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Abstract

This article examines how the automation of jobs has shaped spatial patterns

of intergenerational income mobility in the United States over the past three

decades. Using data on the spread of industrial robots across 722 local labor

markets, we find significantly lower rates of upward mobility in areas more

exposed to automation. The erosion of mobility chances is rooted in childhood

environments and is particularly evident among males growing up in low-income

households. These findings reveal how recent technological advances have

contributed to the unequal patterns of economic opportunity in the United States

today.

1 Introduction

In past decades, the U.S. labor market has experienced pervasive job polarization,

as formerly well-paid jobs for the middle class have disappeared (Autor, Levy, and

Murnane, 2003; Neckerman and Torche, 2007; Visser, 2019). Although there is

scholarly disagreement about the relative contribution of factors such as globalization,

industry deregulation, or union decline, there is evidence that automation is one key
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driver behind these developments (Autor, 2015; Huber and Stephens, 2014; Meyer,

2019; Powell and Snellman, 2004; VanHeuvelen, 2018). Many observers believe that

we are living through a “fourth industrial revolution” where automation technologies

are transforming the nature of work to the same extent as the rise of the factory, the

assembly line, and computer technologies did in the past (Frey, 2019; Ruggles, 2015).

Despite extensive work on the effects of recent automation on incumbent workers

(Autor, 2015; Acemoglu and Restrepo, 2020; Parolin, 2021), we know surprisingly

little about how it impacts on the economic attainment of children who grow up in

deindustrializing communities.

In this paper, we analyze the relationship between automation and intergenerational

income mobility in the United States by linking local income mobility to differences

in exposure to robot adoption across 722 commuting zones: ecologically meaningful

units that span the U.S. mainland (Tolbert and Sizer, 1996). We focus on industrial

robots as a shock specifically to the manufacturing industry, once a cornerstone of

the U.S. economy that upheld its prospering middle class. Industrial robots have in

recent decades displaced workers and exacerbated wage inequality, as less-educated

men in particular saw their advantages in the labor market deteriorate (Acemoglu

and Restrepo, 2020). To analyze how these disruptions affect the next generation,

we measure exposure to automation for each commuting zone by combining historical

differences in industrial specialization with data on the adoption of industrial robots by

industry from the International Federation of Robotics. We then link this information

to data on income attainment for children born in the early 1980s from Chetty et al.

(2014), focusing both on relative mobility and upward mobility out of the bottom of

the distribution.

Our findings suggest that community-level exposure to automation erodes

chances for upward mobility, perpetuating the transmission of economic status

across generations. To understand what explains these results, we distinguish two

mechanisms: diminished job prospects for cohorts entering the labor market and

early life-course consequences of community job loss. In fact, we show that mobility

deficits associated with automation appear already in children’s educational attainment

and increase with the proportion of childhood spent in an area more exposed to

automation. This allows us to rule out that labor market prospects alone drive the

relationship. We also show that these effects are largely concentrated among sons

rather than daughters, while patterns by race are more complex: Blacks appear less

disadvantaged by automation but part of this is explained by their lower mobility

chances to begin with. Taken together, our results provide new evidence on how

the disruption brought about by recent technological advances has shaped patterns of

intergenerational opportunity in the United States.
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2 Background

Early work on intergenerational mobility posited that with technological change,

allocation to social positions would follow increasingly meritocratic criteria (Blau and

Duncan, 1967; Lipset and Bendix, 1959; Treiman, 1970). As children were pushed away

from their parents’ footsteps, the labor market and public institutions would ensure

access to new opportunities, reducing the inheritance of economic status. Today, this

logic seems outdated in its optimism. Economists have documented the pervasive

negative impact of recent automation on employment and earnings (Acemoglu and

Restrepo, 2020). Qualitative work testifies to the wide-reaching consequences of

deindustrialization for affected workers, families, and communities (e.g., Goldstein,

2017). There is also a large literature on the consequences of layoffs for children

of displaced workers (Brand, 2015; Gassman-Pines et al., 2015). Although the

potential harms of technological job loss are well recognized, there has been little

work documenting its implications for intergenerational mobility.

What are the theoretical effects of automation for intergenerational mobility? When

jobs in declining sectors disappear, there is a mechanical sense in which mobility

increases: by pushing children away from following in their parents’ footsteps. However,

whether that change is for the better depends on how equipped society is to prepare

its young for the future. A large literature shows how involuntary job loss can harm

children’s health (Bubonya, Cobb-Clark and Wooden, 2017; Lindo, 2011; Schaller

and Zerpa, 2019), behavioral skills (Johnson, Kalil, and Dunifon, 2012; Peter, 2016),

and academic progress (Brand and Thomas, 2014; Kalil and Wightman, 2011; Rege,

Telle, and Votruba, 2011). Results for children’s income attainment are mixed

(Bratberg, Nilsen and Vaage, 2008; Hilger, 2016; Oreopoulos, Page, and Stevens, 2008).

Nevertheless, we expect that industrial upheaval may exacerbate the intergenerational

persistence of status.

Intergenerational economic persistence increases either when children of low-income

households do worse, or when children of high-income households do better. In

principle, it is possible to expect automation to reduce mobility through either

mechanism. As for bottom incomes, automation is likely to push children of manual

workers into more precarious employment, such as that found in low-skilled service jobs

(Autor and Dorn, 2013). As for top incomes, decompositions of the rising skill premium

have found it to be concentrated among occupations such as engineers, engineering

managers, and computer and systems analysts (Liu and Grusky, 2013)—professions

that are to a high degree inherited (Jonsson et al., 2009). We distinguish between

these mechanisms by studying persistence in both the bottom and the top of the

income distribution. However, we find that consequences appear concentrated in the

bottom of the distribution and therefore focus on upward mobility from the bottom
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throughout most of our analysis.

Automation could harm the economic attainment of disadvantaged children in two

ways. The first is by depriving cohorts recently entering the labor market of industrial

jobs that used to offer stability and good pay in the past. A second possibility is

that children’s attainment is harmed by job destruction earlier in the life course, by

eroding the ability of families and communities to invest in the young (Ananat et al.,

2017; Gassman-Pines et al., 2015). We test for the latter mechanism in two ways.

First, we compare children who through family moves spent a different amount of

their childhood in a given area (Chetty and Hendren, 2018). If detrimental effects

of automation on mobility work solely through opportunities in the labor market, we

would expect similar effects for those who live in a given area when entering adulthood,

regardless of where they grew up. On the other hand, if adverse effects of automation

are rooted in childhood experiences, it should be stronger the larger the proportion of

childhood spent in a given area.

Second, we test whether consequences are rooted in childhood experiences by

looking at educational outcomes. With the erosion of living standards that job loss

brings, parents will be worse placed to provide a nurturing environment, access to

good neighborhood or schools, or pay for their children’s way through college (Ananat

et al., 2017; Schneider, Hastings, and LaBriola, 2018). Such detrimental effects can

propagate beyond the families immediately affected and extend to whole communities,

through local economic decline, and decreased public investments or social cohesion

(Alvarado, 2018; Gassman-Pines et al., 2015; Mayger, Hochbein, and Dever, 2017).

Thus, diminished access to education is a key potential mediator between automation

and mobility.

We expect the prospects of men from low-income homes to be especially harmed.

The jobs replaced by robots are mostly in routine manual, assembly, and other

blue-collar work that is traditionally male-typed. This would affect boys more than

girls, certainly through labor market prospects but also potentially through early-life

mechanisms where boys may suffer more from fathers’ unemployment (Buchmann and

DiPrete, 2006; Lei and Lundberg, 2020). As discussed above, automation may also

enhance the earnings of male-typed occupations at the high end of the class spectrum

(Aksoy, Özcan, and Philipp, 2021). For this to improve mobility, however, these

sectors would have to recruit from former industrial communities, which seems less

likely. Meanwhile, gender norms may discourage men from seeking higher education

(Buchmann, DiPrete, and McDaniel, 2006), or from going into the emerging service

economy where many occupations are female-typed (Levanon and Grusky, 2016;

Yavorsky and Dill, 2020).

We examine race differences by distinguishing between Blacks, Hispanics, and

non-Hispanic Whites. The popular perception is that automation struck hardest
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among white men whose stable employment would have offered them life-long security

a generation ago. Theoretical expectations with regard to race are not self-evident,

however. Ananat et al. (2017) report that community job loss has more harmful

consequences for the attainment of Blacks. The loss of industrial jobs is also a

prominent theme in the work of Wilson (1987, 1996) on urban Black poverty, and

the “spatial mismatch” hypothesis became a popular explanation for racial disparities

in the 1990s (Mouw, 2000). As Cherlin (2014, p. 7-9) points out, a larger proportion

of Black than white men were working in manufacturing at the peak of industrial

employment. However, our earliest income measurements are from the late 1990s, after

the suburban exodus of industrial employers. This, along with the particular shock that

we study, makes it plausible that detrimental effects will be especially apparent among

non-Hispanic white families.

3 Data and measures

Figure 1 displays the rise of industrial robots from 1982 to 2011, measured as the

total number of units in operation U.S.-wide. The U.S. remains a relative laggard in

the adoption of industrial robots relative to its Asian and European counterparts—for

example, while the U.S. stock of robots per thousand workers hovered between 1 and

2 in the first decade of the new millennium, it rose from 3 to 5 in Germany during the

same period (Acemoglu and Restrepo, 2020). Whereas the adoption of robots in the

U.S. is still relatively limited, it has been heavily concentrated to certain sectors. We

use this sectoral variation together with local industrial composition to study variation

at the level of U.S. commuting zones—rural and urban labor markets delineated

based on commuting patterns (Tolbert and Sizer, 1996). Combining differences in the

adoption of robots across industries with initial differences in industrial specialization

uncovers significant local variation in the susceptibility to automation that allows us

to study how automation affected intergenerational mobility for children born in the

early 1980s.

3.1 Intergenerational mobility

Intergenerational mobility data come from the Equality of Opportunity Project (Chetty

et al., 2014), which has estimated a range of mobility metrics using individual federal

tax records from the Internal Revenue Service (IRS). Most mobility metrics pertain to

cohorts born in 1980–1982 and their parents, with children assigned to the commuting

zone where they resided at age 16. Child income is measured as mean family income

in 2011–2012 when children are approximately 30 years old, while parent income is

measured by mean family income between 1996–2000 (Figure 1). In some analyses,
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Figure 1: Automation and measurement of parent and child income in our data.

we also inspect children’s individual income separately, measured in the same years.

While family income is the more encompassing measure of living standards, individual

incomes are useful to disentangle the separate implications for men and women’s labor

market prospects.

The literature on economic mobility has generated a variety of measures, of which

the most common is the intergenerational elasticity of incomes. This statistic, which

simply reflects the derivative of expected log child income with respect to log parent

income is usually estimated using ordinary least squares, where the elasticity becomes

the regression coefficient (Mitnik et al., 2019). Sensitivity to marginal distributions

and the ages at which income is measured has led recent research to prefer the

rank-order correlation (Bloome et al., 2018; Chetty et al., 2014), which represents

a similar derivative where each variable has instead been transformed to percentile

ranks. Letting intercept and slope vary by commuting zone j, we have:

Y C
ij = αj + βj Y

P
ij + εij,

where Y C
ij and Y P

ij represent child and parent income ranks in the national income

distribution. The main parameter of interest here is βj which represents how strongly

income rank is transmitted from parent to child. We use the term “rank correlation”

6



to refer to this parameter, although national ranks may deviate from a uniform

distribution at the commuting-zone level.

Rank correlations are uninformative about whether mobility is driven by persistence

at the bottom, top, or somewhere in between. As the impact of automation has mainly

been felt in low- and middle-income jobs (Acemoglu and Restrepo, 2020; Autor et al.,

2003; Graetz and Michaels, 2017), a single parameter may not be enough to capture

the complexity of mobility patterns. In a next step we therefore inspect transition

probabilities for the full 5 × 5 mobility table between quintiles of parent and child

income. That is, we define a set of measures:

Ppq,j = Pr(QC
ij = q |QP

ij = p), ∀p, q = 1, . . . , 5,

where QC and QP represent child and parent income quintiles, and j indexes the

commuting zone as before. This, in turn, allows us to define more specific mobility

patterns such as “rags-to-riches” mobility [Pr(QC = 5 |QP = 1)], poverty persistence

[Pr(QC = QP |QP = 1)], elite persistence [Pr(QC = QP |QP = 5)], or downward

mobility from the middle class [Pr(QC < QP |QP ∈ {2, 3, 4})]. In practice, we find

that much of the consequences of automation are located in the bottom half of the

distribution. A useful summary measure is therefore what Chetty et al. (2014) term

“absolute upward mobility,” defined as the income rank expectation for a child born

into the bottom half of the distribution—which, given the approximate linearity of the

rank-rank relationship, is equivalent to the predicted rank of children born to parents

at the 25th percentile:

Aj = E(Y C
ij |Y P

ij < 50) = αj + 25βj.

This measure also offers an expedient way to look at racial differences which are not

well captured by the rank correlation (Chetty, Hendren, Jones, et al., 2020). We use

upward mobility for the 1980–1982 birth cohorts when studying the whole population,

but expand the window to 1978–1983 birth cohorts to overcome small cell sizes when

studying mobility separately by race, and 1980–1986 birth cohorts for the age-specific

effects that we describe next.

To test our hypothesis that the link between automation and income attainment is

rooted in childhood events rather than mere labor market prospects, we use estimates

from a specification comparing children who move at different ages (Chetty and

Hendren, 2018). These estimates net out time-constant variation across commuting

zones and use only variation in the length of childhood spent in a given area. The

intuition is as follows. Consider all children of a given cohort who reside in commuting

zone j at the time they turn 16. Some of those children will have lived their whole

life there, others have moved there with their families at any time between age 0 and

7



16. The fixed-effects specification discards the population of permanent residents and

compares only the outcomes of children who have moved to the area, depending on

when they arrived. To the extent that earlier arrivals achieve a lower level of income we

attribute this to experiences before the age of 16, since local labor market prospects are

the same for all children regardless of when they arrived. These estimates are scaled to

reflect the expected percentage decrease (or increase) in adult income from spending

one additional year of childhood in a given commuting zone. Because of the later birth

of these cohorts (1980–1986), income is here measured at age 26.

Finally, we look at the probability of completing various educational transitions

conditional on childhood income: high school, at least some college, and a four-year

college degree. Information on educational attainment is from decennial Censuses

or the 2005–2015 American Community Survey (ACS) that have been linked to the

IRS data underlying the income mobility estimates (Chetty, Friedman, et al., 2018).

Educational attainment is as reported by the child, with priority given to more recent

ACS data if available, and excluding all respondents younger than age 24 at the time

of questionnaire completion. High school degree holders include those with a General

Educational Development (GED) certificate, the next level includes those who report

“at least some college credit” or higher, while four-year college completion is defined

as having at least a Bachelor’s degree.

3.2 Exposure to automation

A central challenge in identifying the impacts of automation is a lack of data on the

diffusion of technology. Most studies have consequently adopted an indirect occupation-

or task-based approach (Autor et al., 2003; Frey and Osborne, 2017; Fernández-Maćıas

and Hurley, 2017; Parolin, 2021). By identifying tasks that are technologically feasible

to automate, these approaches estimate the share of occupations or tasks that are

susceptible to automation. Instead, we study the spread of industrial robots that

provide a rare opportunity to directly observe the spread of an automation technology.1

We obtain these data from the International Federation of Robotics (IFR) that provide

industry-level information on the use of industrial robots in 13 manufacturing industries

and six broad non-manufacturing sectors for a number of countries including the United

States.2 Notably, the industries that saw the most rapid increase in the adoption of

1The IFR follows the International Organization for Standardization in defining an industrial robot

as an “automatically controlled, reprogrammable multipurpose manipulator programmable in three

or more axes” (see: https://ifr.org/industrial-robots).
2In manufacturing, there are consistent data on the use of robots for 13 industries: food and

beverages; textiles; wood and furniture; paper; plastic and chemicals; glass and ceramics; basic metals;

metal products; metal machinery; electronics; automotive; other vehicles; and other manufacturing

industries. Outside of manufacturing, we construct the data for the use of robots in six broad
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robots were not those with a high share of routine jobs, which have been designated

as more susceptible to automation in the previous literature (Acemoglu and Restrepo,

2020).

Our interest is in the local exposure to automation, however, which requires

mapping the aggregate industry-level data from the IFR to the level of commuting

zones through the distribution of local employment across industries. To measure

local industrial composition, we rely on individual-level data from the 1980 Census

that includes information about individuals’ place of residence and employment by

industry.3 By collapsing the individual-level Census data, we can then simply calculate

employment shares by industry for each individual commuting zone, which in turn can

be linked to the IFR data on robot use in each industry listed above.

Formally, after pairing the industry-level data from the IFR and the

commuting-zone level industrial shares we define the exposure to automation between

1980 and 2011 for each commuting zone j as follows:

Exposurej =
∑
k∈K

Industrykj,1980 ×
(

RobotskUS,2011

WorkerskUS,2011

)
,

where Industrykj,1980 corresponds to the share of a commuting zone’s workers employed

in industry k in 1980 computed from the 1980 Census, and RobotskUS,2011/WorkerskUS,2011

denotes the national level of robot usage per thousand workers in that industry

in 2011 based on data from the IFR and the 2011 ACS. Intuitively, this measure

reflects differences in exposure to robots across commuting zones driven by variation

in automation across U.S. industries in 2011 and initial differences in industry

specialization across commuting zones in 1980, which predates the measurement of

both child and parent income in all our main mobility measures (Figure 1). In other

words, a higher level of exposure to automation is thus driven by local specialization in

industries that experienced a subsequent greater penetration of robots. To reduce the

skewed distribution of robot exposure across commuting zones, we enter this variable

in logged form and standardize it to have a mean of zero and standard deviation of one

throughout the empirical analysis. Figure 2a displays the geographical distribution

of our baseline exposure measure, documenting the significant spatial variation in

exposure to automation across U.S. commuting zones and that the highest levels of

exposure are heavily concentrated to the Rust Belt, as we would expect.

industries: agriculture, forestry, and fishing; mining; utilities; construction; education, research, and

development; and other non-manufacturing industries (e.g., services and entertainment).
3To preserve confidentiality, the Census reports individuals’ place of residence for “county groups”

that in some cases span multiple commuting zones. In cases where individuals are enumerated in such

county groups, we use a probabilistic-weighting approach to assign them to commuting zones (Dorn,

2009).
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(a) Exposure to automation (b) Absolute upward mobility (p25 )

(c) Relative mobility (rank-rank slope) (d) Rags-to-riches mobility

Figure 2: Exposure to automation and intergenerational mobility metrics across

commuting zones.
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One important caveat is that detailed data on the use of industrial robots is limited

throughout the 1980s (see Figure 1). However, we know that the number of robots by

1982 was as low as 6,300 nationwide (Office of Technology Assessment, 1984), which

allows us to establish that robot use in the early 1980s was negligible. This means

that our measure of robot exposure can be interpreted as capturing over-time change

in exposure. To corroborate this interpretation, we also calculate the actual change in

exposure until 2011 using the starting points of 1982 (Office of Technology Assessment,

1984) and 1993, respectively—the latter being the first year in which data are available

from the IFR. Because robot use is not disaggregated by industry for these years,

we allocate robots to industries based on the observed industry shares in the early

2000s. Reassuringly, using these alternative data sources to estimate changes in robot

exposure between 1982–2011 and 1993–2011 yields nearly identical results and they are

both highly (r > 0.99) correlated with our baseline measure.

Another concern is that the spread of industrial robots may partly be driven by local

factors also shaping mobility prospects. The main empirical strategy partly alleviates

such concerns by focusing on differences in the exposure to automation, rather than the

actual adoption of industrial robots that is likely more endogenous. However, to further

address such concerns we deploy the instrumental variable strategy from Acemoglu

and Restrepo (2020). Their strategy uses variation in the adoption of robots in five

European countries (Denmark, Finland, France, Italy, and Sweden) that are ahead of

the U.S. in robotics. Importantly, the rate of robot adoption in European industry is

unlikely to be driven by factors that shape mobility outcomes across local labor markets

in the United States. The instrument is constructed as the interaction between changes

in industry-level robot adoption in European countries between 1993-2010 based on

the IFR data and historical shares of industrial employment across commuting zones

from the 1970 Census, which predates the year when the children in our sample are

born. Differences in robot exposure based on adoption patterns in European industries

strongly predict variation in our main measure of exposure to automation, which solely

relies on variation across U.S. industries and commuting zones.

3.3 Control variables

Automation is, however, only one of the major shocks that have hit local labor markets

and an important question is to what extent it is conflated with other variables.

We address this by controlling for a range of other demographic and structural

characteristics. As basic commuting zone controls, we include the log of population

size, the log of average household income, and whether the commuting zone intersects a

metropolitan statistical area. To adjust for local demographic composition, we further

control for the share of Black residents, the share of population in four different age
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Figure 3: Automation and intergenerational persistence in income rank across

commuting zones.

bins (below 15, age 15–24, 25–64, and 65 or above), and the share female. In a further

step we add a control for the share of college educated. Thereafter we control for initial

differences in employment composition, measured as the share of workers employed in

manufacturing in 1980. Finally, in a last step we include controls for Census region

and division as a set of fixed effects (U.S. Census Bureau, n.d.). To avoid conditioning

on posttreatment variables, all these measures are observed at baseline in the 1980

Census.

4 Results

4.1 Intergenerational income persistence

To analyze the link between automation and intergenerational mobility across U.S.

commuting zones, we first examine the bivariate association between exposure to

automation and the intergenerational rank correlation βj in Figure 3. Recall that

the rank correlation is a measure of persistence, so higher values indicate that mobility

is lower. The correlation between automation and persistence in income rank is sizeable
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Table 1: Intergenerational mobility and exposure to automation (OLS/2SLS).

Panel A. Outcome: Relative mobility (rank-rank slope)

OLS OLS OLS OLS OLS OLS 2SLS
(1) (2) (3) (4) (5) (6) (7)

Exposure to automation 0.021∗∗ 0.026∗∗ 0.024∗∗∗ 0.015∗∗∗ 0.010∗ 0.000 0.012
(0.004) (0.006) (0.002) (0.003) (0.004) (0.006) (0.014)

Mean of outcome 0.333 0.333 0.333 0.333 0.333 0.333 0.333
First-stage F-stat 15.44
Observations (CZs) 693 693 693 693 693 693 693

Panel B. Outcome: Absolute upward mobility (p25)

OLS OLS OLS OLS OLS OLS 2SLS
(1) (2) (3) (4) (5) (6) (7)

Exposure to automation -0.884 -0.987 -1.274∗∗ -1.229∗ -1.543∗ -1.159∗ -1.517∗

(0.441) (0.468) (0.365) (0.431) (0.505) (0.441) (0.643)

Mean of outcome 41.624 41.624 41.624 41.624 41.624 41.624 41.624
First-stage F-stat 15.44
Observations (CZs) 693 693 693 693 693 693 693

Panel C. Outcome: Rags-to-riches mobility

OLS OLS OLS OLS OLS OLS 2SLS
(1) (2) (3) (4) (5) (6) (7)

Exposure to automation -0.009∗ -0.011∗ -0.012∗∗ -0.011∗ -0.012∗∗ -0.008 -0.010∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.005)
CZ controls No Yes Yes Yes Yes Yes Yes
CZ demographics No No Yes Yes Yes Yes Yes
CZ education No No No Yes Yes Yes Yes
CZ manufacturing No No No No Yes Yes Yes
Census region FE No No No No No Yes Yes

Mean of outcome 0.081 0.081 0.081 0.081 0.081 0.081 0.081
First-stage F-stat 15.41
Observations (CZs) 712 712 712 712 712 712 712

Note: Standard errors are given in parentheses and are clustered at the Census division level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

and of the expected sign: 0.41, or 0.35 when weighted by population size. Notably,

this association is comparable to that of several key mobility correlates (Chetty et al.,

2014).

We further examine this bivariate association in Table 1, panel A, where we

estimate commuting-zone level regressions using the intergenerational rank correlation

as the outcome with stepwise addition of the control variables described earlier.

All regressions are weighted by population size with standard errors clustered at

the Census division level. A one standard deviation difference in exposure to

automation is associated with a 0.02-point higher rank correlation. This represents

a 6% difference relative to the mean, or a correlation of 0.35 as shown in Figure 3.

The association remains robust to controls for demographics and other commuting
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zone attributes throughout columns 2–4, but is reduced by controlling for the initial

share of manufacturing employment and Census division, or when instrumenting for

exposure to automation leveraging variation in robot adoption in European countries.

Yet overall, these results suggest that income levels persist more strongly in areas

heavily exposed to automation. However, they do not tell us where in the distribution

that persistence is concentrated.

4.2 Upward and downward mobility

To examine whether the link between automation and mobility differs across the

parental income distribution, we first inspect conditional transition probabilities

throughout the full mobility table among parent and child income quintiles. In Figure

4, we plot each conditional probability in the 5×5 mobility matrix between quintiles of

parent and child income predicted from a linear model. The linear probability model

is tractable and has the added benefit that associations can be interpreted as average

marginal effects (Mood, 2010). Here we standardize automation so that coefficients

contrast the difference between areas one standard deviation below and above the mean

of exposure. There is clearly higher persistence in the bottom two income quintiles in

areas more exposed to automation, as well as lower rates of entry into the top from all

other quintiles Q1–Q4. Interestingly, there are also signs of disproportional downward

mobility from the three middle quintiles Q2–Q4 in areas with higher automation

exposure, indicating a “downslide” from the middle class. In contrast, there is no

association between automation and mobility for those who grow up in the top income

quintile. Together, these results thus suggest that the consequences of automation for

mobility are most marked in the bottom of the distribution.

To further probe whether automation may have reduced chances of upward

mobility out of the bottom, we turn to panels B and C of Table 1 where we

report commuting-zone level regressions using absolute upward mobility (the expected

percentile rank for children born in the bottom half of the distribution) and

rags-to-riches mobility (the probability that a child born to parents in the bottom

income quintile ends up in the top quintile in adulthood) as the outcomes. Using

both measures of upward mobility, there is a strong bivariate negative association

between exposure to automation and mobility chances out of the lower end of the

income distribution. Notably, these negative associations remain robust when adding

additional commuting-zone-level controls, as well as Census division fixed effects.4

4Although the spatial overlap between exposure to industrial robots and trade competition,

offshoring, and routine work is limited, one may be concerned that the estimated association between

automation exposure and upward mobility is conflated with these factors. However, in additional

specifications we also control for differences in exposure to Chinese imports between 1990-2007, the
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Figure 4: Automation and income quintile transition probabilities.

When instrumenting for exposure to automation using variation in robot adoption

across European countries in column 7, the association remains negative though with

a slightly larger absolute magnitude than in the OLS regressions. In the rest of our

analysis below, we focus particularly on upward mobility and on models estimated

under the full set of controls.

4.3 Upward mobility by gender and race

Although there is clear evidence of a negative association between exposure to

automation and upward mobility chances, aggregate statistics may conceal significant

heterogeneity across demographics. We next analyze whether the association between

local exposure to automation and upward mobility differs across gender and racial

groups. Table 2 shows regressions of absolute upward mobility separately by gender

and race and this time we measure individual as opposed to household income in the

child generation, as described above. As minorities are not represented in sufficient

numbers in all commuting zones, the number of observations vary from 550 (Black

males) to 722 (non-Hispanic whites). The results reveal that effects of automation are

more pronounced among men, while the story for race differences is more complex.

share of offshorable jobs in 1990 (as in Autor and Dorn, 2013), and the share of routine jobs in 1990

from Acemoglu and Restrepo (2020). Adding the full set of these controls to the specification in Table

1, column 6 of panel B, results in a point estimate (s.e.) of -1.148 (0.482) that is very similar to our

baseline estimate of -1.159 (0.441) reported in the table.
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Table 2: Absolute upward mobility and exposure to automation (OLS): gender and

race.

Outcome: Absolute upward mobility (p25)
Panel A. Male Panel B. Female

Black Hispanic White Black Hispanic White
(1) (2) (3) (4) (5) (6)

Exposure to automation -1.093∗ -1.617∗ -1.552∗ -0.356 -1.070∗ -0.960
(0.459) (0.550) (0.569) (0.314) (0.447) (0.498)

CZ controls Yes Yes Yes Yes Yes Yes
CZ demographics Yes Yes Yes Yes Yes Yes
CZ education Yes Yes Yes Yes Yes Yes
CZ manufacturing Yes Yes Yes Yes Yes Yes
Census region FE Yes Yes Yes Yes Yes Yes

Mean of outcome 38.894 47.540 49.265 41.382 40.850 40.431
Observations (CZs) 550 670 722 555 676 722

Note: Standard errors are given in parentheses and are clustered at the Census division level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

On the one hand, associations are nominally larger for non-Hispanic and Hispanic

white men compared to their Black counterparts. However, this difference should be

interpreted in light of the fact that Blacks as a group experience less upward mobility

regardless of circumstances. When viewed in relation to their average mobility levels

reported in Table 2, percentage differences for the three groups are more similar and

only slightly higher among non-Hispanic (1.55/49.27 = 3.1%) or Hispanic white men

(1.62/47.54 = 3.4%) as compared to Blacks (1.09/38.89 = 2.8%).

4.4 Exploring mechanisms: childhood environments and
educational attainment

Automation could hamper income attainment via several mechanisms: through the

opportunity structure children face when entering the labor market, or exposure to

poorer environments earlier in life. In Table 3 we analyze results from the fixed-effects

specification described above, where outcomes are only compared among children who

moved to an area at different ages. We distinguish between family and individual

income for both men and women and by parental income, with Panel A providing

estimates for children from households below the median and Panel B for those above

the median. Associations reflect the per-year percentage difference in adult income

that results from spending a longer part of one’s childhood in a given commuting zone.

Table 3 reveals a differential impact of automation by length of childhood exposure

for men but not women. For men in Panel A, moving to a commuting zone with a
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Table 3: Childhood effects and exposure to automation (OLS).

Panel A. Outcome: Childhood exposure effect on upward mobility (p25)
Family income Individual income

All Male Female All Male Female
(1) (2) (3) (4) (5) (6)

Exposure to automation -0.075∗ -0.118∗∗ -0.017 -0.079∗ -0.107∗∗ -0.024
(0.025) (0.031) (0.031) (0.031) (0.031) (0.030)

Mean of outcome -0.072 -0.109 -0.056 -0.080 -0.107 -0.047
Observations (CZs) 702 676 673 702 676 673

Panel B. Outcome: Childhood exposure effect on upward mobility (p75)
Family income Individual income

All Male Female All Male Female
(1) (2) (3) (4) (5) (6)

Exposure to automation -0.071 -0.077∗ -0.080 -0.110 -0.094∗ -0.054
(0.032) (0.030) (0.048) (0.060) (0.037) (0.114)

CZ controls Yes Yes Yes Yes Yes Yes
CZ demographics Yes Yes Yes Yes Yes Yes
CZ education Yes Yes Yes Yes Yes Yes
CZ manufacturing Yes Yes Yes Yes Yes Yes
Census region FE Yes Yes Yes Yes Yes Yes

Mean of outcome -0.025 -0.049 -0.033 -0.050 -0.075 -0.066
Observations (CZs) 702 676 673 702 676 673

Note: Standard errors are given in parentheses and are clustered at the Census division level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 4: Educational transitions and exposure to automation (OLS).

Outcome: Fraction of children attaining HS or college degree
All Black Hispanic non-Hisp. White

Male Female Male Female Male Female Male Female
Panel A. High school or GED (1) (2) (3) (4) (5) (6) (7) (8)

Exposure to automation -0.007 -0.008∗ 0.002 -0.005 -0.015∗ -0.012∗ -0.013 -0.011
(0.003) (0.003) (0.005) (0.002) (0.005) (0.005) (0.007) (0.005)

Mean of outcome 0.751 0.823 0.705 0.812 0.684 0.768 0.781 0.842
Observations 712 711 367 365 431 443 705 703

Panel B. At least some college (1) (2) (3) (4) (5) (6) (7) (8)

Exposure to automation -0.014∗ -0.007 -0.008 -0.009 -0.016∗ -0.012∗ -0.018∗∗∗ -0.009
(0.004) (0.005) (0.006) (0.006) (0.006) (0.004) (0.003) (0.006)

Mean of outcome 0.469 0.621 0.415 0.626 0.422 0.550 0.486 0.633
Observations 706 705 313 316 347 370 696 694

Panel C. Four-year college degree (1) (2) (3) (4) (5) (6) (7) (8)

Exposure to automation -0.008∗∗ -0.011 -0.006 -0.010∗ -0.008∗ -0.016∗∗∗ -0.013∗ -0.017
(0.002) (0.006) (0.003) (0.003) (0.003) (0.003) (0.004) (0.008)

CZ controls Yes Yes Yes Yes Yes Yes Yes Yes
CZ demographics Yes Yes Yes Yes Yes Yes Yes Yes
CZ education Yes Yes Yes Yes Yes Yes Yes Yes
CZ manufacturing Yes Yes Yes Yes Yes Yes Yes Yes
Census region FE Yes Yes Yes Yes Yes Yes Yes Yes

Mean of outcome 0.155 0.234 0.111 0.204 0.110 0.176 0.166 0.247
Observations 706 705 313 316 347 370 696 694

Note: Standard errors are given in parentheses and are clustered at the Census division level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

one standard deviation higher automation exposure a year earlier in life results in a

0.12% penalty in adult family income. These effects are smaller among children from

better-off homes (Panel B). In sum, these results suggest that the association between

automation and mobility is stronger the earlier the onset of exposure.

If disadvantages among exposed children start before labor market entry, this

points toward explanations rooted in life-course development, especially educational

attainment. To test this mechanism, in Table 4 we show regressions of the fraction of

children born in each commuting zone that attain a high school degree (or GED), some

college, and a four-year college degree. Exposure to automation has detrimental effects

on each transition among white men and women, and on college graduation for Black

women. Some of the most pronounced effects, however, are found on the college entry

of white men. A one standard deviation higher exposure to automation is associated

with 1.8 percentage points lower probability of enrolling in college among non-Hispanic
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Table 5: Educational transitions and exposure to automation: white males by

childhood income (OLS).

Outcome: Fraction of children attaining HS or college degree

Parental income percentile: p1 p25 p50 p75 p100
Panel A. High school or GED (1) (2) (3) (4) (5)

Exposure to automation -0.019 -0.013 -0.008 -0.005 -0.003
(0.010) (0.007) (0.005) (0.003) (0.003)

Mean of outcome 0.671 0.781 0.855 0.908 0.942
Observations 705 705 705 705 705

Panel B. At least some college (1) (2) (3) (4) (5)

Exposure to automation -0.022∗∗ -0.018∗∗∗ -0.015∗∗∗ -0.010∗∗ -0.005
(0.004) (0.003) (0.003) (0.003) (0.004)

Mean of outcome 0.370 0.486 0.604 0.760 0.956
Observations 696 696 696 696 696

Panel C. Four-year college degree (1) (2) (3) (4) (5)

Exposure to automation -0.013∗ -0.013∗ -0.013∗ -0.014 -0.015
(0.004) (0.004) (0.004) (0.006) (0.012)

CZ controls Yes Yes Yes Yes Yes
CZ demographics Yes Yes Yes Yes Yes
CZ education Yes Yes Yes Yes Yes
CZ manufacturing Yes Yes Yes Yes Yes
Census region FE Yes Yes Yes Yes Yes

Mean of outcome 0.111 0.166 0.247 0.399 0.806
Observations 696 696 696 696 696

Note: Standard errors are given in parentheses and are clustered at the Census division level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

white men (Panel B, column 7).5

There could be several explanations for women’s greater resilience in education

shown in Table 4. Since the early 1980s, post-secondary education in the U.S. has

followed a worrying trend where men’s attainment remained stagnant while that

of women increased (Mitnik et al., 2016; Roksa et al., 2007). Researchers have

attributed this trend to boys’ greater vulnerability to family hardship (Autor et al.,

2019; Buchmann and DiPrete, 2006; Entwisle et al., 2007). Another possibility is that

women may face better outside prospects in industries that require non-routine social

skills, where there is a female advantage (DiPrete and Jennings, 2012). The shrinking

5Gender differences are reversed in the completion of a college degree, and significant for Black and

Hispanic women. However, this needs to be seen in light of their much higher baseline probability of

graduating from college than men, which means that the effect on a percentage scale is similar across

genders.
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of the gender wage gap since the 1970s has been attributed to technologies that put

new emphasis on interpersonal skills (Bacolod and Blum 2010; Welch 2000), and the

demand for such skills appears to be growing (Borghans, et al., 2014; Deming 2017).

Table 4 shows a deficit in college attainment in the bottom of the income

distribution, especially pronounced among men. In Table 5, we ask how this

disadvantage differs across the full income distribution by assessing non-Hispanic

white men’s attainment at five values of parental income: the bottom and top 1%,

and percentiles 25, 50, and 75. The results confirm that the detrimental effects of

automation are concentrated among the poor: the size of the penalty for “at least

some college” decreases linearly with each step up the parental income ladder and

is no longer significant at the top of the distribution. For high school and college

degree, the results are less systematic but in the same direction. Thus, in line with our

findings for income, educational attainment appears especially harmed among poorer

white men.

5 Conclusions

Industrial automation has in past decades created new winners and losers by eroding

the employment and earnings prospects of groups who used to enjoy great stability.

Yet, existing work on the consequences of automation mainly focuses on its impacts on

incumbent workers. We therefore have a limited understanding of the extent to which

these disruptions also have intergenerational repercussions.

Our paper uses data on local labor markets in the United States to document that

automation significantly has reduced the chances for upward mobility among children

born in low-income families in the early 1980s. Mobility differs markedly across areas

more and less exposed to industrial automation: a standard deviation higher exposure

to industrial robots is associated with a 0.9–1.5-point reduction in upward mobility, the

percentile rank that a child from the bottom half of the income distribution can expect

to attain in adulthood. This difference corresponds to one tenth of the distance that

separates a place like Charlotte from one like San Jose, representing the very bottom

and top of the urban mobility hierarchy (Chetty et al., 2014).

To explain our results, we distinguished between two mechanisms. One concerns

the prospects that children face in the labor market. The other is that automation

impacts children’s life course earlier on by eroding the ability of families to invest in

their life-course attainment. Two findings point toward the latter explanation. First,

mobility deficits associated with automation are rooted in childhood environments:

each year of childhood spent in an area more exposed to automation accumulates to

lower income in adulthood. Second, mobility deficits manifest themselves already in
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children’s educational attainment. Thus, in circumstances where high education is

increasingly a condition for upward mobility, low-income children are becoming less

likely to attain it.

Our analysis is conducted at the ecological level as both mobility and industrial

decline are social phenomena. In particular, the disappearance of work is a shock

that extends beyond the individual or even family to send ripples throughout entire

communities (Conger and Elder Jr., 1994; Jahoda et al., [1933]1971; Wilson, 1996).

Future research should disentangle the exact pathways through which industrial

disruption shapes children’s mobility prospects, but existing literature offers some

useful pointers. The workplace is an arena for communal engagement, the destruction

of which can have negative consequences for social capital and collective efficacy

(Brand, 2015). The decline of industry also tends to have downstream effects on

employment in other sectors such as retail and personal services, as shown by Acemoglu

and Restrepo (2020). Funding available for schools or other public goods will tend to

diminish with the erosion of the local tax base (Gassman-Pines et al., 2015). Above

all, the loss of industries can be a collective trauma that leaves local communities

struggling to regain their sense of collective identity and purpose (Goldstein, 2017).

The analysis is not free of limitations. First, it is important to note that our results

pertain to the impact of one particular automation technology—industrial robots. We

have found that its adverse impacts on intergenerational mobility are concentrated

among non-Hispanic white men. While our data provides a rare opportunity to

observe the adoption of industrial automation technology, it does not capture the

automation of a wide range of non-industrial (e.g., clerical) routine jobs. It is therefore

possible that the more general automation of routine jobs may harbor equally or more

harmful consequences for women and minorities. Indeed, the spread of industrial

robots constitutes a distinct shock to local labor markets, only weakly correlated with

the distribution of routine work and synchronous disruptions such as Chinese trade

competition or offshoring (Acemoglu and Restrepo, 2020). Future work is needed to

understand the extent to which the spatial incidence of such shocks has differentially

affected the mobility prospects across both people and places.

Second, the variation we use is cross-sectional in nature and the observation window

for parent and child incomes is limited. Arguably, this is more of a problem for

the absolute level of intergenerational correlations than their geographic distribution

(Mazumder, 2016). While our main results pertain to incomes attained by children in

their early 30s, the fact that we document similar gradients in education suggests that,

if anything, income differences might be larger had exposed cohorts been followed until

old age. In other words, these results suggest that the impacts of industrial automation

that we document will continue to have repercussions well into the 21st century.

Third, our analysis leverages variation across local labor markets within the U.S.
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that exhibit significant variation in economic and social makeup. Yet an important

question is whether these findings extend to other contexts. In particular, the

labor-market impact of new technologies differs significantly across countries (Graetz

and Michaels, 2018; Guschanski and Onaran, 2021), which suggests an important

potential role for economic and social institutions in mitigating the negative impacts of

automation. In line with this, research on Europe tends not to find the same harmful

consequences for workers (Dauth et al., 2021), nor that male workers are particularly

exposed (Aksoy, Ozcan, and Philipp 2020). In our view, an important avenue for future

work is to examine whether the negative intergenerational impacts of automation we

document are also evident in more encompassing welfare states such as Scandinavian

countries or Germany.
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