Gerow et al. 2018) and commercial
value (Harhoff et al. 1999). It is also widely used in innovation studies; this renders our analysis easily
comparable with the existing literature, including very recent articles like (Fontana et al. 2020).

The novelty framework described above motivates the following deduction. Because different inventive
areas have distinctive invention processes, different measures will provide the best characterization of novelty
in those domains. Because invention, like innovation (Cohen et al. 2019), is fundamentally multidimensional,
a combination of measures will characterize novelty better than a single measure. Since novelty is associated
with impact, it follows that the relationship between novelty measures and different forms of impact should
also vary across inventive areas, whether single or multiple measures are used.

19We thank the editor for this critical point, noting also that including them does not change the pattern of results

20Excluding design classes.

210ur data end in 2010. In our robustness test, we also examine patents published in 1990 and count the citations they have
accumulated from 1990 to 2010. These tests confirm the findings described here.
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in the distribution of novelty measures. Solid lines are kernel density estimates with Gaussian kernels.



To test this prediction of our framework, we build three classes of regression model that predict mean
impact, hit impact and the variance of impact, using the five novelty measures implemented above as
predictors ?2. All three variants of the novelty-impact relationship are prominently attested in the literature,
e.g., (Foster et al. 2015, Uzzi et al. 2013, Fleming 2001) for mean, hit, and variance of impact respectively.
To capture potential nonlinear relationships between novelty and impact, as widely reported in the literature
(Uzzi et al. 2013, Foster et al. 2015), we also include the square of each term as predictors.

The first class of models regress the logged count of citations received by a patent on all five novelty
measures and their squares; a distinct model is estimated for each patent class. The second model uses
logistic regression to predict whether a patent is among the top 10% most cited patents granted in 2000
(resp. 1990) within each class; this model uses the five novelty measures and their squares as predictors,
and is also estimated for each patent class. The third takes a multi-level modeling approach to regress the
variance of citations on all five novelty measures. We assume that the logged count of citations for each
patent = has a Normal distribution: log(C,) ~ N(fis,02), and both mean and variance of this distribution
are functions of the novelty measures: p, = ag + Zle a;Nov;(z) + Z?Zl aNov;(z)? and o2 = exp(by +
Z?Zl biNovi(z) + 30_, b, Nov;(x)?) where Nov;(z) is the i-th novelty measure of patent z. Our goal is to
find parameters a;, a, b; b, that maximize the likelihood of observing the log-citation counts in our data
given their novelty scores.

For each model, the estimated coefficients for the novelty measures reveal the differential impact of each
implicit novelty-generating process on the reception of patents in that technology class. As a result, we call
a particular configuration of coefficients the impact profile of the novelty measures for that class.

We fit our models to each class of patents separately. In these analyses, we focus on how novelty
characteristics of patents within a particular inventive area predict their impact; we therefore compare
patents within the same class and the same year. We do not control for other patent characteristics (e.g.,
number of inventors, assignee, etc.). While these no doubt have some relationship with impact, they also
affect the novelty characteristics of the patent (Lee et al. 2015, Wu et al. 2019), and may moderate the
relationship between novelty and impact (Lee et al. 2015). Such questions are, of course, interesting, but
orthogonal to our purpose: To ask whether the core relationship between novelty and impact varies across
measures and inventive fields.

We can use these models to test a core prediction of our novelty framework. When two classes frequently
cite each other, they are likely to have similar inventive practices (Yan and Luo 2017). If the inventive
practices in two classes are similar, then the distinct novelty-generating processes captured by each measure
should have a similar net effect on impact. This implies that the impact profiles of the two classes should
be similar as well. By contrast, when two classes rarely cite each other, their inventive processes are likely
to be quite different—implying different impact profiles.

We show this analysis in Figure 3. The horizontal axis indicates the cosine similarity between two impact
profiles, with 1.00 indicating identical profiles and —1.00 indicating “opposite” profiles. The vertical axis
indicates the cross-citation strength between the two classes (i.e., the sum of log-citation counts between the
two classes) for which the corresponding impact profiles are calculated. For clarity of presentation, we omit
individual data points here and show fitted trend lines; we also remove the intercept terms of the fitted lines
to accommodate them on the same plot. (Plots including the raw data points and individual fitted lines are
included in the Appendix.) The shaded area around each line indicates the 95% confidence intervals.

While the change of y-values in Fig. 3 does not seem dramatic, the trends are statistically significant: We
find a significant and positive association between impact profile similarity and cross-citation strength. This
suggests that fields sharing technologies and knowledge also reward and value the same novelty-generating
processes—just as our framework predicts. We note that the impact profile similarity manifests the strongest
association with the variance of impact (correlation p = 0.32, p < .001) and weaker associations with mean
impact (p = 0.08, p < .001) and hit impact (p = 0.04, p < .001).

Our second analysis examines the relationship between novelty and impact within each of the 8 USPTO

technology centers?3. We first repeat the three families of regressions described above for each class, but

22We also repeat these analyses using each novelty measure as a single predictor; see below.
23 A technology center examines patents across multiple classes as specified by the USPTO; broadly speaking, centers examine

20



use only one measure at a time as a predictor (including the squared term as above to model non-linearity
reported in the literature). We then collect the R? and pseudo-R? for each measure-class combination. For
all classes within a technology center, we compute the fraction of the classes for which a given measure
is the best predictor; this information is encoded in Figure 4 as a heat map. Very dark colors mean
that a large fraction of classes in a particular Technology Center have that measure as the best predictor
(e.g., configurational novelty is the best predictor of mean success for the vast majority of classes in Tech
Center 2100 (Computer Architecture Software and Information Security)); very light colors mean that a
small fraction of classes have that measure as the best predictor (e.g., structural novelty is rarely the best
predictor of hit success for Tech Center 2100).

In each cell, we also show the average R? for that particular measure; the average is taken across all
classes in the appropriate technology center. While these numbers are typically quite small, we emphasize
that the average includes cases where a particular measure is the best predictor as well as cases where it is the
worst. For many measure-class combinations the R? can exceed 0.1 or 0.2. This underlines the importance
of choosing novelty measures wisely; it also suggests that some inventive areas have a weaker link between
novelty and impact, across a range of measures, a point that we pursue below.

We also see that technology centers differ substantially in how different facets of novelty predict impact.
For example, configurational novelty is important for predicting mean and hit success across most centers; it
is especially important for Tech Centers related to Computing and Communications (21, 24, and 26). Even in
the same center, impact profiles differ depending on which form of impact is predicted. For the Biotechnology
and Organic center (16), configurational and structural novelty are both often good predictors of hit success
(consistent with Foster et al. (2015)’s findings about bridging knowledge clusters), while obscurity is the
best predictor of variance success, consistent with the finding that highly cited and prize-winning work tends
to combine less popular entities in this domain (Rzhetsky et al. 2015).

This variation—across centers and even across kinds of impact—provides further support for our assertion
that, because different inventive domains possess differently structured prior knowledge and distinct inventive
processes, they should vary in which novelty measures best capture the perceived novelty of inventions in
that domain, and hence predict well-known correlates of novelty like impact.

4.4. Conceptual Summary with Random Walks

Having provided an empirical illustration of our major conceptual points, we next evaluate our conceptual
summary of the organization of novelty measures with the random walk model (Section 3.5) over the network
of subclasses. As before, the weighted network of subclasses is constructed from patents granted prior to
2000. We assess the novelty of patents granted in 2000 and assume that ¢t = 1 in the random walk model
(Equation 3). Recall that A is the “speed” of the random walk and parameterizes the rate of the discovery
process. Larger A means more rapid walking and hence faster speeds of search; as A gets larger, the discovery
process should shift from more configurational to more combinatorial. The random walk novelty of patent
X is defined as — 2, ;log(Pr(j|i) + Pr(i[j))/Ex, the average random walk novelty over all pairs i, j in the
patent??.

For each patent, we calculate its random walk novelty at 30 random walk speeds from 0.01 to 0.1. We then
calculate the mutual information between the random walk novelty at each speed and every other novelty
measure across all patents. Mutual information is an information-theoretical measure of the mutual depen-
dence between the two distributions: It is zero if the two distributions are independent and non-negative in
general. A high mutual information between two novelty measures (e.g., random walk novelty and obscurity
novelty) means that they have similar distributions across patents. Compared to the correlation coefficient,
it is not limited to linear dependence but it is harder to compute. Formally, the mutual information between
two variables X and Y is defined as the Kullback - Leibler divergence between the joint distribution P(X,Y)
of the two variables and the product P(X)P(Y’) of the marginal distributions. In our case, X would be one of

patents that are in the same areas of technology, e.g., “Biotechnology and Organic” (Tech Center 1600) or “Semiconductors,
Electrical and Optical Systems and Components” (Tech Center 2800).
24Ex is the total number of pairs of nodes in patent X
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the novelty measures and Y the random walk novelty measure at a certain speed. However, we do not know
the distributions of the novelty measures but only observe samples from the distributions (i.e., the novelty
scores of the patents); therefore, we take a non-parametric approach that locally estimates the probability
density at each sample point, similar to kernel density estimation. For implementation details, please refer
to the Non-parametric Entropy Estimation Toolbox?®, which is used to calculate the mutual information
scores in this analysis. In Figure 5, we show how mutual information between the random walk novelty and
every other novelty measure varies as the walk speed increases. We also perform a linear regression of the
mutual information on the random walk speed for each novelty measure. The regression analysis tests the
null hypothesis that the mutual information between a given novelty measure and the random walk novelty
does not change with the walk speed. A significant coefficient of the walk speed then provides evidence to re-
ject the null hypothesis. For configurational and structural novelty, mutual information decreases as random
walk speed increases, with configurational novelty dropping the fastest (8 = —0.0043, p < .001) and struc-
tural novelty dropping gradually (8 = —0.0005, p = 0.025). For combinatorial novelties, mutual information
increases as random walk speed increases (Bpecularity = 0.0049, p < .001; Barypicatity = 0.0065, p < .001;
Bobscurity = 0.0120, p < .001). This pattern further substantiates our conceptual framework, and our under-
lying claim that configurational novelty embodies a slow, local search process while combinatorial novelty
assumes a fast, non-local one.
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Figure 5: Mutual information (MI) between simulations of invention with different random walk speeds () and five common
measures of novelty; MI normalized for A = 0.01 to fit all data points into the same plot. Regression lines (and 2nd order
polynomial for Atypicality) are fitted to the data points with 95% confidence intervals to aid visualization of the significant
association between mutual information and random walk speed.

4.5. Summary and Methodological Implications

Our empirical analysis demonstrates the basic validity of our conceptualization of novelty: Novelty is
a function of surprise under differing models of invention, and surprise is conditioned on the prevailing
inventive process S and the organization of existing knowledge K. Our findings here validate several key
predictions of this framework. First, we find that patents from different technology areas exhibit different
ranges and distributions of novelty across novelty measures. This is just what we would expect if these
areas have distinct inventive processes and differently structured prior knowledge, which different measures
capture more or less adequately. Second, we find that when patent classes frequently cite each other, they
have similar impact profiles, i.e., relationships between novelty measures and impact. Again, this follows

25https://github.com/gregversteeg/ NPEET
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directly from our framework: They cite each other because they have affinity in inventive processes, practices,
and underlying knowledge; under our framework, we would expect similar novelty measures to do a better
job of capturing that novelty. Third, we find pervasive variation across technology centers in which novelty
measures best predict impact, underlying our assertion that differently structured knowledge and distinctive
inventive processes imply different models of discovery and hence different novelty measures.

We emphasize that this validation of our conceptual framework has direct, and striking, implications
for research practice. First, it sinks the dream of a single, “silver-bullet” measure of novelty. This means
that researchers should put considerable care and effort into selecting and justifying their novelty measure
as ecologically valid. In addition to predictive analyses of the kind we perform here, researchers should
consider experimental methods to validate measures, or draw more heavily on ethnographic and other
qualitative evidence from their chosen inventive domain (Azoulay et al. (2017) provide a nice example of
using qualitative evidence to justify assumptions of quantitative methods). Second, this analysis (and our
broader framework) suggests that scholars of innovation should re-dedicate themselves to developing more
nuanced mathematical and computational representations of knowledge K and the invention process .S,
from which they can build better models of discovery and hence better measures of novelty. We take up this
challenge in the next section. Here, too, the space for valuable qualitative research is huge, as such work
can capture the texture of K and S in specific domains.

5. New Directions in Novelty Measurement

Having reviewed the existing novelty measures and empirically illustrated our framework and key con-
ceptual claims with patent data, we now turn to promising new directions in novelty measurement: better
characterization of complex and evolving search spaces (Section 5.1) and variation in subjective surprise
(Section 5.2).

5.1. Complex and Fvolving Search Spaces

Table 1 and Figure 1 highlight considerable internal variation within configurational, structural and
combinatorial approaches to novelty measurement. This variation tracks the complexity of the search space
involved. Early approaches to novelty measurement assumed a simple search space built from individual
words, citations, pixels, or sub-technologies (e.g., patent subclasses) and their co-appearance in cultural
products. In such approaches, any components at the same configurational, structural or combinatorial
distance are equally likely to connect. More recent approaches allow researchers to build more distributional
(Murdock et al. 2015) or structural information (Gross 2014, Shi et al. 2015) into novelty measures.

One way to add structural information is by including more types of components. This has changed our
understanding of inventive processes and improved novelty prediction. Consider work by Pontikes (2014),
which analyzes the relationship between patent novelty and the venture financing that start-ups obtain.
Better financing is driven not by novel combinations of technical components within firm patents, but rather
by novel combinations of technical components with new market categories. Shi et al. (2015) analyzed 6
million recent MEDLINE abstracts to understand how biomedical scientists weave new links in the network
of knowledge, taking into account not only the identity of each node, but also its type (e.g., diseases,
method, chemical). The structure of the inventive space changes considerably once many component types
are included, becoming extremely dense and making simple network measures uninformative. Moreover,
connections between any one type of component (e.g., between two diseases) were much more likely to
be mediated by a distinct type, such as a new method or chemical signature that brought them together.
These examples demonstrate how analyses that include more component types, and allow for their complex
combination, can better predict the growth of new technology and better approximate the process through
which scientists and inventors think.

Striking discoveries are often perceived as glaringly obvious by those who did not make them. This is
because inventors use features that are known but not cognitively available to most practitioners (Tversky
and Kahneman 1974). Such discoveries are seen as “reframing” a field. The logic of the breakthrough
invention makes suddenly salient a new feature or category of features, restructuring the relationship be-
tween existing components (Kuhn 1962). Howard Margolis advances a similar proposal in Paradigms and
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Barriers (Margolis 1993), arguing that “habits of mind” are the primary barriers to revolutionary scientific
discovery. Creative invention, discovery and production often involve recombination through new patterns
of association. We believe that identifying such reframing moments—the introduction of novel principles of
discovery—is an especially promising direction for scholars of innovation, and one that requires complex,
nuanced representations of the underlying search space as it is rewired by such principles.

The structure of complex search spaces can also be transformed by changes in its constituent components.
Several prominent theories of invention and innovation lean heavily on the idea that over time, groups of
components used in concert come to be seen as a single unit (Arthur 2009, Latour 1987). Brian Arthur’s
landmark analysis of technology details a process by which inventors combine and then miniaturize objects
into stable complex components, which become the units of selection and recombination for future inventors
(Arthur 2009). Through frequent reuse, these new complex components are eventually named. Consider
the “motherboard”, a circuit board that connects the core electronic components of a personal computer
26 Before the physical integration of the motherboard, the backplane (and before that, a system of cables)
connected the same subcomponents, but with less specialized or forced coupling between them. Bruno
Latour describes a related process termed “black boxing” (Latour 1987), which facilitates the reuse of
complex components in new contexts. Black boxing typically involves a differentiation of the internal and
external layers of the emerging complex component, with most sub-components exclusively linked inside the
complex component and only a few sub-components forming a robust interface that connects inside with
outside (Simon 1969). The input/output (I/O) interface for each complex component among a field of such
components may stabilize into a widely used protocol (e.g., USB, URL, syringe injection). Interoperability
with such protocols increases the likelihood that a component will be reused and become central to the
inventive field. Hence new complex components typically use I/O that obeys one or a few common protocols
for interacting with their “environment” (Galloway and Thacker 2007), unless they are part of an ambitious
bid to transform that environment (e.g., Apple Computer). When complex components are black-boxed
and manufactured as products, novelty measurement comes full circle. Complex components, now seen
as irreducible from their function, come to be perceived and treated as simple, categorical novelties—
fundamentally new. These emergent components then enter the vocabulary of features used in novelty
measurement. For example, the US and European patent offices annually issue additional and reorganized
patent subclasses to correspond to frequently used simple or complex components.

Understanding the complex components that represent the frontier of knowledge in an inventive domain
allows us to characterize the “adjacent possible” (Kauffman 2000), an evolutionary concept widely applied
to innovation in science and technology (Johnson 2011, Tria et al. 2014, Wagner and Rosen 2014). The adja-
cent possible comprises all things (e.g., molecules, ideas, technologies, or art) that lie a single “step” beyond
whatever exists currently. Whenever a novel invention, discovery, or cultural work emerges, the adjacent
possible expands to embrace a fresh set of proximate possibilities?”. We propose that dimension reduction
methods can be used to “discover” complex components visible to those in the inventive and evaluative
fields but not yet codified in component ontologies (Bengio et al. 2013). For example, matrix factoriza-
tion approaches like principle components analysis (PCA), neural network autoencoders (Goodfellow et al.
2016), or stochastic block models (Decelle et al. 2011) could be used on an adjacency matrix of inventive
components within sequential time windows to reveal the evolution of dominant, low-rank components in
the creative space. This dynamic approach to feature creation could be used to pre-process data for novelty
measurement. A more ambitious model could directly incorporate dimension-reduction into its simulation
of novelty creation.

5.2. Measuring Subjective Surprise

The novelty measures reviewed in Section 3 connect novelty to improbability and surprise, but they
assume a shared subjective assessment of an invention’s probability. This is clearly problematic. Variation in

26Here we draw on the excellent summary in https://en.wikipedia.org/wiki/Motherboard.
27Consider how the capacity to “plug” a complex component into an existing configuration of other components as a single
step radically transforms the nature of the adjacent possible.
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the experiences and beliefs of the agent simulating discovery and assessing novelty have clear consequences
for her assessment of novelty (Guinan et al. 2013, Lamont 2009). To capture this variation, we begin
with a more general, Bayesian approach to surprisal measurement, in which prior beliefs are explicitly
modeled. Bayesian Surprise incorporates expectations regarding an outcome—the subject’s “model”—and
then, drawing on Bayes Theorem, estimates the degree to which the subjective model must be updated to
account for new experiences.

Quoting its inventors in Itti and Baldi (2005), “the background information of an observer is captured
by his/her/its prior probability distribution {P(M)}arem over the hypotheses or models M in a model
space M. Given this prior distribution of beliefs, the fundamental effect of a new data observation D on the

observer is to change the prior distribution {P(M)}ren into the posterior distribution {P(M|D)}yrem
via Bayes theorem, whereby VM in M”: P(M|D) = E,l()g\f)P(M)
With information-theoretic surprisal, an observation is unsurprising if it has high probability. With

Bayesian Surprise, an observation is unsurprising if it requires little updating of the prior, i.e., if the sup-

port 1(3( l|)z\)4) is close to 1. With information-theoretic surprisal, an observation is surprising if it has low

probability. With Bayesian Surprise, it is surprising if it requires a substantial update of the prior—if the
support differs substantially from 1. We can quantify the change between prior and posterior using the KL
divergence:

S(D,M)=KL(P(M|D),P / P(M|D)lo (]24”))) dM. (4)

TItti and Baldi (2005) showed that Bayesian surprise predicts attention, as gauged through eye tracking of
subjects observing video scenes (Itti and Baldi 2005). Members of the IBM Research group on Computational
Creativity developed a recipe generation system, rebranded as Chef Watson, which uses Bayesian Surprise
to generate recipes that maximize the experience of surprise, controlling for the psychophysics of the recipe’s
predicted pleasantness, familiarity and intensity (Sun et al. 2012, Varshney 2013). We suggest that a rich
set of backgrounds, experiences and dispositions can be incorporated into the prior to better predict novelty
assessments. For example, Murdock et al. (2015) implemented an approximate version of Bayesian Surprise
to characterize Charles Darwin’s reading strategy. A topic model trained on his reading up to a given point
provides a prior, and the KL divergence between that topic model and one characterizing the next book
Darwin read provides a measure of the surprise he might have experienced upon reading it. At different
points in his career, Darwin engaged in exploration (seeking out novel texts) and exploitation (digging deeper
into familiar topics). More recently, Teplitskiy et al. (2018) draw on peer review data to build an empirical
prior for each reviewer. They used reviewers’ training histories, previous coauthors, and published articles
to infer the stock of ideas to which reviewers had been exposed. This stock shapes how reviewers cognitively
simulate the probability of the manuscripts they evaluate, and hence how they judge novelty.

Refined measurement of surprise and perceived novelty will allow us to assess and predict how people
from different eras and locations, with different exposures and commitments, experience a new invention.
Consider Figure 6, in which three populations (X, Y, and Z) with distinctive models of the world, experience
three new cultural products (A, B, and C). Each population has different expectations, conditioned on
their prior knowledge and experience with modes of invention. Product A is unsurprising to population
X, but completely jarring to population Z. Product C' induces the opposite reaction. To assess this
variation empirically, we must be able to enumerate both the prior knowledge familiar to an audience and
the customary processes of creation that together condition different subjective perceptions of novelty.

This measurement program would allow us to address important new research questions. How do dis-
positions, past experiences, and education shape personal simulations of improbability and evaluations of
novelty (Bourdieu 1975)? How widely dispersed are novelty assessments because of such differences? Can
we characterize and anticipate polarized assessments of a new idea’s novelty, based on these subjective
differences? Following work on the experience of suspense and surprise in entertainment, we could also char-
acterize different innovation environments as more or less surprising, in terms of their consistent violation
of expectations, and more or less suspenseful, in terms of how new inventions are expected to disrupt (Ely
et al. 2015).
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6. Conclusion

Novelty is central to scientific paradigm shifts, technological revolutions, artistic renaissances, and eco-
nomic disruptions. Science, technology and cultural policy all rely on measuring novelty, and in some cases
intervening to increase or censor it. Yet novelty remains understudied, under-measured, and under-theorized.
In this paper, we conceptualize novelty as resting on mental simulations of the search process though which
a new invention was created. We argue that these simulations assess novelty as a decreasing function of the
probability that an invention would have emerged given prior knowledge and the typical inventive process.
We then argue that novelty measures are a formalization and operationalization of distinctive ideas about
the structure of prior knowledge K and the nature of the inventive search process S.

Guided by these insights, we array existing novelty measures along two dimensions: (1) the speed of
simulated search S and (2) the complexity of prior knowledge K over which search is simulated. We
then summarize these measures with a random walk formalism and show how this expanded view of the
discovery process highlights the importance of assessing differences in search speed and complexity in order
to accurately measure novelty. To illustrate our argument empirically, we compute several different novelty
measures and our random walk approximations on a substantial sample of U.S. patents. We demonstrate
that novelty measures rest on different conceptions of the inventive process appropriate to distinct domains
of invention. We find that sectors closer in inventive practice have more similar relationships between novelty
and impact. We also show that our simple random walk measure justifies our characterization of inventive
domains as driven by fast and slow recombinations of components. This empirical demonstration provides
striking validation of our conceptual framework, and has clear implications for scholarly practice. Above all,
we argue that there is no one novelty measure to rule them all, and that researchers should devote more time
and attention to designing or selecting and then justifying the novelty measures they use in their research.
Innovation scholars should raise their game in striving for ecologically valid novelty measures.

Building on this framework, we then highlight new directions for novelty measurement that enrich current
representations of the search space, including more types of inventive components and black-boxed features
that would give analysts a better handle on the multi-scale character of invention. Finally, we show how
a Bayesian approach to measuring surprise on the basis of cognitive simulation could support objectively
subjective measures of perceived novelty in order to account for individual priors based on assumptions and
experience. We believe these new directions will allow analysts to make fine-grained predictions of individual
variation in novelty assessments. This would be a major step forward in the study of novelty.

We did not focus here on ez post measures of innovation or impact, but rather on ex ante measurement
of novelty. We argue that such measures will increase our ability to analyze and predict the conditions
under which a discovery, invention and design becomes important. Here we show that ex ante assessments
of high novelty tend to be associated with a higher mean and variance in impact (Fleming and Sorenson
2004, Foster et al. 2015).

Much remains to be done in improving assessments of novelty, from improving the data against which
novelty is estimated, to enriching the explicit models by which novelty assessment occurs. In an age of
increasingly intelligent machines, generative models of novelty can stimulate the creation of novel discoveries,
inventions, and designs (Schmidt and Lipson 2009, Sun et al. 2012)—ones that humans will find genuinely
surprising and delightful as we refine our ability to measure novelty and predict individual variation in
novelty assessment. By providing a unified framework for investigating novelty, and shifting the focus to
simulation of the inventive process, we hope to increase understanding of novelty, better predict novelty
assessments, and provide templates for the productive analysis, measurement, simulation, and generation of
novelty.

Appendix A. Cross-citation and impact profile

Our novelty framework suggests that because different inventive areas have distinctive invention pro-
cesses, different measures will best characterize novelty in those domains. As novelty is associated with
impact, it follows that the relationship between novelty measures and different forms of impact should also
vary across inventive areas. To test this, we build three regression models that predict citation counts, hit
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Table A.1: Regression results of the cross-citation strength between technology classes on the similarity between impact profiles
of novelty measures. Each row presents the coefficient and its p-value of the impact profile similarity in one of the three regression
models.

Coefficient  p-value

Mean Citation 0.6657 0
Hit Citation 0.3430 0
Var Citation 2.6939 0

Table B.2: Test results on the difference between classes for each novelty measure.

Configurational Structural Atypicality Obscurity Pecularity
statistic p statistic p statistic p statistic p statistic P
ANOVA 2460 0 41 0 591 0 725 0 1019 0
Kruskal 9627 0 419 0 3599 0 4224 0 6766 0
Levene’s 45  <.001 87 0 118 <.001 110 <.001 253 <.001
Brown-Forsythe 42 <.001 39 0 116 <.001 109 <.001 213 <.001

patent or not, and the variance of citation, using the five novelty measures implemented above and their
squares as predictors. From each model, the estimated coefficients for the novelty measures reveal the dif-
ferential impact of each implicit novelty-generating process on the reception of patents in that technology
class. As a result, we call a particular configuration of coefficients the impact profile of the novelty measures
for that class.

We fit our models to each class of patents separately, and test the idea that classes whose inventions
frequently cite each other, and presumably have similar inventive practices and patterns, also have similar
impact profiles.

Figure A.1 presents the result on the relationship between the cross-citation strength between classes and
the impact profile similarity between the classes. Each dot corresponds to a pair of classes, and its x-value
is the impact profile similarity between the two classes (i.e., cosine similarity between impact profiles) and
its y-value is the cross-citation strength between the classes (i.e., sum of log(cross-citation count)). The
impact profiles are derived from the regression models that predicts citation counts (left), hit patent or
not (middle), and variance of citations (right). Linear regression lines are fit to the data points, with their
95% confidence intervals. Results from the linear regressions are summarized in Table A.1, where each row
presents the coefficient and its p-value of the impact profile similarity in one of the three regression models.

Appendix B. Statistical Tests on Differences in Novelty Distributions between Classes

We perform statistical tests that identify differences in the 5 novelty measures between all the classes.
Specifically, we run ANOVA on each novelty measure between the classes to test the difference in the first
moments or central tendencies of the measures. As a robustness check, we also perform the Kruskal test
(which is non-parametric) on the measures to test the difference in their medians. Similarly, we perform
both the Levene’s test and the Brown-Forsythe test for the second moments (or variance) of the measures
between the classes. The test results are shown in Table B.2. All the test results are significant at p < .001,
rejecting the null hypothesis that the measures have equal mean (variance) across the classes.
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Figure A.1: Regressions of the cross-citation strength between technology classes on the similarity between impact profiles of
different novelty measures. Each dot corresponds to a pair of classes, and its z-value is the impact profile similarity between the
two classes and its y-value is the cross-citation strength between the classes. The impact profiles are derived from the regression
models that predicts logged citation counts (left), hit patent or not (middle), and variance of citations (right). Linear regression
lines are fit to the data points, with their 95% confidence intervals.
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Appendix C. Descriptive Statistics of the Novelty Measures

Table C.3: Descriptive statistics of the five novelty measures in the

eight representative technology classes.

Configurational = Structural  Atypical Obscure  Peculiar
mean 2.287445 0.236505  -4.368171 -7.075189 0.277460
std 0.425081 0.490795 1.869919  0.860524 0.120213
min 1.791759 0.000000  -9.348971 -8.852347 0.116951
504 25% 1.945910 0.000000  -5.402069 -7.706878 0.185215
50% 2.197225 0.000000  -4.013153 -7.073478 0.239460
5% 2.484907 0.000000  -2.933770 -6.486233 0.353280
max 4.110874 2.218502  -1.109797 -4.043051 0.770370
mean 2.496725 0.406441 -4.482975 -7.213411 0.511530
std 0.317273 0.516898 1.278840  0.632452 0.211363
min 1.791759 0.000000  -9.706719 -8.690381 0.144589
502  25% 2.302585 0.000000  -5.323079 -7.684646 0.370185
50% 2.484907 0.000000  -4.340860 -7.271545 0.459390
75% 2.708050 0.847298  -3.577179 -6.791043 0.597883
max 3.663562 2.069391  -1.097966 -4.892878 1.600453
mean 1.963019 0.086629  -6.722817 -5.903123 0.664387
std 0.298077 0.252884 1.576375  0.665513 0.177668
min 1.386294 0.000000  -9.788436 -8.136437 0.299852
706 25% 1.791759 0.000000  -8.055577 -6.271797  0.540967
50% 1.945910 0.000000  -6.939237 -5.913853 0.648114
75% 2.197225 0.000000  -5.507641 -5.524428 0.757410
max 3.135494 1.358123  -2.590282 -3.488641 1.588816
mean 1.911232 0.002888  -6.019480 -6.180677  0.594840
std 0.293463 0.048112 1.247581  0.550496 0.133277
min 1.386294 0.000000 -12.108391 -7.962026 0.245336
370 25% 1.609438 0.000000  -6.824253 -6.557462  0.505406
50% 1.791759 0.000000  -5.955432 -6.203795 0.587343
5% 2.079442 0.000000  -5.118552 -5.854902 0.674051
max 3.218876 1.308333  -1.128131 -3.828641 1.460020
mean 2.217439 0.002143  -5.287776 -6.625595 0.562568
std 0.338296 0.038192 1.380575  0.631116 0.175806
min 1.609438 0.000000 -11.365769 -8.320818 0.173567
375 25% 1.945910 0.000000  -6.148246 -7.039203 0.438213
50% 2.197225 0.000000  -5.085852 -6.627002 0.539636
5% 2.397895 0.000000  -4.335939 -6.212865 0.666806
max 3.610918 0.875469  -1.438564 -3.703879 1.472425
mean 2.603157 0.120900  -4.583600 -6.881260 0.396113
std 0.223442 0.325083 1.204427  0.484095 0.133265
min 2.079442 0.000000 -10.585391 -8.271574 0.152418
438  25% 2.484907 0.000000  -5.275197 -7.219668 0.315500
50% 2.564949 0.000000  -4.417853 -6.938769 0.371659
75% 2.708050 0.000000  -3.730968 -6.595929  0.440013
max 4.234107 2.124256  -0.949692 -3.748774 1.572956
mean 1.840878 0.205614  -7.749334 -5.407451 0.652032
std 0.264927 0.330124 1.744041  0.793578 0.372512
min 1.386294 0.000000 -11.899847 -7.997230 0.263158
384
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25% 1.609438 0.000000  -8.986353 -5.897154 0.462820
50% 1.791759 0.000000  -7.794476 -5.411298 0.552571
75% 1.945910 0.510826  -6.591013 -4.900954 0.721479
max 2.833213 1.627456  -2.216344 -1.935601  2.740458
mean 2.317268 0.314295  -6.622708 -5.550741 0.342977
std 0.267874 0.419101 1.725597  0.711377 0.071758
min 1.791759 0.000000 -10.668823 -7.546172 0.184106
493  25% 2.079442 0.000000  -7.680559 -6.028714 0.288596
50% 2.302585 0.000000  -6.799328 -5.470267 0.337079
75% 2.484907 0.612588  -5.745747 -5.071503 0.386652
max 3.218876 1.466337  -0.775946 -3.054624 0.580498
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Appendix D. Correlation between Novel Measures

Table D.4: Pearson correlation between the five novelty measures

in each of the eight representative technology classes.

Configurational =~ Structural — Atypical =~ Obscure  Peculiar
504
Configurational ~ 1.000000 0.428182  0.558573 -0.245412 -0.318711
Structural 0.428182 1.000000  0.180166  0.173319  0.118111
Atypical 0.558573 0.180166  1.000000 -0.639300 -0.466158
Obscure -0.245412 0.173319 -0.639300  1.000000  0.356249
Peculiar -0.318711 0.118111 -0.466158  0.356249  1.000000
502
Configurational  1.000000 0.394207  0.496632 -0.106152 -0.146387
Structural 0.394207 1.000000  0.339393  0.022938 -0.381984
Atypical 0.496632 0.339393  1.000000 -0.379368 -0.133533
Obscure -0.106152 0.022938 -0.379368  1.000000 -0.518366
Peculiar -0.146387 -0.381984 -0.133533 -0.518366  1.000000
706
Configurational ~ 1.000000 0.282647  0.491938 -0.099658 -0.386569
Structural 0.282647 1.000000  0.244430 -0.056188 -0.122171
Atypical 0.491938 0.244430  1.000000 -0.539642 -0.145569
Obscure -0.099658 -0.056188 -0.539642  1.000000 -0.301380
Peculiar -0.386569 -0.122171  -0.145569 -0.301380  1.000000
370
Configurational  1.000000 0.076071  0.499094 -0.036527 -0.261471
Structural 0.076071 1.000000  0.007449  0.039373 -0.046979
Atypical 0.499094 0.007449  1.000000 -0.492275 -0.179773
Obscure -0.036527 0.039373 -0.492275  1.000000 -0.366612
Peculiar -0.261471 -0.046979 -0.179773 -0.366612  1.000000
375
Configurational ~ 1.000000 0.006581  0.534028 -0.175022 -0.405630
Structural 0.006581 1.000000 -0.014529  0.029358 -0.024789
Atypical 0.534028 -0.014529  1.000000 -0.488141 -0.318978
Obscure -0.175022 0.029358 -0.488141  1.000000 -0.242031
Peculiar -0.405630 -0.024789 -0.318978 -0.242031  1.000000
438
Configurational  1.000000 0.211768  0.530743 -0.131935 -0.111380
Structural 0.211768 1.000000  0.171697  0.008742 -0.027515
Atypical 0.530743 0.171697  1.000000 -0.437946 -0.170901
Obscure -0.131935 0.008742 -0.437946  1.000000 -0.448252
Peculiar -0.111380 -0.027515 -0.170901 -0.448252  1.000000
384
Configurational  1.000000 0.501964  0.549510 -0.189059 -0.393557
Structural 0.501964 1.000000  0.485803 -0.358065 -0.185276
Atypical 0.549510 0.485803  1.000000 -0.679585 -0.394297
Obscure -0.189059 -0.358065 -0.679585  1.000000 -0.039395
Peculiar -0.393557 -0.185276  -0.394297 -0.039395  1.000000
493
Configurational  1.000000 0.430825  0.663964 -0.365170 -0.198448
Structural 0.430825 1.000000  0.241609 -0.102010 -0.016584
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Atypical 0.663964 0.241609  1.000000 -0.734429 -0.157017
Obscure -0.365170 -0.102010  -0.734429  1.000000 -0.172684
Peculiar -0.198448 -0.016584 -0.157017 -0.172684  1.000000

Appendix E. Results for Patents Granted in 1990

We focus on patents granted in 2000 in Section 4; here we confirm our findings using 90,421 utility
patents granted in 1990. First, Figure E.2 confirms that patents from different technology areas vary
substantially in their distribution of novelty scores across measures (cf. Figure 2). All the statistical tests
(ANOVA, Kruskal, Levene, and Brown-Forsythe) are significant at .001 level, supporting that the novelty
distributions are different across the classes. We further show in Figure 3 that fields where patents most
intensively cite one another—and presumably share inventive processes—have greater similarity in impact
profiles. This is consistent with our claim that in different technology areas, distinct measures are important
to the prediction of impact (mean, hit, and variance). Finally, in Figure 5, we show how mutual information
between the random walk novelty and every other novelty measure varies as the walk speed increases.
For configurational and structural novelty, mutual information decreases as random walk speed increases,
with configurational novelty dropping the fastest (8 = —0.0069, p < .001) and structural novelty dropping
gradually (8 = —0.0023, p < .001). For combinatorial novelties, mutual information increases as random
walk Speed increases (6peculam’ty = 00073 p < 0017 5atypicality = 003097 p< 001; ﬂobscurity = 00186, p<
.001). This pattern confirms our conceptual framework that configurational novelty embodies a slow, local
search process while combinatorial novelty assumes a fast, non-local one.
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