Main content

Date created: | Last Updated:

: DOI | ARK

Creating DOI. Please wait...

Create DOI

Category: Project

Description: Measurement invariance (MI) describes the equivalence of measurement models of a construct across groups or time. When comparing latent means, MI is often stated as a prerequisite of meaningful group comparisons. The most common way to investigate MI is multi-group confirmatory factor analysis (MG-CFA). Although numerous guides exist, a recent review showed that MI is rarely investigated in practice. We argue that one reason might be that the results of MG-CFA are uninformative as to why MI does not hold between groups. Consequently, under this framework, it is difficult to regard the study of MI an interesting and constructive step in the modeling process. We show how directed acyclic graphs (DAGs) from the causal inference literature can guide researchers in reasoning about the causes of non-invariance. For this, we first show how DAGs for measurement models can be translated into the path diagrams used in the linear structural equation model (SEM) literature. We then demonstrate how insights gained from this causal perspective can be used to explicitly model encoded causal assumptions with moderated SEMs, allowing for a more enlightening investigation of MI. Ultimately, our goal is to provide a framework in which the investigation of MI is not deemed a “gateway test” that simply licenses further analyses. By enabling researchers to consider MI as an interesting part of the modeling process, we hope to increase the prevalence of investigations of MI altogether.

Has supplemental materials for A Causal Framework for the Comparability of Latent Variables on PsyArXiv

Files

Loading files...

Citation

Recent Activity

Loading logs...

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.