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Abstract

Overcoming vaccine hesitancy is critical to containing the COVID-19 pandemic in
the United States. To increase vaccination rates, the State of Ohio launched a million-
dollar lottery sweepstakes in May 2021. Following a pre-registered analysis, we
estimate the effects of Ohio’s lottery program Vax-a-Million on COVID-19 vaccination
rates by comparing it to a "synthetic control” made up of a weighted composite of eight
other states. We find a not statistically significant 1.3 percentage point decrease in
the full vaccination rate in Ohio relative to the synthetic control. We investigate the
robustness of our conclusion to model specifications through a multiverse analysis
of 216 possible models, including longer time periods and alternative vaccination
measures. The majority (88%) find small negative effects in line with the results of our
pre-registered model. Our results suggest that the likely impact of the lottery was null
or a small negative effect.

Keywords: COVID-19, vaccination, synthetic control, lotteries, vaccine hesitancy,
vaccine confidence, multiverse analysis
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1 Introduction

The COVID-19 pandemic is the largest public health crisis in recent history. With the
discovery and mass production of efficacious vaccines against the virus, motivating uptake
of the vaccines has emerged as a critical challenge in the United States. To this end, a
number of incentives and encouragement strategies have been implemented in the U.S.,
ranging from free beer to saving bonds (Kmietowicz, 2021; Treisman, 2021). Because of
the rapid pace of the pandemic and response efforts, however, little is yet known about the
effectiveness of these programs and whether they can help contain the virus in the United
States (Mandvalli, 2021)).

Lotteries are a potentially powerful and low cost way to encourage vaccination that have
been shown to induce behavior change in financial (Gertler et al., 2018)) and health behaviors
(Van Der Swaluw et al., 2018]). Particularly in the context of vaccination, lotteries may be
an effective incentive in that they are uniquely attractive to risk-preferring individuals. Prior
work finds risk-preference is positively correlated with vaccine skepticism (Massin et al.,
20135)), suggesting that the vaccine-hesitant may be uniquely high in risk-preference, and
thus uniquely responsive to lottery incentive programs.

Additionally, individuals who systematically overestimate low-probability events, such
as adverse vaccine reactions, may also systematically overestimate the probabilities of
winning a lottery (Camerer and Kunreuther, 1989)). Lastly, prior work finds that low-income
communities are less likely to get vaccinated but also more likely to have high participation
rates in lotteries (Price and Novak, [1999; Razai et al., [2021; Soares et al., 2021)). For these
reasons, lotteries may effectively encourage individuals to vaccinate where other strategies
have failed.

Yet despite these appealing factors, there are serious concerns about whether and how in-
dividuals should be compensated for obtaining COVID-19 vaccinations. Efforts to promote
uptake of the Human Papillomavirus (HPV) vaccine illustrate the uncertainty and challenges
associated with incentivizing vaccination. One randomized controlled trial in the United
Kingdom found that financial compensation boosted HPV vaccination rates in participants
by nearly ten percentage points (Mantzari et al., 2015)). However, in a different context when
community health service providers in the Netherlands offered raffles for iPods in exchange
for receiving the HPV vaccine, these communities subsequently had lower vaccination rates
and the vaccination initiative received negative media coverage (Rondy et al., 2010).

Vaccine promotion efforts have also faced political challenges (Intlekofer et al., 2012;
Haber et al., 2007), including opposition based on the cost of compensating vaccine recip-
ients (Buchanon, 2021)). Similar sentiments have been shared with regards to COVID-19
vaccination efforts, including concerns that payment to individuals erodes intrinsic motiva-
tion, is coercive, and could reduce confidence in the vaccine’s safety (Largent and Miller,
2021). While the benefits of increasing vaccination rates may outweigh potential ethical
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concerns (Persad and Emanuel, 2021), the optimal compensation strategy for staggered
treatments - such as the Moderna and Pfizer vaccines - are not obvious (Higgins et al.,
2021)).

These concerns speak to a larger issue of how to evaluate the efficacy of these vaccination
efforts. To increase vaccination rates, lotteries could induce individuals who would never
get vaccinated otherwise, or they could cause individuals to vaccinate sooner than they
would have otherwise. Alternatively, lotteries may have no impact on vaccination, or even
discourage individuals from vaccinating. The relative composition of these effects may
make the net impact of vaccination lotteries positive, transitory, or deleterious (Buttenheim
and Asch, 2013; Cryder et al., 2010).

In this paper, we present a pre-registered analysis of a program intervention that offered
vaccine recipients a chance to participate in a series of million-dollar lotteries if they
had received their first vaccination prior to the weekly drawing. Despite early results
suggesting Ohioans increased their first-doses in response to this lottery announcement(Ohio
Department of Public Health, 2021)), results of subsequent studies of Ohio’s lottery program
have been mixed (Mallow et al., 2021}; Robertson et al.,[2021; Walkey et al., 2021}; | Brehm et
al., 2021; Barber and West, 2021} Thirumurthy et al., 2021; Sehgal, [2021)). Developments
in the social sciences over the last decade have made it clear that "researcher degrees
of freedom" are a significant problem leading to over-identification of treatment effects
when none exist (Simmons et al., [2011; [Brodeur et al., [2018}; Blanco-Perez and Brodeur,
2020). Our analysis is distinct in that we pre-registered our analysis plan, including code
for data processing, outcome selection, and model weights, ensuring that our analysis was
neither intentionally nor unintentionally biased towards finding a specific result (Gelman
and Loken, [2013; Munafo et al.,|2017). We couple this analysis with a multiverse analysis
of 216 alternative specifications. While pre-specifying our analysis plan ensures that we
did not cherry pick a particular model, other modelling choices may lead to a more efficient
estimate of the true treatment effect (Ferman et al.,|2020). The multiverse analysis examines
the robustness of the pre-registered results to the use of alternative outcomes, covariate
selection, time-frames, and modelling methods (Steegen et al., 2016) .

We hypothesized that because lotteries offer incentives that may be uniquely motivating
to many unvaccinated individuals, we would see a relative increase in vaccination rates
in Ohio following the opening of the "Vax-a-million" lottery compared to states that were
similar before the lottery announcement. However, our pre-registered analysis found no
evidence that Ohio’s vaccination rate increased any faster than in its comparison states.
While absence of evidence is not the same as evidence of absence, this result should caution
other states that are considering using lottery incentives to increase vaccine turnout. Details
of the policy intervention and our specific causal inference strategy follow.
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Vaccination Rates by State by Week
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FIGURE 1: Vaccination Rates by State

2 Data

The focal program we study is called Vax-a-Million'. The intervention was announced on
May 12th, 2021 by Ohio Governor Mike Dewine. Starting on May 26th, a weekly lottery
drawing was conducted through June 23rd 2021. All Ohio residents who were 18 years or
older and entered to participate in the lottery were eligible to receive a one-million dollar
prize if they had received their first dose by the date of the drawing.

The focal outcome of our study comes from Our World in Data’s COVID-19 vaccination
database, which uses numbers published by the US Center for Disease Control (CDC)
(Mathieu et al., |2021). The measure counts the percentage of individuals that are fully
vaccinated in each US state. We chose this to be our outcome measure because it is aligned
with the stated public policy goals of the State of Ohio (DeWine, 2021)). The full vaccination
outcome has become particularly significant with the rise of virus variants that are more
virulent to single doses (Bernal et al., 2021]). Notably, this measure requires that individuals
who receive either the Pfizer or Moderna vaccines must receive two doses to count as fully
vaccinated.

We plot fully vaccinated rates in each state in Figure [I| At the time of the lottery an-
nouncement, Ohio was in the middle of the distribution, ranking as the 25th most vaccinated
state with 37.4% of the entire population being fully vaccinated. On the day after the final
lottery drawing, Ohio had slipped three positions to the 28th most vaccinated state with
43.7% percent of the population fully vaccinated.

Thttps://www.ohiovaxamillion.com/index.html
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All data is aggregated to the week level. All subsequent plots and analyses are recentered
and denominated in weeks relative to the lottery announcement to facilitate communication.
While vaccination data is updated daily, there is substantial noise and missing data in the
daily numbers as records are omitted from one day and reported on the next. Thus, weekly
aggregation smooths daily fluctuation in reported vaccinations.

3 Methods

We use a synthetic control methodology to create the counterfactual vaccination outcome
for Ohio. This technique is useful for cases where a single-aggregated unit such as a state
or country receives a treatment (Abadie and Gardeazabal, 2003); /Abadie et al., [2010). One
can then create a synthetic version of a state by constructing a convex combination of other
states (the donor pool) using either pre-treatment outcomes and/or other relevant covariates.
Researchers have recently used synthetic control methods to estimate the effectiveness of
California’s shelter in place orders at the beginning of the COVID-19 pandemic (Friedson
et al., 2020), to estimate the impact of a super-spreading event on COVID-19 case rates
(Dave et al., [2021), and to estimate the effects of lockdowns on air pollution and health
in Wuhan, China (Cole et al., 2020). We are aware of three other concurrent research
efforts to analyze the effectiveness of the Ohio lottery program that also use a synthetic
control approach (Barber and West, 2021} Brehm et al., 2021} Sehgal, 2021). We address
differences in findings and methods below in section {.1]

A particular novelty of this method is that it allows researchers to specify a counterfac-
tual without any knowledge of post-treatment data, making it well-suited for preregistration
(Cunningham, 2018)). By pre-specifying the weighting of states, it provides a clearly articu-
lated counterfactual of what would happen if no interventions occurred. In light of concerns
regarding "cherry picking" with synthetic control methodologies (Ferman et al., 2020), we
pre-registered the weights for the synthetic comparison group using data from January 12th
to May 9th. We defined the pre-treatment period through the end of the last full week before
the lottery announcement on May 12th. On June 15th, we revised our pre-registered proto-
col to exclude states that had announced vaccine lotteries after our original pre-registration,
specifying that we would also run our analysis excluding these states from Ohio’s synthetic
control. We present the analysis omitting other lottery-adopting states in the main text
below. In Appendix [C] we present findings that follow our initial plan and include all 50
states and the District of Columbia. These findings are not substantively different. We
stopped data collection and calculated results after the last lottery was run on June 23rd. All
code used in this paper including, but not limited to, downloading raw data, data processing,
descriptive analyses, power tests, and synthetic control analysis are publicly available on
Github at https://github.com/XXX. All the code used to generate our pre-registered
synthetic controls comes from the tidysynth package in R (Dunford, 2021). Our initial code
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TABLE 1: Weights used to construct the synthetic counterfactual to Ohio. States not listed
had weights less than 0.001. These weights are based on a June 15th registration that
excludes all other lottery adopting states. See Appendix [C] Table [7] for a comparison to our
original pre-registered weights.

Unit Weights

CT 0.029
GA 0.168
HI 0.061
IA 0.066
KS  0.256
PA  0.056
VA  0.173
WI  0.192

and analysis was posted to the Open Science Foundation (OSF) repository on May 24th 2
We construct our synthetic control using the the following expression:

k J+1 2
va(le_ZWijm) (D

X corresponds to our vector of pretreatment outcomes, vaccination rates before the lot-
tery, for the state of Ohio. X; corresponds to the pretreatment outcomes and the associated
indices of other states in the donor pool. w; corresponds to the unit weights, the associated
weighting of each state in our synthetic construction. v,, corresponds to a variable impor-
tance weight of the pretreatment outcomes that we match on. We minimize this expression
subject to the constraints that both our unit weights and variable weights are non-negative
and sum to unity.

We trained our synthetic control model on the 17 weeks preceding the vaccination
announcement. We used data from 31 non-lottery states and the District of Columbia in
the donor pool. After optimizing expression 1 based on the past 17 weeks of vaccination
data, we generated the synthetic control version of Ohio. Exact weights are shown in Table
[[l Synthetic Ohio is a composite of Kansas, Wisconsin, Virginia, Georgia, lowa, Hawaii,
Pennsylvania and Connecticut.

While best practice on the role of covariates in synthetic control is still evolving, using
outcome data for each pre-treatment period obviates the need for covariates and shrinks
their variable importance weights to zero (Kaul et al.,[2015)). We believe using the full path
of our pre-treatment outcome is a parsimonious specification. As part of the multiverse
analysis we test the effect of including additional covariate adjustments.

2The url to our OSF page ishttps://osf.io/XXX/. Updated code can be found at our github. https://
github.com/XXX
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Synthetic Ohio and Actual Ohio match very well in their cumulative vaccination rate
during the pre-treatment period. In Table [2]below, we show the value of our pre-treatment
outcomes for Actual Ohio, Synthetic Ohio, and the average across our donor pool, in the
weeks leading up to the vaccination announcement. In all cases, the error between Actual
Ohio and Synthetic Ohio was at most 0.6 percentage points. This result suggests that the
difference between Synthetic Ohio and Actual Ohio in the pre-treatment period is relatively
small.

TABLE 2: Balance Table.

pretreatment outcome Ohio Synthetic Ohio  Difference ~ Donor Pool

lagged_vaccinations_week17  0.120 0.362 -0.242 0.554
lagged_vaccinations_week16 0.610 0.775 -0.165 1.088
lagged_vaccinations_week15 1.400 1.435 -0.035 1.885
lagged_vaccinations_week 14 2.440 2.411 0.029 2.958
lagged_vaccinations_week13  3.830 3.757 0.073 4.333
lagged_vaccinations_week12 5.560 5.709 -0.149 6.186
lagged_vaccinations_week11 7.670 7.692 -0.022 7.914
lagged_vaccinations_week 10 9.440 9.498 —0.058 9.749
lagged_vaccinations_week09  11.870 11.795 0.075 12.036
lagged_vaccinations_week08  13.860 13.837 0.023 14.027
lagged_vaccinations_weekO7  16.130 16.056 0.074 16.292
lagged_vaccinations_week06  18.780 18.804 -0.024 19.250
lagged_vaccinations_week05  21.610 22.218 —-0.608 22.595
lagged_vaccinations_week04  26.320 26.083 0.237 25.941
lagged_vaccinations_week03  30.110 29.780 0.330 28.863
lagged_vaccinations_week02  33.230 33.021 0.209 31.600
lagged_vaccinations_weekO1  35.620 35.827 -0.207 34.113
4 Results

We present results for Synthetic Ohio and Actual Ohio in Figure 2] At the time of the final
lottery drawing, the vaccination rate for Actual Ohio was 43.7% and the vaccination rate for
Synthetic Ohio was 45.0%. This represents a decrease in full vaccinations of approximately
1.3% percentage points relative to Synthetic Ohio.

The pre-registered inference strategy we use to compute statistical significance is a
permutation test of the mean squared predicted error ratios. This is calculated by repeating
the minimization procedure from expression 1 to create a unique synthetic counterfactual for
each of the donor states. We compute the ratio of the Mean Squared Predictive Error (MSPE)
between the pre-treatment and post treatment periods using the synthetic counterfactuals
for each state. We then sort these MSPE ratios in descending order and use the associated

8
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rank for each state as it’s associated p-value (See Appendix [A] for a placebo analysis and
Appendix [B| for a power analysis). Intuitively, non-treated states should continue to match
their synthetic counterfactual relatively well in the post-treatment period. If a policy exhibits
a substantial change in the focal outcome, the synthetic control for the true treated state
will have relatively poor out of sample fit in the post treatment period. Our pre-specified
threshold for statistical significance was a p-value of 0.10. Excluding lottery states, this
would correspond to our treatment state having an associated rank of 3 or higher out of the
remaining 33 states.

We present the result for the MSPE ratio test in Table @ This MSPE ratio is 27.0,
suggesting the treatment period error is substantially larger than the pre-treatment period
error. However, when we compute our p-value using the state’s MSPE ranking in descending
order, we see that the associated p-value is 12/33, yielding an approximate p-value of 0.36.
In other words, 11 other non-lottery adopting states had larger divergences from their
synthetic counterfactuals than Ohio did. Thus, we cannot reject the hypothesis that Ohio’s
state lottery had no impact on statewide cumulative vaccination rates. This null finding,
however, should not be construed as proof that the lottery had no effect.

While best practices for estimating confidence intervals for synthetic control analyses
are still being established, conformal inference techniques suggest that the associated point
estimates at the end of period are between -3.4% and 0.9%, see bottom panel of Figure 2]
(Chernozhukov et al., 2021} | Ben-Michael et al., 2021a). We emphasize that this confidence
interval is descriptive and note the method is not specified in our pre-registration.

TABLE 3: Outcome Table

Measure ~ MSPE-Ratio  Average Difference  Last Period Difference

Value 27.0 -1.14 -1.27
Rank 12 23 24
p-value 0.36 0.70 0.73

4.1 Multiverse Analysis

We are aware of three other, concurrent research efforts that use synthetic control methods
(Brehm et al., 2021; Barber and West, 2021} Sehgal, 2021). None of these studies used
preregistered analysis plans. These papers have found small positive effects of the Ohio lot-
tery on first vaccination doses. In order to fully understand why similar methods would find
differing conclusions, we conducted a multiverse analysis to explore the impact of several
different data processing and modelling choices, based on those used in the aforementioned
papers, on the final outcome estimates through the creation of 216 distinct synthetic control
models (Steegen et al., 2016} [Silberzahn et al., 2018)). In Appendix [D] we use the weights
published in (Barber and West, 2021} Sehgal, 2021) and present a direct replication and

10
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comparison of their first dose effects over an extended time frame. We find that the posi-
tive effects on first doses observed at the end of the lottery period rapidly decay and turn
negative.

Multiverse analyses have been used to understand differences in empirical research
findings in several research contexts including racial disparities in police use of force
(Cesario et al., 2019), brain structure and depressive disorders (Kotodziej et al., [2021)),
smartphone use and parenting (Modecki et al., 2020) and power pose effects (Credé and
Phillips, 2017). The multiverse approach can highlight when findings are robust to data
processing and modelling decisions, or when statistically significant findings disappear
under slightly different assumptions.

In Table 4] we outline six decision criteria that we considered. The choices indicated
with a * are our pre-registered modelling decisions. Pre-registering those choices before
outcome data was available ensured that those decisions were not influenced by a motivated
search of the modelling space for a significant effect.

Our first consideration in our multiverse is the associated donor pool of our synthetic
Ohio. We initially pre-registered the decision to use all 50 states, prior to many other
states subsequently adopting lotteries. On June 15th, we amended the pre-registered plan
to exclude any states that subsequently adopted vaccination lottery sweepstakes.This leaves
a donor pool of 50 and 32 units respectively. We note that though other work (Brehm et al.,
2021)) uses county level data we restrict our multiverse analysis to state units.

Second, we extend our results with additional outcomes, testing whether first doses
or total vaccines administered captured effects that did not show up in the share fully
vaccinated.

Third, we consider different starting time windows. Our analysis used vaccination data
compiled by Our World in Data (Mathieu et al.l [2021) that were available from January
12, 2021. However others have reported that comprehensive data from the CDC was not
available until February 19, 2021 and that access to vaccines may have been limited to
health care workers and other at-risk individuals prior to that (Barber and West, 2021).
Other work has used an even shorter 30-day pre-treatment window, which we omit here for
the sake of parsimony (Sehgal, 2021)).

Fourth, we vary the end date of the post-treatment period. Our original ending date — the
day of the last lottery drawing — was potentially too early to find effects on full vaccinations,
due to the necessity of waiting three to four weeks between doses to complete the Pfizer
and Moderna vaccines (Barber and West, 2021 Brehm et al., [2021). We therefore test
whether effects change four and eight weeks after the final lottery drawing to allow for the
administration of second doses. This latter selection was chosen as it was the day prior to
full approval of the Pfizer vaccine by the Food and Drug Administration (FDA) 3.

Fifth, we assess the inclusion of covariates to improve the construction of the synthetic
counterfactual. Following the lead of other papers investigating the effect of the Ohio

3https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine
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TABLE 4: Data Processing and Modelling Choices. Choices indicated with a * represent the
pre-registered modelling decisions.

Modelling Decisions
1. States to Include in Comparison
(a*) All states + District of Columbia
(b* June 15th modification) Only states that did not adopt a lottery
See table @ for excluded states
2. Outcome
(a*) Percent fully vaccinated
(b) Percent with at least one dose
(c) Total number of vaccines given per hundred
3. Vaccination Data Start Time
(a*) OWID data availability (01/12/2021)
(b) CDC data availability (02/19/2021)
4. Vaccination End of Comparison
(a*) Lottery end date (06/24/2021)
(b) 4 weeks after lottery end to allow for full vaccination (07/23/2021)
(c) 8 weeks after lottery end (08/22/2021)
5. Covariates
(a*) None
(b) State demographics, 2020 Republican Presidential Election vote share,
2019 Influenza vaccination rate.
(c) b + Google mobility trends
6. Synthetic Control Model
(a*) Traditional Synthetic Control
(b) Augmented synthetic control with unit fixed effects and ridge regressions

lottery, we test the use of a series of state demographic variables as well as 2019 estimates
of flu vaccination rates and the 2020 Presidential election republican vote share (Brehm
et al., 2021)), and additionally including daily estimates of individual mobility provided by
Google trends (Barber and West, |2021).

Lastly, we varied the modelling technique used to compare the traditional synthetic
control approach to an augmented synthetic control model (Ben-Michael et al., [2021a),
exploring a technique that relaxes some of the assumptions of the traditional synthetic control
model by allowing for state fixed effects and augmenting the counterfactual comparison with
ridge regressions. Most notably, these approaches allow the associated donor weights to be
negative and can facilitate better pre-treatment fit.

We fully interact all of the modelling decisions and data processing choices to create
216 possible models.

We analyze the results of this multiverse of modelling decisions in two stages. First we
examine the variability in donor states’ weights in the synthetic control for Ohio in Figure
Bl Here we see that the construction of the counterfactual is sensitive to the modelling

12
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decisions made. While some states consistently have near-zero weights, the states that
are used in the counterfactual have widely varying weights ranging from comprising half
the weight of the counterfactual down to having no weighting at all. While the weights
used in synthetic controls provide a high level of transparency in the calculation of the
counterfactual, these results show that the determination of those weights is quite sensitive
to researcher decisions. Prior research has found that synthetic control weights are subject
to cherry picking concerns (Ferman et al.,|2020).

13
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In Figure 4] we present the end of period differences between Actual Ohio and Synthetic
Ohio across modelling decisions. The figure presents the estimated final period treatment
effect on the y-axis while the x-axis represents different time windows (Options 3 and 4
from table ) while color is used to denote the covariate choice used (option 5). A total
of twelve figures are presented with the three rows corresponding to measuring effects on
the percentage of the population receiving a first dose, percentage fully vaccinated, and
the total number of doses per capita (option 5). While the four columns correspond to the
counterfactual states considered and modelling choice (options 1 and 5). Across specifica-
tions we find a maximum positive effect of +3.6 percentage points on full vaccinations and
a maximum negative effect of -5.9 percentage points on total doses administered. We see
estimates of negative effects in 59 out of 72 models that use first doses as the dependent
variable, 60 out of 72 of the models that measure effects on full vaccination rates, and all
72 of the models that estimate total vaccines administered. Our pre-registered model is
indicated with a * and is near the middle of the model estimates.
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To assess the relative validity of these models, we compute the post-treatment fit for our
donor state. Put differently, we estimate how much non-treated states diverge from their
synthetic counterfactuals, with smaller divergence treated as evidence of better model fit
(Abadie, 2021). Intuitively, if a model has poor post-treatment fit when no intervention
occurred, this model would be less preferable to one that more accurately described donor
states’ behavior.

We calculate the average mean squared predicted error in the post-treatment period for
each model across the permutations. We find that the median model has an average post
period MSPE of 11.9 in the non-treated states. Our pre-registered model has an average
non-treated post period MSPE of 8.4, which is the 35th percentile of all the calculated
average post period MSPE values. For each of the three outcome measures, the model with
the lowest MSPE is indicated in Figure 4 with an X. We estimate a negative effect of -0.38
percentage points on first doses, -0.54 percentage points for full vaccination rates and -2.66
percentage points for total doses in the best fitting models, though none of these estimates
are statistically significant according to our permutation test. Thus, we find small, negative
effects for each outcome in the models that best generalize to the control states.

5 Discussion

Contrary to our pre-registered hypothesis, our work did not detect a statistically significant
effect of Ohio’s lottery program on state-wide vaccination rates. In our pre-registered
analysis, the majority of specifications from our multiverse analysis, and in the best-fitting
models from the multiverse analysis, we found convergent evidence that the effect of the
lottery was generally small, slightly negative, and not statistically significant. Nonetheless,
while negative point estimates predominated in these analyses, we do not have strong
evidence that the lottery program had negative effects, as our estimated confidence intervals
include small positive effects. These findings are particularly important as they contrast
with early results suggesting that Ohio’s lottery was effective at boosting vaccination rates
in the short term, and those early results were used by the White House to encourage other
states to adopt lotteries of their own (Ohio Department of Public Health,|2021; White House
Press Briefing, 2021)

How do our results fit with other papers analyzing the effect of COVID-19 vaccine
lotteries, in Ohio and beyond? Our results corroborate a pre-registered experiment that
attempts to assess the efficacy of vaccination lotteries (Gandhi et al., 2021) in Pennsylvania.
With respect to studies of Ohio specifically, some other work casts doubt on the efficacy
of lottery sweepstakes at increasing COVID-19 vaccination rates (Walkey et al., 2021}
Thirumurthy et al., [2021). County-level analyses have found some positive impact on
starting-vaccination rates (Brehm et al.,|202 1} Robertson et al., 2021; Mallow et al., 2021)).
Other work that used a similar synthetic control approach found modest positive effects
(Barber and West, [2021}; |Sehgal, 2021}; [Brehm et al., 2021). In the multiverse analysis we
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find that differences in estimates are not explained through the use of full vaccination rates
versus first doses as the focal outcome, and find that the positive effects reported in these
papers are replicated in only a small subset of the modelling space.

We caution however that our results are all based on state-level average vaccination
rates for Ohio. A challenge faced by recent evaluations of the Ohio Lottery program is
that relevant comparator states have had data revisions and corrections that are on the order
of a percentage point (Cox, 2021; Kansas Vaccine Databasel 2021; McDaniel, 2021). We
encourage other researchers to look at this issue with more granular data and to examine
heterogeneity in incentive effects for specific sub-populations, especially those with lower
vaccination rates. Initial work suggests that the Ohio lottery may have been successful in
increasing vaccination rates in lower income counties (Mallow et al., 2021).

As more states have adopted lottery incentives, future research should use methods that
allow for multiple treated units. New methods of multi-treatment synthetic control models
may be appropriate for this context (Ben-Michael et al., |2021b, [2021a). We present an
exploratory analysis of the multi-state adoption in an Appendix [E| and find evidence for
modestly positive (1.0%), non-significant effects of the lotteries on vaccination rates. One
group of researchers who have studied the effect of these incentives in a similar sample of
states found small negative effects on weekly vaccination rates (Thirumurthy et al., 2021,
while another set found small positive effects (Robertson et al., 2021)).

Although initial coverage was positive, later news reports questioned the long term
effectiveness of lottery incentives(Welsh-Huggins| 2021), and our analysis suggests early
effects likely did not endure. Nonetheless, 17 states followed Ohio’s lead and took up their
own vaccination lotteries. In Appendix [D| we present analysis that suggests that research
which found positive effects on initial doses during the lottery period turned negative shortly
after the lottery’s completion.

As the pace of vaccination continues to slow, it is important that policymakers receive
rapid feedback about the effectiveness of their efforts. Our work acts as proof of concept
that social science methods can be used both in prospective and policy-relevant settings in
real-time. We made a pre-print of these results available on July 5th, less than 2 months
after the policy was announced on May 13. We also made all code and data used publicly
available. We offer the following closing thoughts on how policymakers and researchers
may better facilitate such policy evaluation.

First, providing high frequency data with clearly defined policy changes can help facil-
itate assessment of such actions. The ease with which this analysis was conducted was due
largely to the fact that researchers and public officials offered a tremendous level of data
transparency. We as researchers had no privileged access. The fact that the intervention
was well-defined and conducted over a short period further facilitated our analysis.

Second, given the known biases in publication processes towards positive and statis-
tically significant results (Dwan et al., 2008 Munafo et al., 2017), multiverse analyses
are a powerful tool to ensure that researchers haven’t intentionally or unintentionally made
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apparently reasonable decisions that may bias analyses toward finding a specific result.
Incorporating pre-analysis plans can help adjudicate which of these specifications are most
appropriate(Ludwig et al.,[2019)).

Lastly, we highlight the value of synthetic control methods as a tool for prospective
policy analysis for researchers. Of the nearly 80,000 registrations on the Open Science
Foundation repository, only seven use synthetic controls*. Synthetic control methods
allow researchers to generate a specific and transparent counterfactual outcome before post-
treatment data is available. With these pre-defined weights, comparing treatment outcomes
between a synthetic and actual state is no more complicated than computing a weighted
average (as we show in Appendix D). Given the technique’s alignment with pre-registration,
relative simplicity, and broad utilization, we believe more researchers should consider pre-
registering synthetic control analyses of timely policy matters, and coupling this approach
with a multiverse analysis (Athey and Imbens, 2017} |Steegen et al.| 2016)).
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https://www.whitehouse.gov/briefing-room/press-briefings/2021/05/25/press-briefing-by-white-house-covid-19-response-team-and-public-health-officials-39/
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TABLE 5: Vaccination Growth Rates by State, Pre Ohio Lottery Announcement

State Mean SD State Mean SD

AK 2.141 1.004 MT 2.074 0.844
AL 1.601 0.66 NC 1.966 0.856
AR 1.672 0.737 ND 2.005 0.863
AZ 1938 0.781 NE 2259 1.022
CA 2188 1.129 NH 2.058 1.221
CO 2337 1.124 NJ 2552 1.268
CT 2774 1492 NM 2534 0.816
DC 2176 1.58 NV  1.935 0.833
DE 2249 1.238 NY 2455 1.397
FL  2.063 0.849 OH 2.191 1.059
GA 1.702 0.994 OK 1.851 0.85
HI 2503 1.252 OR 2237 0.939
IA 2341 1.203 PA 2241 1.147
ID 1.772 0.745 RI  2.631 148
IL 2076 1.024 SC 1.824 0.872
IN 1.855 0.672 SD  2.348 0.921
KS 2102 1.048 TN 1.688 0.661
KY 2.097 0.974 TX 1.848 0.936
LA 1.697 0.778 UT 1.685 0.887
MA 2.678 1.376 VA 2334 1.129
MD 2449 1.211 VT 2,671 1.341
ME 2825 1.517 WA  2.296 0.994
MI 2219 0.957 WI 2409 1.111
MN 2385 1.036 WV 1858 0.616
MO 1.847 0.818 WY 1.756 0.873
MS 1.5 0.746

8 Appendix
A Placebo Analysis Plan

In the pre-registration we also presented a "placebo" test that created a false treatment period
of April 5th to May 9th. In this artificial treatment period, we saw little difference between
Ohio and synthetic Ohio. Once generated we plotted the difference between synthetic
Ohio’s vaccination rate and actual Ohio’s vaccination rate (Figure[S)). This placebo analysis
suggested that it generated reasonable out-of-sample fit, with an error of less than a percent
in any of the out-of-sample periods.

The exact inference strategy we used to compute statistical significance is a permutation
test. We treat each of the donor states in turn as though it was the treated state, and re-estimate
a unique synthetic counterfactual. We computed the ratio of the Mean Squared Predictive
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Placebo Analysis: Difference between Ohio and Synthetic Ohio

o
3

Percent Fully Vaccinated

-0.5
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Weeks Relative to Lottery Announcement
Timing of The Placebo Announcement

FIGURE 5: Placebo difference in vaccination rates between Ohio and Synthetic Ohio, with a
false treatment date set 5 weeks prior to the true treatment date. Positive values show Ohio
with a higher percentage of the population fully vaccinated than the synthetic comparison.
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Error (MSPE) between our pre-treatment and post-treatment data for each state. We then
sorted them in descending order based on the ratio of MSPE and used the associated rank
for each state as it’s associated p-value (See Figure[6)). In the case of our placebo analysis,
synthetic Ohio had a rank of 41 out of 51 units and an associated p-value of 0.804, indicating
that we fail to reject null effects.

For our actual analysis, we repeated these exact same steps using the 17 weeks prior to
the lottery announcement as our pre-treatment period and the six weeks following the lottery
announcement as our post-treatment period. Failure to reject the null effect hypothesis is
not interpreted as proof of null effects.

To describe the net effect of the program, we took the point estimate from the last
period’s difference between actual Ohio and synthetic Ohio. In the case of Figure [5 our
point estimate would suggest the lottery program increased participation by 0.6% . We also
computed the average difference between synthetic and actual Ohio across the treatment
period. This information can be quite descriptive if, for instance, a program had no effect
in the long run but encouraged some individuals to get vaccinated several weeks earlier.

B Power Analysis

We conducted power analyses with different potential effect sizes. We generated subsequent
outcomes assuming that states would continue to grow at their weekly rate as sampled from
historical mean and standard deviation (See Table [5). We truncate these distributions such
that vaccination rates cannot decrease from week to week. We then assumed that the effect
of the lottery would have an increase between zero and two percentage points per week.

We computed 200 bootstrap simulations and conducted our permutation tests. Based
on Figure [/, we were reasonably powered to detect effect sizes on the order of 1.75%
percentage points or larger using a p-value cutoff of 0.10, this correspond to the top 5
states. The associated power with this cutoft is 0.97. This effect is roughly on the order of
the absolute effect associated with compensating individuals to receive the HPV vaccine,
which saw between a 9.8% to 13.2% percentage point increase in first-time vaccination
rates (Mantzari et al., 2015). To put this in context of statewide vaccination rates at the time
of the lottery announcement, Ohio has a fully vaccinated rate of 37%. Such an effect would
make it the second-most vaccinated state in the country just behind Maine at 48%.

C Fifty State Specification

In our original pre-registration we did not anticipate that other states would so quickly
follow Ohio’s lead in adopting lottery sweepstake prizes. See Table [6] for a list of state
vaccine lottery announcements. We modified our OSF pre-registration on June 15, 2020
to note that we would exclude states that adopted lotteries from the synthetic comparison.
This was before the final two lottery drawings in Ohio occurred. In the interest of full
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Ratio of the pre and post intervention period mean squared predictive error

=
=]

=,
o
° '""--lllllll|IlIIIIIIIIIIIII||||||||‘

500 1000 1500
Post-Period MSPE / Pre-Period MSPE

. Donor . Treated

FIGURE 6: Placebo Test
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Power and Effect Size
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FIGURE 7: Effect Size and Power
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TABLE 6: State Lottery Announcement Dates as of July 2nd, 2021

State Lottery Announcement Date

OH 5/13/21
MD 5/20/21
NY 5/20/21
OR 5/21/21
AR 5725121
CO 5/25/21
DE 5/25/21
CA 5/28/21
NM 6/1/21
A% 6/1/21
WA 6/3/21
KY 6/4/21
NC 6/10/21
MA 6/15/21
ME 6/16/21
NV 6/16/21
IL 6/17/21
LA 6/17/21
MI 6/30/21

transparency, we present here results using our original pre-registration that includes all
50 states in the synthetic comparison. The pre-registered weights for the composition of
the synthetic control can be seen in Table [/| and are presented alongside the weights used
in the primary analysis. The most notable change is that Delaware was originally part of
the synthetic control for Ohio, but due to their lottery adoption ended up being excluded.
This shifted weights on other states, causing Alaska to be removed as well and adding
Pennsylvania.

The quality of the match between Actual Ohio and this version of Synthetic Ohio exhibits
marginally better fit in the pre-treatment period. In total the error in this period is at most
0.6% in any given week (see Table ).

We present differences between Actual and Synthetic Ohio in Figure [§] Through the
entire treatment period, vaccination rates for Ohio are below our synthetic counterfactual. At
the end of the period, this difference was approximately -0.9%. The associated confidence
interval associated with this point estimate is between -2.4% and 0.6%.

We present the same set of outcome measures as in our main analysis in Table [0 below.
The associated p-value for our pre-registered metric is created from an MSPE ratio rank of
29/51 which is approximately 0.57. Related measures such as the average difference or end
of period differences are also negative but not statistically significant. These results are not
substantively different from those we present in the main body of the paper.
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TABLE 7: Synthetic Ohio weights, including states that also adopted lotteries from the donor
pool. For comparative purposes we include here the weights used in the main analysis,
excluding other lottery adopting states.

Unit Including Lottery State Weights Excluding Lottery State Weights

AK 0.009 0.000
CT 0.060 0.029
DE 0.128 Excluded
GA 0.160 0.168
HI 0.035 0.061
1A 0.039 0.066
KS 0.319 0.256
PA 0.000 0.056
VA 0.080 0.173
WI 0.170 0.192

TABLE 8: Balance Table (Alternative Specification)

Pretreatment Outcome Ohio Synthetic Ohio  Difference  Donor Pool
lagged_vaccinations_week17  0.120 0.398 -0.278 0.556
lagged_vaccinations_week 16 0.610 0.839 -0.229 1.083
lagged_vaccinations_week15 1.400 1.472 -0.072 1.871
lagged_vaccinations_week14  2.440 2.451 -0.011 2.961
lagged_vaccinations_week13  3.830 3.745 0.085 4.346
lagged_vaccinations_week12  5.560 5.673 -0.113 6.157
lagged_vaccinations_week1 1 7.670 7.651 0.019 7.972
lagged_vaccinations_week10  9.440 9.538 —-0.098 9.809
lagged_vaccinations_week09  11.870 11.777 0.093 12.057
lagged_vaccinations_week08  13.860 13.823 0.037 14.081
lagged_vaccinations_weekO7  16.130 16.042 0.088 16.373
lagged_vaccinations_week06  18.780 18.748 0.032 19.368
lagged_vaccinations_week05  21.610 22.181 -0.571 22.757
lagged_vaccinations_week04  26.320 26.101 0.219 26.153
lagged_vaccinations_week03  30.110 29.802 0.308 29.197
lagged_vaccinations_week02  33.230 33.076 0.154 32.036
lagged_vaccinations_weekOl ~ 35.620 35.822 -0.202 34.709

TABLE 9: Outcome Table (Alternative Specification)

Measure ~ MSPE-Ratio  Average Difference  Last Period Difference

Value 15.7 —-0.81 -0.90
Rank 27 32 30
p-value 0.53 0.63 0.59
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Percent Difference in Fully Vaccinated Rates
Confidence Intervals Estimated Using Conformal Inference
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FIGURE 8: Alternate specification difference in Vaccination rates between Ohio and Synthetic
Ohio, all states that adopted lotteries after Ohio have been included. Negative values show
that Ohio has a lower total vaccination rate than the synthetic comparison
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D Existing Point Estimates

One benefit of the synthetic control method is that only the primary outcome variable
and associated weights are necessary to replicate and extend estimates from other model
specifications. Here we have replicated the first dose effect estimates reported in two other
synthetic control papers (Barber and West, 2021; Sehgall, 2021)) and extended the estimates
through August 22nd, 2021 using the weights available in those papers. We also present
estimates for a first dose model that we estimate that is identical to the model we present
in the main body of this paper except for the choice of outcome variable. While there may
be some minor differences between these estimates and their original authors’ work due to
different data pre-processing decisions, these results are broadly comparable.

The results are presented in Figure[0] We note that Sehgel (2021) trained their weights
on only 30 days of data before the lottery announcement and thus it is expected that their pre-
fit quality would degrade for earlier dates. All three models show positive point estimates
during the lottery period. However, all models show that the effect rapidly turned negative
after the lottery ended. This suggests that the lottery may have shifted some individuals to
get vaccinated earlier than they would have otherwise, but in the long term vaccination rates
in Ohio fell below the synthetic control group 5. These findings highlight the importance
of researchers aligning the effect studied with the policy relevant outcomes that are most
important to change, and checking for the persistence of effects over the long term. We note
here that long term is denoted by extending the study period by a matter of weeks.

E Exploratory analysis of multiple lottery announcements

After the initial positive news coverage of the Ohio lottery and with encouragement from
the White House (White House Press Briefing, [2021)), seventeen states have so far followed
Ohio’s lead by announcing lotteries of their own (see Table [6). We estimate a synthetic
control model that explicitly allow for multiple treated units with differential treatment
timing. This analysis was not included in our pre-registration plan and is therefore included
here as exploratory. We present the descriptive trends of total vaccination rates across states
in Figure[I0] In this figure we see that states with high vaccination rates, like Massachusetts
and Maine, and states with low vaccination rates, like Louisiana and Arkansas, have adopted
lottery incentives. Descriptively, we see that most states appear to maintain a roughly
constant relative ranking after adopting the lottery incentive, which suggests that lotteries
did not have large effects on vaccination rates.

We use the augmented synthetic control method to estimate the average treatment effect
across states that adopt lotteries (Ben-Michael et al., 2021a},|2021b)). This method is a natural

5We note that Kansas had data revision on July 23rd https://www.kansasvaccine.gov/158/Datal.
Exclusion of Kansas from the synthetic control does not change the sign of our estimates. Seghal’s estimates
do not attribute any weight to Kansas and finds a similar estimate.
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Extended Time Analysis of First Dose Effects
Observed Ohio First Dose Vaccination Rate Minus Synthetic Counterfactual

14 [Pre-Lottery Announcemem] [Lotlery Period] [Posl Lottery

Effect Estimate
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— This Paper

Difference in First Doses (OH - Synthetic OH)
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Data Aggregated to Week Level
Dotted lines indicate pre-treatment estimates from before the optimization window, worse fit is expected

FIGURE 9: Comparison of estimates of effects of lottery on first doses(Barber and West,
2021; Sehgal, [2021)

extension of our pre-registered plan. We preserve the same outcome - the percent of the
population fully vaccinated - for this analysis. We examine the change in vaccination rates
up to 12 weeks after a state’s initial lottery announcement. This allows us to detect whether
the lottery had any lasting impact on vaccination rates.

This approach does have several key distinctions from the traditional synthetic control
approach for the single-state case. First, it provides more flexibility in terms of the possible
search space for generating the synthetic control, allowing weights to be negative and a
unit-intercept term. Second, it adds regularization to the construction of the match, both
to adjust for over-fitting and to help ensure unique solutions to the optimization. Third,
it allows flexibility to balance the quality of match for an individual treated state and the
composite average of all treated states.

The results of this analysis are presented in Figure We now observe a small,
statistically insignificant, average increase of 1.0 percentage points per week in the fully
vaccinated rate of states that adopt lotteries relative to the synthetic counterfactual. This
effect is consistent with another recent working paper that analyzed twelve state lotteries
and also found small positive effects in ten of the lotteries they studied (Robertson et al.,
2021)).
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Vaccination Rates by State by Week
Highlighted post lottery announcement weeks

60

IS
o

Percent Fully Vaccinated

20

Apr Jul Oct
Date

FiGure 10: Vaccination Rates by State with Lottery Adoption Highlighted
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Multistate Augmented Synthetic Control (Fully Vaccinated)
Difference between Treated States and Synthetic Comparisons
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FIGURE 11: Augmented Synthetic Comparison with Multiple Adopting States
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