Main content

Contributors:
  1. William E. Lukens
  2. Steven G. Driese

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Recent research has demonstrated that the Lilliput effect (reduction of body size in response to a mass extinction) affected all trophic levels in the marine realm following the Cretaceous-Paleogene (K-Pg) event. However, it is unclear if this size change was strictly a marine signal, or a global phenomenon that also affected continental ecosystems. Herein we present the results of an ichnological proxy for body size of soil-dwelling insects across the K-Pg boundary in Big Bend National Park, Texas, U.S.A. Quantitative efforts focused on Naktodemasis isp., which are characterized as unbranching burrows composed of ellipsoidal packets of backfill menisci. These traces were likely produced by beetle larvae or cicada nymphs based on previous comparison with structures generated in modern soils and laboratory experiments. As an approximation for the body size of the subterranean insects, this dataset indicates that a smaller Naktodemasis diameter (DN) is statistically correlated (α < 0.05) with several edaphic factors including poor drainage and weak development (Entisols). Additionally, the DN in strata immediately superjacent to the highest Cretaceous-specific taxa is smaller by 23% (5.6 ± 1.8 mm) in comparison to DN within the subjacent Cretaceous interval (7.3 ± 2.7 mm). This abrupt shift occurs in a well-drained Inceptisol, and cannot be attributed to facies changes, drainage, or paleosol maturity. Furthermore, a reduced DN (6.6 ± 2.3 mm) persists above this anomalous shift for at least 20 stratigraphic meters within chron 29r. The cause for this negative response in body size within soil-dwelling biota may be attributed to plant-community shifts in taxonomic composition and ecological strategies, which would have caused fundamental alterations to the diet of the herbivorous, subterranean insects. This study provides empirical evidence that the Lilliput effect was not restricted to marine environments during the aftermath of the K-Pg event.

License: CC-By Attribution 4.0 International

Files

Loading files...

Citation

Tags

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.