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Germany5

*shuchen.wu@tuebingen.mpg.de6

ABSTRACT7

Whether it is listening to a piece of music, learning a new language, or solving a mathematical equation, people often
acquire abstract notions in the sense of motifs and variables — manifested in music, grammatical categories, or mathematical
symbols. How do we create abstract representations of sequences? Are these abstract representations useful for memory
recall? In addition to learning transition probabilities, chunking, and tracking ordinal positions, we propose that humans
also use abstractions to arrive at efficient sequence representations. We propose and study two abstraction categories:
projectional motifs and variable motifs. Projectional motifs find a common theme underlying distinct sequence instances.
Variable motifs define symbols manifested in varying instances. We show that both motif categories help a model to reduce
sequence representation complexity via encoding sequences in an abstract space, thereby facilitating the model to learn more
efficiently and transfer to novel sequences. In two sequence recall experiments, we train subjects to remember sequences
with projectional and variable motifs, respectively, and examine whether motif training benefits the recall of unseen novel
sequences sharing the same motif. Our result suggests that training variables and projectional motifs improve recall accuracy,
specifically on transfer lists but not randomly created control lists relative to independent control groups. Our study suggests
that humans construct efficient sequential memory representations according to the two types of abstraction we propose, and it
shows that creating these abstractions benefits learning and out-of-distribution transfer. Our study paves the way for a deeper
understanding of human abstraction learning and generalization.
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Introduction9

When the iconic notes strike: GGGEZ, FFFD, — Beethoven’s Fifth Symphony comes immediately to our mind. As the music10

progresses, we note the change of motif to GGGB or GGGC, variations in forms and voices, one at each step. Our ability to11

effortlessly identify those forms of abstract motifs endows us with an ability to learn mathematics, languages, and various forms12

of art. From representing "x" as a variable to perceiving ’noun’ as a category including "cats", "dogs", and "elephants", these13

abstract motifs automatically come to our mind and help us to memorize sequences and generalize to novel situations. How do14

we abstract motifs from perceiving sequences? What advantages does this ability confer in terms of memory representations15

and transfer? More importantly, how do we construct an abstract representation during learning?16

Previous studies on sequence learning primarily focused on artificial grammar learning1 and grammatical judgment tasks2.17

Usually, a fixed transition matrix between syllables generates grammatically valid sequences3. After exposure to these18

grammatically valid sequences, subjects can distinguish grammatical and ungrammatical sequences at test1. Further research19

has been conducted to determine whether sequence learning extends beyond the learning of first-order transition probabilities.20

An alternative proposal is chunking: upon practice, humans can learn and parse sequence by disjunctive sequential chunks.21

Models including PARSER4, the hierarchical chunking model5, and TRACX6, 7 capture producing segmentations of sequences22

by extracting repeated recurring units from a continuous input steam. Yet few studies have looked at the acquisition of abstract23

patterns in sequences: Marcus et al. conducted a study to test infants’ ability to learn "algebraic structure" in sequences. The24

study involved exposing 7-month-old infants to sequences such as AAB and CCD. After exposure, the infants were more likely25

to direct their gaze toward novel sequences sharing the same structure, such as DDF, rather than toward a different structure,26

such as KTK. Infants’ ability to capture ’abstract algebraic structure’3 in sequences cannot be explained by learning transition27

probabilities or chunks. The algebraic structure was defined as a mapping of multiple items onto a single sequential item.28

In this work, we zoom in, refine, and categorize different forms of abstract sequential structures. We define and differentiate29

between two algebraic abstractions: "projectional motifs", which are patterns derived from sequences using a projectional30

function, and "variable motifs," which include patterns that involve both concrete and variable elements. Furthermore, we31

propose a model that learns abstract representations incorporating components from transition probabilities, chunks, and motifs32

to reduce memory complexity. We look at the learning and transfer abilities of subjects in two sequence recall experiments.33



Our results suggest that humans learn both types of motifs for transfer. Whereas associative learning and chunking are both34

necessary to account for sequence recall performance during training and transfer, our proposed mechanisms of abstraction35

explain an additional substantial portion of the systematic variance in people’s sequence recall accuracy.36

A Taxonomy of Sequence Motifs37

a. b.

c. d.

e.

Figure 1. Taxonomy of motifs and experimental design a. A taxonomy of sequence motifs over what is classically known as
algebraic structures in sequences. Projectional motifs refer to patterns of sequences in a projected space that are mapped from
the concrete sequence space by a projection function. In the example being shown, the projection function finds the distinct
items in the sequence and maps sequential observation into a binary sequence in the projectional space. Variable motifs refer to
identifying multiple sequential components as a variable. Such a variable is identified when any of the sequential components it
entails is identified. We hypothesized that participants could learn both types of motifs through practice and exploit their
knowledge of both motif types in memorizing and generalizing to novel sequences. b. We study motif learning in a sequence
recall task. Participants are instructed to remember a sequence of 12 colors displayed one after another in three groups of four
items separated by a pair of paws after each group. c. Experiment 1 studies learning projectional motifs. Participants are
divided into three groups. Two motif groups (Motif 1 and Motif 2) and one control group (Independent). Each group is first
trained on their respective motif or random sequences (Independent) and then tested on randomly interleaved transfer blocks of
three sequence types. There are no overlapping sequences between all transfer blocks and training blocks. d. Experiment 2
studies learning variable motifs. The variable group is trained on sequences with an underlying variable motif. That is, the
second position of each subsequence display is randomly drawn among three colors (purple, blue, or green). The fixed group is
trained to recall fixed sequences. Both groups are then subsequently tested on novel sequences sharing the variable motif.

We define sequence motifs as underlying sequence patterns that are not on the item level but only detectable after performing38

transformations on sequences of items. We define and study two types of sequence motifs: projectional and variable. An39
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illustration of the two motif types is shown in Figure 2.40

Projectional motif refers to applying a transformation function onto sequences that maps the sequential items to a lower-41

dimensional projected space. The common motif shared between GGGEZ, and FFFD that begins Beethoven’s Fifth Symphony42

is one example. In our experiment, this will correspond to seeing a sequence of consecutively displayed colors in one trial such43

as yellow, purple, purple ..., and in another trial, seeing blue, green, green, ..., as shown in Figure 1.44

The second type of sequence motif is called variable motif. It refers to identifying a variable entity as a part of the sequence.45

A variable entity can entail several mutually exclusive concrete sequence instances. The variable entity is perceived when any46

of its entailing sequence instances is perceived. Once identified, the variable identity is treated as a sequence observational47

unit and can be remembered in conjunction with the invariant part of the sequence. In Beethoven’s Fifth, the progression from48

GGGEZ to GGGB and later GGGC underlies one variable motif. In our experiment, as Figure 2 illustrates, the variable "X",49

described by a gradient-colored box, is identified if any of the blue, purple, or green box is identified. The definition of variable50

motifs bears resemblances to identifying the grammatical category structures in language, such as the concept of a noun entails51

a set of possible noun words. Or the process of isolating a variable x when working with algebraic expressions such as x+3.52

While 3 represents a concrete number, x becomes a variable that represents the entity of "anything".53

Here, we construct a model that learns abstraction in the case of projectional and variable motifs to reduce representation54

complexity. The model first tracks the transition probabilities in an abstract space and then gradually chunks sequential elements55

together. We will test the predictions of our model in two experiments.56

Results57

We study the effect of memorizing projectional and variable motifs in sequences by asking the following questions: 1. Are58

sequences constructed according to an underlying motif memorized more accurately than randomly generated sequences, and 2.59

Are novel sequences, which consist of not seen items and share the same motif as sequences participants learned previously,60

recalled more accurately than random sequences? We ask these questions in two experiments, each studying one proposed61

motif type. Furthermore, we hypothesized that memory representations become less complex when a motif is learned. We62

implemented this assumption in our computational model that continuously finds recurring motifs in sequences.63

In Experiment 1, we tested whether people can learn and transfer sequences described by a projectional motif as shown in64

Figure 2. In Experiment 2, we tested whether subjects remember novel sequences better when these sequences share the same65

variable structure as shown in Figure 2.66

Taken together, we implemented learning structured motifs as a memory compression strategy in a computational model.67

The model exhibits similar learning and transfer behavior to participants in two sequence recall experiments testing each motif68

type.69

Motif learning model70

We put forward a model that learns to memorize long sequences via a combination of three strategies: associative learning,71

chunking, and motif abstraction.72

Associative Learning When a sequence is presented to the model, the model keeps track of the observational frequencies73

and the transition frequencies between subsequently presented items. Once an item has been identified, its occurrence frequency74

will increment by 1, and so will the transition frequency between the current item and the previously identified item. Meanwhile,75

all frequencies are subject to memory decay via multiplying the count of both the marginal and transition frequency entries by a76

decay parameter θ ≤ 1.77

Chunking Apart from associative learning, the model also remembers sequences by chunking. This part of the model is78

based on the hierarchical chunking model described in our earlier work (HCM8). The model stores learned chunks in long-term79

memory. These chunks are used in addition to observation and transition frequencies to parse the instruction sequence. The80

model keeps track of the marginal frequencies of chunks and the transitional frequencies between chunks. A new chunk is81

created by combining two correlated consecutively occurring chunks into a longer chunk. The combined chunk is then added to82

the memory of the model. This feature enables the model to learn longer and longer sequences with practice. A picture of how83

memory chunks are acquired during learning is: at the beginning of the training block, the model stores no sequence segments,84

and therefore, the model parses the first instruction sequence as 12 sequences of unitary length. These unitary sequential85

chunks are stored in memory as distinct units. As the model learns to combine previously learned chunks into larger chunks,86

these larger chunks are, in turn, used to parse the upcoming instruction sequences. During the parsing process, the memory87

chunk of the largest size, consistent with the upcoming instruction sequence, is identified. In this way, the longer the sequence88

segments the model has learned, the fewer segments are needed to parse the instruction sequence, and the further the model can89

predict the sequence. In this way, the model builds up a stable memory representation of sequences over practice by combining90

pre-existing stable representation of memory sequences in long-term memory9, 10.91
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Figure 2. Motif learning model. Upon observations of instruction sequences, the model acquires the transition frequencies
between the learned chunks, combines previously learned chunks into new ones, and looks for abstract representations to
compress its sequence memory.

We also formalize memory chunks based on their occurrence probabilities, consistent with memory models with memory92

strength increasing with practice6. The lower bound on the number of bits needed to encode this chunk c to be distinguished93

from other chunks in memory is − log2 P(c). The more probable that a chunk occurs in the instruction sequence, the less the94

memory encoding cost.95

Abstraction When the same sequence is presented repeatedly, subparts of the sequence will gradually combine through96

the chunking process. However, this process is slow because it requires several repetitions of the chunk. This is especially97

problematic when the instruction sequence repeats only rarely, since each unique sequence has only a small probability in the98

sequence observation space, and the number of repetitions would have to be increased for the chunking process to build up a99

memory of the whole sequence. We propose the learning of projectional and variable motifs as two mechanisms to reduce the100

complexity of memory representations.101

Abstraction via learning projectional motifs The model identifies two unique items to describe the sequence and assigns102

X to the first occurring item and Y to the second item. In this case, X and Y represent separate entities in the projectional103

motif space. This will be one way that the sequence can be transformed into a lower-dimensional space, in which only two104

dimensions exist.105

Once observational sequences are projected onto a lower dimensional projectional motif space, the model learns the106

sequence via associative learning and chunking and builds up memory representations of sequences by combining correlated107

consecutively occurring chunks in the projectional motif space.108

For example, upon seeing ACCC, BDDD, and FEEE sequences, the model will map all three sequences onto the same109

sequence in the projectional motif space: XYYY. Originally, there needed to be six dimensions to describe the observational110

sequence, each representing the binary indicator of observing each letter. The abstraction process enables all three sequences111

to be described by the same pattern in an abstract projectional space with two dimensions. Without abstraction, if each of112

the three sequences occurs uniformly likely, then the minimal encoding length to distinguish between the three subsequences113

shall be − logP( 1
3 ). But once the projectional motif has been identified, it explains all observational sequences and demands114

significantly less encoding memory of − logP(1).115

Abstraction via learning variable motifs Under the demand of learning to remember long sequences, an alternative way116

to compress sequence representation is to learn variables. A variable is an abstract sequence entity that entails a set of concrete117

sequence entities/chunks. The model identifies the variable identity whenever any of its entailing entities is identified.118

The abstraction model discerns variables by analyzing the structure of the transition matrix. Specifically, the model identifies119

structural patterns within a series of sequential observation chunks that share a common precursor and successor. For instance,120

if the model observes that entity A transitions to B, C, and E, and further notes that B, C, and E each transition to F (as reflected121

in the transition matrix), it will recognize a new variable encompassing B, C, and E. This variable becomes identifiable when122

any of the elements B, C, or E are detected.123

Once a variable entity has been learned, it is parsed and identified as one entity to join forces with associative learning124

and chunking. In this way, the variable helps the learning agent discover an overarching pattern in the sequence, which would125

otherwise demand more sequence observations to be learned as separate memory chunks.126
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The mechanism of variables naturally leads to sequence compression. For example, assume the following subsequences:127

BADF, BBDF, and BCDF have been observed to occur equally likely; each subsequence demands a minimal encoding128

complexity of − logP(1/3). As soon as a variable X is identified to entail A, E, or C, then the chunk BXDF would suffice to129

explain all three observational instances, and this chunk demands a minimal encoding length of − logP(1).130

The model learns memory pieces by combining chunking and associative learning. On top of that, sequence abstraction131

processes, including projectional transformation and identifying variables, help the model to locate recurring motifs in the132

abstract space, capable of explaining a larger number of sequence observations and thereby learning faster and compressing133

further.134

A natural benefit of learning abstract motifs is generalization to novel, unseen sequences sharing the same motif structure.135

The previously learned projectional or variable motifs can be reused to remember novel sequences, facilitating novel sequence136

acquisition and compression.137

The model predicts that subjects looking for the minimal complexity representation to learn sequences should behave in the138

following ways:139

• When there are underlying projectional or variable motifs in the sequence, subjects’ representation of the sequence shall140

decrease in complexity when more sequences are presented with the same motif type.141

• Subjects who benefit from learning motifs from training sequences will exploit their previously learned motif structure.142

• In the case of projectional motif, motif structure that has been learned before will be exploited to memorize a novel143

sequence that has never been observed/seen by participants.144

• When subjects learn the representation of a variable and extrapolate it as a sequential unit to be combined with the145

unvarying part of the sequence, the variable as a concept will be reused when novel sequences sharing the same variable146

but distinct varying sequence structure need to be remembered.147

We will test these predictions in detail in the following two experiments.148

Experiment 1: Projectional motifs149

Experiment 1 tested how projectional motifs could help memorization and transfer by instructing participants to memorize long150

sequences. In a sequence recall task, participants were instructed to play a memory game and to memorize 12 consecutively151

displayed colors by a cartoon cat. After the instruction, they had to recall the sequence by pressing the keys corresponding to152

the colors.153

Unbeknownst to the participants, the instruction sequences contained underlying motifs. As shown in Figure 2, the motifs154

consisted of two distinct variables, X and Y, and individual motifs were constructed by arranging patterns of Xs and Ys. All155

sequences contained an equal amount of 6 Xs and 6 Ys to control for stimulus-specific habituation effects. Each participant was156

randomly assigned to one of the two motif groups (Motif 1; Motif 2), or to a control group (Independent). Motif 1 followed the157

pattern XYYY YYXX XXYX, while Motif 2 adhered to the format XXXY YXXY YYYX. In the motif groups, the underlying158

motif remained consistent across trials. Conversely, in the Independent group, a permutation of 6 Xs and 6 Ys was generated159

for each trial. The instruction sequences were finalized by mapping X and Y to two distinct colors.160

The task was divided into training and transfer blocks. The training block comprised 40 trials, after which participants161

proceeded to three randomly ordered transfer blocks, each testing for Motif 1, Motif 2, and the Independent sequences with 8162

trials. To ensure that no sequences in transfer blocks appeared in the training block, the six colors were divided into two sets:163

the training set with four colors and the transfer set with the remaining two colors. Participants were not informed about block164

transitions.165

Model Prediction166

Reducing representation complexity through Projectional Motifs In the case of projectional motifs, a rational agent that167

looks for minimal complexity representations shall acquire the unchanging motifs during learning since motifs in the abstract168

projectional space explain more instances of sequences compared to memorizing concrete sequence instances.169

Our hypothesis posits that an underlying motif within training sequences in a projectional space will enhance memory and170

out-of-distribution transfer. In this context, a sequence of length n can be conceptualized as a point within an n-dimensional171

space, and out-of-distribution refers to the capacity to transfer the representation to sequences never encountered during training.172

We anticipate improved learning and memorization performance during training for both motif groups and positive transfer173

when the two groups are tested on motifs of the same type.174
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Figure 3. Model simulation and behavioral results for learning and transferring projectional motifs. a. Recall accuracy is
higher during the training block in the motif groups than in the control group. b. Model prediction of sequence recall accuracy
training on participants’ instruction data. c. Regression coefficients of the linear mixed-effect model predicting recall accuracy
during the training block. d. Generative accuracy as simulated by the motif learning model correlates with the empirically
observed sequence recall accuracy across groups during the training trials. e. Behavioral results of group-wise recall accuracy
across three categories of transfer. Same: Motif 1 – Motif 1 and Motif 2 – Motif 2; different: Motif 1 – Motif 2, and Motif 2 –
Motif 1; control: Independent – Motif 1, and Independent – Motif 2. f. Simulation transfer results. g. Beta coefficients of the
logistic regression predicting recall accuracy during the transfer blocks. h. Correlation between the simulated recall accuracy
and participants’ recall accuracy
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Training175

Behavioral Results We first compared sequence recall accuracy amongst the three groups in the training block as shown in176

Figure 3 a. We fitted a linear mixed-effects regression model onto participants’ trial-wise sequence recall accuracy, assuming177

a random intercept over participants and excluded trials that were immediate repetitions. We observed a significant effect178

of group (χ2(2) = 31.77, p ≤ 0.001), suggesting that participants in the Motif 1 group (β̂ = 0.12, se = 0.03, t(103) = 4.28,179

p ≤ 0.001) and the Motif 2 group (β̂ = 0.16, se = 0.02, t(103) = 5.91, p ≤ 0.001) recalled sequences more accurately during180

the training blocks than those in the Independent group; this result is consistent with our prediction that participants would181

remember sequences containing motifs better.182

Model Simulation We compared the behavioral results with the model predictions. We used the same sequences instructed183

to the participants to train the motif learning model, which creates memory representations of sequence motifs from the184

observational sequences in an abstract space. We then generated sequences based on the representations learned by the model185

up to the current time point. We came up with generative accuracy as a surrogate for sequence recall accuracy. The generative186

accuracy was the edit distance between a generative sequence sampled from the model and the instruction sequence in a187

particular trial. Figure 3 b shows the average generative accuracy of the model. We observed a significant effect of group188

(χ2(2) = 44.77, p ≤ 0.001), suggesting that participants in the Motif 1 group (β̂ = 0.10, se = 0.01, t(1477) = 7.94, p ≤ 0.001)189

and the Motif 2 group (β̂ = 0.07, se = 0.01, t(1477) = 5.28, p ≤ 0.001) recalled sequences more accurately during the training190

blocks than the independent group. Similar to participants, the model remembered sequences with underlying motifs more191

accurately.192

Regression Coefficient Apart from having higher average recall accuracy, both motif groups improved their recall accuracy193

faster. As shown in Figure 3 c, we analyzed participants’ recall key-press correctness by fitting a logistic regression model194

assuming a random intercept of each participant and a random slope over individual serial positions (explanation on random195

effect structure selection in method section ). We observed an effect for both Motifs (for Motif 1: β = 0.92, se = 0.23, z = 3.97,196

p ≤ 0.001; for Motif 2: β = 1.24, se = 0.22, z = 5.50, p ≤ 0.001). Apart from that, we observed an interaction effect between197

the trial number and group (χ2(2) = 51.69, p < 0.001). Participants in the Motif 1 group improved their recall accuracy at a198

faster rate than participants in the Independent group (β = 0.31, se = 0.03, z = 9.64, p ≤ 0.001); the same effect was present199

for the Motif 2 group (β = 0.41, se = 0.03, z = 12.23, p ≤ 0.001). Thus, people improved faster on remembering sequences200

with fixed motifs than sequences without.201

Model Comparison We compared the recall accuracy of the motif learning model with two alternative models: an202

associative learning model and a chunking model. The motif learning model constructs memory pieces by combining chunking,203

associative learning, and abstraction via learning projectional motifs. The chunking model contains the same components204

except for abstraction. The associative learning model learns the first-order transition between observed sequential items. We205

gave the same instruction sequence to all three models and thereby arrived at an average recall accuracy for each model on each206

proceeding experimental trial.207

We then regressed the generative accuracy of each model onto empirical accuracy and evaluated the goodness of fit by208

computing the R-squared value. The R-squared measure determines the proportion of variance in the behavioral results that209

the model prediction can explain and shows how well the data fit the regression model. As shown in Figure 3 d, the motif210

learning model (R2 = 0.71) explained more variance in the behavioral result than a chunking model (R2 = 0.006) that did not211

abstract. This suggests that abstracting the sequence via projecting the sequence onto the motif space is a critical component212

that captures human behavior in this task.213

Comparing the motif learning model to an associative learning model shows that abstraction alone isn’t enough to explain214

the results. The associative learning model factors in marginal and transition probabilities in the sequences but doesn’t learn215

chunks. Additionally, it explains very little of the variance in human behavior, with R2 = 0.0002, compared to the motif216

learning model. This result suggests only learning the association between items in the projected motif space is insufficient;217

combining the previously memorized memory chunks together into longer memory chunks is also vital to explaining human218

learning progress.219

Transfer220

We then assessed whether training on motifs affected participants’ ability to memorize novel sequences in the transfer blocks.221

Behavioral Results We compared participants’ performance in the transfer blocks grouped by three transfer types relative222

to the training block types: Same (Motif 1 - Motif 1, Motif 2 - Motif 2), Different (Motif 1 - Motif 2, Motif 2 - Motif223

1), and Control (Independent - Motif 1, Independent - Motif 2). Shown in Figure 3 e, we observed a significant effect of224

transfer type (χ2(2) = 94.66, p ≤ 0.001) on recall accuracy. Participants remembered novel sequences with the same motifs225

more accurately compared to control (β̂ = 0.17, se = 0.01, t(154) = 11.22, p < 0.001). Surprisingly, we also observed that226

participants benefited from transferring to a different motif type compared to control (β̂ = 0.06, se = 0.01, t(154) = 4.21,227

p ≤ 0.001). Consistent with our hypothesis, training on sequences with motifs helps participants learn novel sequences sharing228
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the same motifs.229

Model Prediction Similarly, we evaluated the recall accuracy of the motif learning model on the transfer blocks. Figure 3 f230

shows the generative accuracy of the motif learning model grouped by transfer types. Similar to participants, the model recalled231

novel sequences with motifs better after it had been trained on the same motif (χ2(2) = 68.25, p ≤ 0.001), compared to having232

been trained on neither motif (β = 0.14, se = 0.02, t = 7.82, p ≤ 0.001). Different from the participant: It is harder for the233

model to transfer to an alternative motif type (β =−0.04, se = 0.02, t =−2.38, p = 0.02) than the control. We inspect this234

discrepancy further in the discussion section.235

Regression Coefficients We looked at participants’ correctness of recall key presses by fitting a logistic regression model,236

assuming a random intercept of participants and random slope over individual serial positions and trial numbers (Figure 3 g).237

We found that the transfer types affect the recall key press correctness (χ2(2) = 679.46,p ≤ 0.001). Participants who have238

been tested on the same motif as they had been trained on (m1 - m1 and m2 - m2) (β = 1.09, σ = 0.04, z = 25.28, p ≤ 0.001)239

are more likely to recall the correct item compared to control. This result resonates with our linear mixed-effect analysis on240

recall accuracy. Interestingly, participants who were tested on a motif different from their training motif also did better than the241

control (β = 0.35, σ = 0.04, z = 9.12, p ≤ 0.001). We discuss the implications of this finding further in the discussion section.242

Additional regression coefficients that confirm practice effect, recency effect, and chunk boundary effect are reported in the243

supplementary information.244

Model Comparison We then compared the resemblance to human behavior between the motif learning model, the245

associative learning model and the chunking model (Figure 3 h) during the transfer blocks. Since all three models change their246

representation when the training schedule switches from training to the transfer blocks, we can compare the generative accuracy247

of the models to participant recall accuracy. This feature allows us to regress the generative accuracy of each of the three models248

onto empirical recall accuracy per transfer trial and evaluate the R-squared of the regression as a goodness-of-fit measure.249

The motif learning model (R2 = 0.34) explains more variance of participants’ transfer performance compared to the250

chunking model (R2 = 0.04), suggesting that projecting sequences in a projected motif space, an abstraction process, is critical251

to capture human behavior in this task. The motif learning model also explains more variance than the he associative learning252

model (R2 = 0.05). Associative learning only is insufficient to capture participants’ transfer behavior.253

Experiment 2: Variable motifs254

Experiment 2 tested the learning and transfer of variable motifs in the sequence recall paradigm. A training block of 40 trials255

was followed by a transfer block of 24 trials. Participants were split into two groups: the variable group (motif) and the fixed256

group (control). The variable group was instructed to remember sequences with variable motif B X D F, D X B F, F X D B (2).257

X represents a variable and randomly assumes a letter amongst A, C, and E with equal probability with every occurrence. The258

fixed group was instructed to remember unchanging sequences assuming the form: B A D F, D C B F, F E D B.259

During the test block, both groups were instructed to remember a novel sequence with an embedded variable X: D X B F, F260

X D B, B X F D. The location and entailment of X were the same as the training sequence with variables, but we changed the261

fixed part of the sequence.262

Model Prediction263

We hypothesize that when participants are instructed to memorize sequences with a component that varies, identifying variable264

entities and memorizing them in conjunction with the unvarying part of the sequence should facilitate transfer. That is, when265

subjects encounter novel sequences sharing the same variable entity but different unvarying parts, they should memorize novel266

sequences with overlapping variables better compared to the control group.267

Training268

Behavioral Results Figure 4 a shows the average sequence recall accuracy of the variable motif group and the fixed group. We269

fitted participants’ sequence recall accuracy with a linear mixed-effects regression model, assuming a by-participant random270

intercept. The result showed a significant effect of group (χ2(1) = 50.012, p ≤ 0.001). The fixed group recalled sequences271

more accurately than the variable motif group (β̂ = −0.22, se = 0.03, t(95) = −0.806, p ≤ 0.001). A changing part of the272

instruction sequence hindered recall.273

Model Prediction We trained the variable motif learning model on the same instruction sequences seen by participants.274

For sequences with the variable motif, the model learned memory representation manifested in chunks and variables. To275

do so, the model condensed observations of disparate instances of A, C, and E into one variable entity and concatenates the276

variable entity with the already-acquired fixed sequence parts in its memory. In this way, the motif learning model learned to277

represent instruction sequences with variable motifs as a chunk with embedded variable entities. Hence the memory contained278

both concrete and abstract sequence parts as a low-complexity sequence representation. For control sequences, the model279

constructed memory pieces by chunking. During recall, sampling entailment chunks of a variable entity introduces memory280
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Figure 4. Model simulation and behavioral results for learning and transferring variable motifs a. Recall accuracy across
groups during the training blocks. b. Simulated recall accuracy during the training blocks. c. Beta coefficient of a linear mixed
effect logistic regression on recall key press correctness during the training blocks. d. Correlation between simulated generative
accuracy and participants’ recall accuracy. e. Recall accuracy across groups during the transfer blocks. f. Regression
coefficients of logistic regression performed on recall keypress correctness during the transfer block. g. Correlation between
simulated transfer generative accuracy and subjects’ sequence recall accuracy. h. Correlation between training improvement
(average recall accuracy difference between the last five training trials and the first five training trials) and the average recall
accuracy during the initial 5 trials of the transfer block.

9/16



recall error (χ2(1) = 54.37, p ≤ 0.001). The motif learning model recalled sequences with variable motifs less accurately than281

fixed sequences (β̂ =−0.09, se = 0.01, t(95) =−0.845, p ≤ 0.001).282

Regression Coefficient283

We then studied factors that influenced the keypress correctness via fitting a logistic mixed-effects regression, assuming284

a per-participant random intercept and a random slope per serial position. Shown in Figure 4 c, the regression coefficient285

suggested that the variable motif group was more prone to recall mistakes than the fixed group (β = −0.84, se = 0.28,286

z = −2.94, p ≤ 0.003). Apart from that, the variable group learned sequences slower than the fixed group (beta = −0.26,287

se = 0.12, z = −2.15, p = 0.03). Training on sequences with variables decreased participants’ probability of recalling the288

correct key and slowed down learning. Overall, the regression analysis was consistent with our predictions.289

Model Comparison We again compared the motif learning model with an associative learning model and a chunking290

model by evaluating the R-squared value regressing simulation recall accuracy onto empirical recall accuracy. Figure 4 d shows291

the goodness-of-fit model comparison on the training blocks.292

The associative learning model (R2 = 0.008) explained very little variance in subjects’ recall accuracy progression during293

learning, suggesting that just learning the first-order transition probability was insufficient to explain participants’ learning294

curve on memorizing sequences with variables. Having a chunking component that builds up recall memory pieces together295

was essential to explain subjects’ learning progression. Meanwhile, we observed that the chunking model (R2 = 0.74) explained296

more variance of recall accuracy progression than the variable learning model (R2 = 0.57), possibly because the average297

chunking process becomes more predictive of subjects’ recall accuracy than the average variable learning process, as participants298

may have learned variables in idiosyncratic ways that are not captured by the variable discovery process of the model but are299

described better by a chunking model.300

Transfer301

Behavioral Results We hypothesized that participants transfer variable representations from the training to the test block.302

Shown in Figure 3 e is the average recall accuracy of the two groups across all transfer trials. We used an independent-sample303

t-test to assess the performance difference between the two groups, and a one-tailed t-test to assess the superiority of the variable304

group compared to the fixed group in sequence recall. We observed a significant difference (t(2119.6) = 4.14; p ≤ 0.001;305

95%CI = [0.025,0.071]) in recall accuracy between the motif group (M = 0.64) and the control group (M = 0.59), supporting306

our hypothesis that the variable group performs better at transfer than the fixed group.307

Model Prediction As per model simulation shown in Figure 4 f, generative accuracy was higher for the model trained308

on variable sequences than those trained on fixed sequences (β̂ = 0.03, SE = 0.01, t(95) = 2.16, p ≤ 0.03) (χ2(1) = 4.67,309

p = 0.03). This transfer advantage results from the variable learning model reusing the previously learned variables to parse310

and chunk in conjunction with the novel sequence part. In other words, the model trained on sequences with variables learned311

to ignore a certain part of the novel sequences to afford memorizing the unchanging sequence part.312

Regression Coefficients We fitted a mixed-effect logistic regression on participants’ recall key press correctness in the313

transfer block, assuming a per-participant random intercept and a logit link function. Shown in Figure 4 g, we observed a314

positive effect of train condition (β = 0.41, se = 0.19, z = 2.19, p = 0.02). Training on sequences with variable motifs helped315

participants recall novel sequences sharing the same variable motif better than the control group trained on fixed sequences,316

consistent with our model’s prediction.317

Model Comparison We compared the motif learning model with the chunking and associative learning model on the318

transfer block. Shown in Figure 4 h, we observed that the motif learning model that reuses its previously learned variables to319

memorize novel sequences explains the most human recall accuracy variance than the chunking and the associative learning320

model. This aspect suggests that reusing previously learned variables to memorize novel sequences captures a part of the human321

sequence memory variance when they transfer to novel sequences.322

Training Improvement Correlates with Transfer Performance We also assessed the effect of training improvement on323

transfer performance for both experimental groups. The improvement measure is evaluated on individual participants’ sequence324

average recall accuracy between the last five trials at the end of the training block, subtracted by the first five trials at the325

beginning of the training block. This difference reflects the average improvement over the training period for every participant.326

We observed a significant interaction between training improvement and group (RSS = 2.44,F(1) = 10.42, p = 0.001) affecting327

transfer recall accuracy. Participants who improved more during training on variable motifs performed better during the initial328

transfer blocks, compared to control (β = 0.53, se = 0.17, t = 3.22, p = 0.002). Training improvement on variable motifs329

facilitated transfer to sequences sharing the same variables.330

Discussion331

We effortlessly perceive and extract motifs in music, acquire grammatical structure from languages, and use mathematical332

variables to find out about the unknown. Already during early childhood, we can learn abstract concepts as soon as we learn333

concrete concepts11, 12. Linguistics suggest that the conceptual metaphor —mapping similar structural concepts of a known334
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thing to construct an understanding of an unknown concept — plays a vital role in human understanding and reasoning13, 14.335

Having seen a solution to a problem, people can solve problems in a similar conceptual relational space15. Abstraction as a336

principle has demonstrated its usage in mathematics and machine learning. Mathematicians have used abstraction as a mapping337

principle to transfer deductions from one formal system to a new formal system16. Abstraction has long been postulated as a338

crucial requirement for intelligent agents to solve problems in diverse situations17. Reinforcement learning studies suggest339

that state or action abstraction makes the representation more compact, easier to plan, and generalize flexibly to different340

environments and across tasks18–22. Yet, current artificial intelligence systems do not explicitly abstract in the way that humans341

do23. Hence, understanding how humans arrive at abstraction more generically has wide and profound implications in the study342

of artificial and natural intelligence.343

As the key to generalization, transfer, and planning, our ability to abstract from perceptual observations — which has344

not received sufficient attention relative to its importance in intelligence — urges us to take a closer look at how abstraction345

arises from sequential perceptual sequences. In the current work, we have proposed two specific sequence abstraction types:346

projectional motifs — patterns derived from sequences through a projectional function, and variable motifs — patterns that347

combine both concrete and variable elements. We studied the process of abstract motif learning in sequences, tested the learning348

and transfer of both motifs in a sequence recall paradigm, and proposed a model that abstracts sequences to compress sequence349

representations with projectional and variable motifs. We found that out model explained human behavior well.350

Previously, associative learning models have been shown to explain the human gramaticity learning and judgements1, 2, 24, 25.351

Our model comparison between associative learning and motif learning suggests that associative learning alone is insufficient352

to explain human abstraction learning and transfer in sequence recall. As an alternative account of sequence learning, chunking353

models including PARSER4, HCM8, CCN and TRACX6, 7 acquire repeated patterns from sequences as chunks. Model354

comparison between the chunking model and motif learning model suggests that the chunking model captures a part of variable355

motif learning but not variable motif transfer, nor the learning and transfer of projectional motifs. Expanding the space of356

chunking from concrete sequences to abstract spaces is vital to capture the motif learning and transfer effects observed in our357

experiments.358

Other works on sequence learning and mental compression include Planton et al.26. In a binary auditory sequence violation359

detection task, they showed that a language-of-thought model’s minimal description length of binary sequences relates to human360

psychological complexity26, 27. Our work further relates mental compression with sequence motif learning. Rather than a static361

account of sequence complexity, our model proposes a discovery process of actively learning sequence motifs during practice.362

Limitations363

Our work has limitations. In Experiment 1, learning one motif facilitated participants’ transfer to a different motif (3 e). The364

same was not true for the model: learning one motif impaired its ability to transfer to the other different motif. The model’s365

ability to recall a new motif is hindered when it has already learned one motif. This occurs because the recall process involves366

sampling subsequences acquired since the start of training, and the previously learned chunks from the training motif may367

still get sampled during the recall process which interferes with recall accuracy. This effect is consistent with the proactive368

interference effect in the literature that memory for previously presented lists impairs memory for later presented lists28–31. In369

contrast, in our experiment, it seems as if humans are establishing a fresh context for structure discovery when encountering a370

new motif32–34. This phenomenon can be attributed to yet an additional layer of contextual abstraction that the model does not371

capture. Namely, training on sequences with motifs guides people to look for motifs in subsequent sequences. Indeed, it has372

also been observed in other tasks that structured training leads participants to look for structures in subsequent tasks35. We373

encourage future work to delineate the relation between memory interference effect and the facilitation of structural priors on374

memory.375

Additionally, most of our analysis compare model predictions with human behavior on an aggregated level. We encourage376

future investigations to examine subjects’ idiosyncratic learning and transfer strategies. Apart from that, our work defines and377

investigates two particular types of abstraction. We encourage future work to extend the investigation and look at more forms of378

abstraction or automatic ways of discovering abstraction such as hierarchical clustering and chunking on recursive abstract379

levels.380

Conclusion381

A vital role of abstraction is to facilitate sequence compression and generalization, and we proposed a motif learning model382

based on this principle. Our model builds up a sequence memory via chunking motifs in an abstract space in search of a383

low-complexity sequence representation, facilitating memorization and transfer. We developed a sequence recall task to384

examine whether the two proposed motif types aid in learning and generalization. Our findings suggest that both motifs385

facilitate sequence memorization and generalization to novel, unseen sequences. Humans showed similar behavior to the model386

in learning and generalization of both abstraction types. This suggests that sequence compression via abstraction is a plausible387

11/16



mechanism to explain human performance in sequence memory tasks. Our work paves the way for a better understanding of388

how people construct abstract representations from observational sequences for efficient compression and transfer.389

Method390

Ethics Statement391

Informed consent was obtained from all subjects before participation, and the experiments were performed following the392

relevant guidelines and regulations approved by the ethics committee of the University of Tuebingen (Ethik-Kommission an393

der Medizinischen Fakultät der Eberhard-Karls-Universität und am Universitätsklinikum Tübingen), under the study title:394

Experimente zum Sequenz- und Belohnungslernen, with application number 701/2020BO.395

Participants’ data were analyzed anonymously. Upon agreement to participate in the study, they consented to a data396

protection sheet approved by the data protection officer of the MPG (Datenschutzbeauftragte der MPG, Max-Planck-Gesellschaft397

zur Förderung der Wissenschaften).398

Paradigm399

Specifically, six equally distanced squares are horizontally placed on the display. Each assumes a distinct color: blue, yellow,400

magenta, red, green, and teal and corresponds to one legitimate key on the keyboard: S, D, F, J, K, and L. Participants were401

instructed to place their fingers stationarily on these designated keys throughout the task (left index finger on D, left middle402

finger on S, left ring finger on A, right index finger on J, right middle finger on K, and right ring finger on L). To control for403

finger familiarity biases, a random mapping from keyboard position to color is generated for each participant.404

Before the start of each trial, all colors were initially covered by dark shades. The sequence was then presented sequentially405

by revealing each color for 800 ms followed by a brief re-covering of dark shades for another 200 ms before the next display406

color. The colored sequence was presented in three groups of four, separated by pauses of 800 ms accompanied by the display407

of a pair of paws, akin to the structure of a three-prose-poem with four words in each prose and pauses in between.408

Following the sequence display, participants were prompted to recall the instructed sequence by pressing the corresponding409

key. Upon the press of each key, the shade covering the corresponding color would disappear and the color would be revealed410

for 200 ms. At the end of each group, a pair of paws would appear to signify the completion of one subsequence. At the end411

of the third recall group, participants received immediate feedback on their recall accuracy and recall time which marks the412

completion of one trial. Participants were instructed to prioritize both speed and accuracy and received a performance-based413

bonus based on both factors. Before the official trials, participants completed a practice trial to familiarize themselves with the414

task.415

Recruitment of Participants416

We recruited 135 participants for Experiment 1 from Prolific, an online crowd-sourcing experimental platform. Out of all417

participants, thirty-seven were female. Participants’ ages ranged from 18 to 67, with an average of 32 and a median of 28. The418

experiment took an average of 45.06 minutes to complete. As compensation, participants received a base pay of £4 and another419

performance-dependent bonus up to £4. The average hourly pay for the study was £11.60.420

We recruited 120 participants for Experiment 2 from Prolific, out of which thirty-four were female. Participants’ ages421

ranged from 19 to 63, with an average of 31.2 and a median of 28. The experiment took an average of 47.55 minutes to422

complete. As compensation, participants received a base pay of £4 and another performance-dependent bonus up to £4. The423

average hourly pay for the study was £10.89.424

Payment425

For both experiments, participants receive feedback about their trial-wise bonus, which is dependent on a mixture of their426

sequence recall accuracy and reaction time and is ceiled to the maximum bonus divided by the number of trials. The reaction427

time bonus becomes the maximum when the recall reaction time is less than 2000 ms, and is set to 0 when the recall reaction428

time exceeds 10000 ms. For reaction time in the middle, the bonusfast is calculated as bonus f ast = bonusmax− (10000−429

trialrt)/(10000−2000)×maxtrialbonus. In this way, a reaction time between the two limits will yield a steady bonus increase.430

The trial-wise bonus for accuracy is calculated as follows: when the recall accuracy is perfect, the bonusacc is set to431

maxtrialbonus. And when the recall accuracy is below 50%, which corresponds to more than 6 of the recalled sequences in a432

false order or a false recalled item, then the bonusacc for this trial is set to 0. A recall accuracy in between will yield a bonusacc433

calculated as bonusacc = bonusmax× (trialacc−0.5)/(1−0.5).434

Finally, the trial bonus is calculated as an average of the reaction time bonus and the recall accuracy bonus trialbonus =435

0.5×bonus f ast +0.5×bonusacc.436

At the end of the experiment, trial-wise performance-dependent bonus was summed up to the total amount of bonus that437

participants will receive.438
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Filtering439

We applied the same filtering criteria on the training blocks for all groups as a basis to exclude participants: mean reaction time440

≤ 10,000 ms (that is 10 seconds to press a sequence of 12 made of two distinct colors), mean recall accuracy ≥ 50%. On top of441

that, we measured whether participants were learning by inspecting reaction time decrease, as a violation of a decrease in rt442

would be an indication of distraction during the study. When applying a linear regression model regressing trial number on443

reaction time on participant’s data during the training blocks, the reaction time should on average, decrease, which translates to444

having a significant (p ≤ 0.05) of a negative beta coefficient. No filtering criteria were applied to the transfer blocks. After445

filtering, 37 participants are left in group m1, 41 in m2, and 28 in group independent. The average accuracy was 0.80 ± 0.22,446

and the average reaction time was 5446 ± 3723(std) ms.447

For experiment 2, we excluded participants who took on average more than 20 seconds to recall a sequence during the448

training block (since experiment 2 employs more colors than experiment 1, we also relaxed this exclusion criteria accordingly).449

Since the motif condition is harder than the control condition, we applied different exclusion criteria for the two groups, and450

excluded participants with an average sequence recall accuracy below 50% in the fixed group (as they have to recall the same451

sequence repeatedly), and below 20% in the variable group. Additionally, we excluded people who do not have a significant452

reaction time decrease (p ≤ 0.05) during the training block — an indicator of not learning during the task. The exclusion criteria453

apply only to the training blocks and no participants are excluded based on their transfer block performance. 23 participants454

were excluded given that they have violated any of the above-mentioned criteria. After exclusion, 45 participants out of 120455

remained in group m1, and 52 remained in group control. The average accuracy was 0.70 ± 0.28, and the average reaction time456

was 8094 ± 6209 ms.457

Sequence Recall The model receives the same instruction sequences to participants as its training sequences, except that the458

middle pauses were removed. To recall, the initial item of the sequence is used as a primer for the model to recall subsequent459

sequential items. Based on the sequence segments stored in the model, it samples from the set of sequence segments that460

are consistent with the sequence prime while giving priority to sampling larger segments. Once the first sequential segment461

is sampled, the segment becomes the previous item to sample the next segment, which is based on the transition given the462

occurrence of the previous segment. The recall complexity is evaluated by calculating the sampled probability of the recalled463

sequence. P(c1,c2,c3) = P(c1)P(c2|c1)(c3|c2), calculated from the marginal and conditional frequencies are both stored in the464

model.465

Random Effect Structure of Regression Analysis To obtain the maximal random effect structure justified by design466

without inflating the Type I error rate36, while balancing the loss of statistical power37, we systematically select models across467

multiple possible random effect structures and report the best model that is supported by data. Specifically, when fitting linear468

mixed effect logistic regression on keypress correctness, we compared across random intercept per participant, random slope469

per serial position, and trial ID, and always reported the best fitting model that includes any subset of the three random effects.470
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Supplementary Information561

0.1 Experiment 1562

0.1.1 Training563

Regression Coefficient Other regressors that showed significant effects are serial position, trial ID, chunk boundary, and the564

number of repetitions. Serial position is the n-th item recalled in a trial, significantly affecting recall correctness (χ2(1) = 697.92,565

p ≤ 0.001). The further the position of a sequence recall, the more likely that participants will be making a mistake (β =−0.31,566

se = 0.03, z = −10.82, p ≤ 0.001). This result is consistent with the primacy effect widely observed in the serial recall567

literature38 as mistake probability increases with the serial position. Apart from that, trial ID, i.e., the number of practice trials568

(χ2(1) = 810.02, p ≤ 0.001), also increases the log-odds of recalling correctly (β = 0.09, se = 0.02, z = 4.45, p ≤ 0.001),569

confirming a practice effect over training blocks.570

We also observed that the sub-sequence boundary (at the first, fourth, fifth, eighth, ninth, and twelfth item of the sequence)571

affects recall correctness (χ2(1) = 34.767,p ≤ 0.001). Items located at the beginning and the end of the displayed sub-572

sequence are more likely to be recalled correctly compared to the items within each sub-sequence (β = 0.15, se = 0.02,573

z = 6.01, p ≤ 0.001). This observation resonates with the literature suggesting subjects have more accurate memory and574

recall performance at the boundaries of serially ordered sub-sequences than between10, 33, 39. Additionally, the number of exact575

repetitions (χ2(1) = 158.19,p ≤ 0.01) increases the log odds of correct recall press (β = 0.07, se = 0.01, z = 5.10, p ≤ 0.001).576

0.1.2 Transfer577

Regression Coefficient Apart from transfer types, the recall keypress correctness decreases with the recall sequence position578

(χ2(1) = 322.3, p≤ 0.001). The further subjects are into recall, the more likely they will make mistakes (β =−0.08, σ = 0.008,579

z =−10.78, p ≤ 0.001). The decrease in recall accuracy is consistent with the recency effect in memory literature: items that580

occur early in a sequence tend to be remembered and recalled more accurately38. We also observed a practice effect: trial ID581

affects the log odd ratio of pressing the right key (χ2(1) = 86.07,p ≤ 0.001) (β = 0.09, se = 0.01, z = 5.94, p ≤ 0.001). Apart582
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from that, chunk boundary effect was also observed: the subchunk boundaries generally exhibit a higher recall accuracy than583

the interchunk items (χ2(1) = 25.17,p ≤ 0.001) (β = 0.17, σ = 0.03, z = 5.17, p ≤ 0.001), resonating with existing findings584

that chunk boundaries are remembered more accurately than within-chunk items33.585

0.2 Experiment 2586

0.2.1 Training587

Regression Coefficient Other regressors that showed significant effects are serial position (β =−0.67, se = 0.04, z =−15.25,588

p≤ 0.001), confirming the recency effect; Trial ID (β = 0.53, se= 0.14, z=−15.24, p≤ 0.001), confirming the practice effect;589

the number of repetitions (β = 0.05, se = 0.01, z = 4.71, p < 0.001); and chunk boundary (β = 0.34 se = 0.02, z = 13.29,590

p ≤ 0.001).591

0.2.2 Transfer592

Regression Coefficient Similar to the training block, we observed a recency effect (β = −0.64, se = 0.02, z = −29.1,593

p < 2e− 16), practice effect (β = 0.32, se = 0.02, z = 12.78, p ≤ 0.001), repetition effect. (β = 0.08, se = 0.03, z = 2.51,594

p ≤ 0.001), and chunk boundary effect(β = 0.30, se = 0.04, z = 7.23, p ≤ 0.001), confirming a viable expectation over595

experimental manipulation.596
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