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Abstract 16 
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During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing 18 
genomic variation in humans in both the past and present.  However, the dynamics of this 19 
genetic exchange and associated phenotypic consequences through time remain poorly 20 
understood. Gene exchange across divergent lineages can result in myriad outcomes arising 21 
from these dynamics and the environmental conditions under which it occurs. Here we draw 22 
from our collective research across various organisms, illustrating some of the ways in which 23 
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1 A shifting paradigm: Introgressive hybridization and human 1 
evolution 2 
 3 

Traditionally, the evolution of hominins – humans and our closest relatives since we 4 

collectively diverged from our common ancestor with chimpanzees/bonobos – has been 5 

represented in two distinct ways. One depicts evolutionary relationships among purported 6 

hominin species as a tree describing ancestor-descendant relationships, with evolutionary 7 

relatedness depicted by branches that split as one travels upward from the trunk to the 8 

leaves, ending in extinction for all those branches not leading to our leaf. Within this set of 9 

phylogenetic models lies “out of Africa with replacement” accounts of recent human 10 

evolution.1 The out of Africa with replacement models propose that the entirety of the 11 

recent non-African components of individuals’ ancestry (before world empires and 12 

colonialism) traces its origins back to Africa sometime between 50 to 100 thousand years ago 13 

(ka). As such, non-African human variation in the recent past is a subset of variation that 14 

was present in humans in Middle Pleistocene Africa. Under this view, the recent (pre-15 

colonial) genetic variation was initially established by founder effects associated with modern 16 

human populations moving out of Africa, and then influenced by recurring gene flow within 17 

and among the various regions of the world over tens of millennia. It posits further that 18 

these early modern populations did not interbreed with resident groups of archaic humans 19 

such as Neanderthals, and that differentiation between them was generated by mutation, 20 

drift and natural selection acting in more or less independently evolving lineages. 21 

In contrast, multiregional continuity evolutionary models emphasize sustained gene 22 

flow, as opposed to replacement and extinction. In the case of recent human evolution, this 23 

includes sustained gene flow across the entirety of the human inhabited world at all points 24 

throughout the Pleistocene and into the present day.2 The neutral component of the 25 



 

6 
 

6 

multiregional model came to be identified as isolation by distance.3-5 Under isolation by 1 

distance, the local reduction of genomic variation by random genetic drift is counteracted by 2 

the addition of new variation to local groups via gene flow. Left unperturbed by major 3 

evolutionary events such as range expansions and local replacement of populations, this 4 

balance between gene flow and random genetic drift leads to an equilibrium between within 5 

group and among group genetic variation. In this treatment, adaptation to regional 6 

conditions by natural selection leads to more pronounced differences among groups. A key 7 

distinguishing factor between the multiregional continuity model of recent human evolution 8 

and the out of Africa with replacement model is that the former postulates that Homo sapiens 9 

populations outside of Africa became established far earlier (~1 million years ago (Ma) or 10 

more) than the latter model (~100ka or less). 11 

These two models have occupied the extreme ends of a continuum of possible 12 

accounts of recent human evolution. Other models of recent human evolution combined 13 

features of both renditions and allowed for a combination of long periods of isolation 14 

interrupted by bouts of gene flow between groups.6,7 These models were often subsumed 15 

under the general multiregional view in the 1990s and 2000s,8 although sometimes Bräuer’s 16 

model (Afro European sapiens hypothesis) was lumped together with out of Africa.9 17 

A striking realization in the last decade is that neither of the scenarios at the extreme 18 

poles of this continuum is in fact supported by new genetic and genomic evidence.10-15 Clear 19 

evidence for reticulation among diverged lineages/populations (Neanderthals, Denisovans, 20 

H. sapiens) falsifies the predictions of branching phylogenetic models without reticulation, 21 

while evidence for periods of substantial isolation among these same groups is inconsistent 22 

with the multiregional continuity model. Further studies of the phenotypic consequences of 23 

hybridization across taxa16-22 have shown that admixture of different lineages may have 24 
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provided genetic variation that was then favored by natural selection to drive evolutionary 1 

innovation in our hominin ancestors, and perhaps contributed to bursts of exceptional 2 

phenotypic diversification, not only in our recent past (e.g., emergence of Homo sapiens23), but 3 

also deeper in time. 4 

This shifting narrative is perhaps unsurprising when considered in a broader context. 5 

For some time we have known that hybridization, resulting in gene flow and subsequent 6 

introgression, together with natural selection and drift, plays an important role in speciation 7 

and the evolution of diversity in animal taxa.24-27 Recent research validates the work of earlier 8 

evolutionary biologists (e.g., Anderson 28; Anderson & Stebbins29), who emphasized the 9 

significance of introgressive hybridization, and the phenotypic variation it can produce, to 10 

adaptive evolution and biodiversification (e.g., ‘divergence-with-gene-flow’30). Evolutionary 11 

biologists are now moving past the question of whether lineages can diverge while 12 

undergoing gene exchange with other lineages, towards investigating how such exchange 13 

affects the interacting groups of organisms (Figure 1).31 Hybridization can also play a role in 14 

extinction.32  There are many examples of morphologically distinct species whose 15 

representation in the fossil record seems to wane or cease over time. In such cases, some 16 

genetic characteristics of a lineage may continue even when anatomical morphs disappear, as 17 

is arguably the case in recent human evolution.  18 

Here we draw from studies of key organisms, chosen for their potential as models 19 

for considering processes relevant to human evolution. We use these examples to argue four 20 

points germane to understanding the relevance and potential influence of hybridization and 21 

introgression in human evolution. 22 

 23 
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1. The human genome shows ample signs of introgression via hybridization, which is 1 

also not unusual in other organisms, including amphibians, birds, and myriad 2 

terrestrial mammals, including primates.  3 

2. As informative as the human genome has been, it is insufficient to answer questions 4 

about the entire span of human evolution. Phenotypic approaches are needed, as are 5 

genomic data from other extant and extinct groups for comparison and context.  6 

3. Developing phenotypic approaches to hybridization requires a better understanding 7 

of the relationships of genes, development, and phenotype for which experimental 8 

and comparative approaches are necessary. 9 

4. Introgressive hybridization is especially relevant to the evolution of humans and 10 

other organisms because it provides an important source of genetic variation on 11 

which natural selection may act.  12 

Demonstrating the accuracy of these points establishes both the occurrence and theoretical 13 

importance of hybridization and introgression. Our goal is not merely to highlight means for 14 

identifying hybridization in human evolution, but to provide examples that will point the 15 

way towards an exciting new set of approaches and questions, encouraging exploration of a 16 

wide range of models for understanding the potential dynamics of genetic exchange in 17 

shaping the evolutionary trajectories of our ancestors.  18 

2 The human genome shows extensive evidence of introgression that is comparable to 19 

what is known in many other organisms 20 

2.1 Introgression in human evolution 21 

New genetic and genomic evidence for introgression in human evolution establish 22 

that hybridization and introgression contributed to shaping genomic variation.10-15  If there is 23 
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a history of repeated hybridization and introgression, then the "species tree" itself may 1 

become reticulate. These new results show that networks or braided streams,23 as opposed to 2 

trees, are a more useful way of depicting species and population relationships as inferred 3 

from molecular genetic data,33 thus invalidating division of our fossil ancestors into strictly 4 

discrete units or species (at least biologically, although such division may be heuristically 5 

useful). Splitting and subsequent contact and mixture of lineages is a part of human 6 

evolution that cannot be ignored. 7 

Recent human evolutionary genomic and genetic studies (reviewed by Smith and 8 

colleagues34) point to a complex picture of lineage divergence and re-merging.  Most of the 9 

genetic studies providing evidence for introgression have focused on the contact between 10 

lineages in Eurasia in the Late Pleistocene. These lineages diverged recently, over the course 11 

of the past one million years or so, and repeated signatures of past hybridization events have 12 

been demonstrated among them (Figure 2).  The most recent estimates indicate that ancient 13 

Homo sapiens and Neanderthals diverged from each other 520-630ka while the divergence of 14 

Neanderthals and Denisovans has been dated to 390-440ka.13 The current genetic evidence 15 

for gene exchange includes movement from these ancient H. sapiens into Neanderthals ca. 16 

100ka, and from Neanderthals into ancient H. sapiens ca. 50ka.35  Gene flow between ancient 17 

H. sapiens and Denisovans has also been demonstrated, as represented in the genomes of 18 

recent Asians and Australasians/Melanesians14,15,36, which harbor Denisovan ancestry. 19 

Recently, the genome of a first generation descendent of a Neanderthal mother and a 20 

Denisovan father living ca. 90ka was reported.37 That study, along with previous analyses, 21 

also demonstrates ongoing gene flow from Neanderthals into Denisovans.14,37 There is also 22 

possible evidence that the Denisovans may have acquired genes from an ancient hominin 23 

that diverged from the ancestor of humans more than a million years ago.14 Other studies 24 
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provide evidence for gene flow between ancient and recent lineages within Africa and for a 1 

recent influx of Neanderthal genes by way of Eurasian back migration into at least East 2 

Africa within the last 4,000 years.38,39 3 

More than simply establishing that gene flow took place, genomic studies also 4 

contribute insight into the dynamics of genetic exchange across populations during times of 5 

hybridization and introgression, and their effects on people living today.  For example, 6 

current evidence indicates a 1.8-2.6% genomic contribution from Neanderthals to living 7 

Eurasians,13 and 3-6% from Denisovans to living Melanesians.14 It is estimated that ~20% of 8 

the Neanderthal genome is represented in the combined genomes of living human 9 

populations, although only 2% is typically found in any particular non-African person.40   10 

 11 

2.2 Hybridization in non-primate mammals 12 

A look toward large bodied terrestrial mammals shows that humans are not an 13 

outlier when it comes to hybridization (see also Table 1). Hybridization and introgression are 14 

common in many groups, including between distantly-related species, and these systems can 15 

provide referential models for human hybridization. Large canids, for example, can disperse 16 

over long distances, and hence individuals can encounter both divergent conspecific 17 

populations and related species as well as variation in habitat. Ancient H. sapiens similarly 18 

dispersed throughout the six inhabited continents, coming into contact with other hominin 19 

taxa across a broad spectrum of ecological settings in Eurasia and Africa. Like hominin 20 

ancestors, many wolf-like canids have only recently diverged, and hence have not evolved 21 

strong reproductive isolating mechanisms, resulting in a high prevalence of hybridization. 22 

Examples include admixture between the gray wolf (Canis lupus) and coyote (C. latrans), that 23 

have only diverged in the last ~50ka41; the domestic dog (C. familaris) and the gray wolf, 24 
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which diverged about 25ka42 (see review in Freedman and Wayne43; Thalmann et al.44); as 1 

well as between gray wolves and even more divergent species, such as the golden wolf (C. 2 

anthus) and golden jackals (C. aureus; Freedman and Wayne43; Koepfli et al.45). In fact, the 3 

amount of gray wolf introgression into these two taxa is strikingly similar to that seen 4 

between Neanderthals and H. sapiens. 5 

Similarly, a number of recent studies suggest that admixture between bear species is 6 

widespread.46  There is evidence for gene introgression from extinct cave bears (Ursus spelaeus 7 

complex) into living brown bears (Ursus arctos), as well as some gene flow from brown bears 8 

into cave bears.47 Although cave bears have been extinct for 25,000 years, modern brown 9 

bears still have between 0.9% and 2.4% of cave bear DNA remaining in their genomes. This 10 

is comparable to what is seen with Neanderthals and H. sapiens. Significant admixture has 11 

been well-established between polar bears (Ursus maritimus) and brown bears,48-51 which form 12 

the sister clade to cave bears. These species diverged some 479–343ka.50 However, brown 13 

bears from several populations carry mitochondrial DNA (mtDNA) haplotypes that are 14 

more closely related to polar bear haplotypes than to other brown bear haplotypes.49,52  The 15 

very recent common ancestry of the mitochondria carried by these bears, as recent as 37–16 

10ka in some cases, suggests a history of admixture between these species.49 The extant 17 

brown bears that have the closest mitochondrial relationship with polar bears live on 18 

Admiralty, Baranof and Chichagof (ABC) Islands in southeast Alaska.49,52 Likewise, ABC 19 

Islands brown bears show evidence of polar bear ancestry in their nuclear genomes, which 20 

include at least 6-9% genetic material of polar bear origin.48 MtDNA evidence suggests that 21 

another, now extinct, admixed population of brown bears lived in Ireland around the time of 22 

the Last Glacial Maximum.49 The distribution of polar bear ancestry within the ABC Islands 23 
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brown bears’ genomes is best explained by a maternal polar bear origin of the population 1 

with substantial male brown bear immigration.48  2 

This evidence suggests that in the past the ABC Islands populations had a much 3 

higher frequency of polar bear derived alleles than it does today.48  This alternative, 4 

population conversion, or "nuclear swamping", model of admixture envisions a much 5 

greater impact on the genetic diversity of populations experiencing admixture than the 6 

classic model of low frequency admixture.  Preliminary analyses of the Irish brown bears’ 7 

nuclear genomes suggest that a similar phenomenon may have taken place in those 8 

populations.53 For closely related species that rarely come into contact because of their 9 

different ecological requirements, disruptive climatic events may temporarily create the 10 

opportunity for admixture that substantially exceeds the amount observed in more stable 11 

conditions.  Again, this scenario is relevant to hominin evolution, and especially Late 12 

Pleistocene Europe, where climatic fluctuations would have affected ranges of ancient 13 

hominins, and potentially both the prevalence and intensity of contact.  14 

 15 

2.3 Hybridization and introgression in non-human primates 16 

Among non-human primates (NHPs), mammals often used as models for human 17 

ancestors due to their close phylogenetic relatedness, hybridization has been most 18 

extensively studied in baboons. The six recognized baboon species have parapatric ranges 19 

with contact between neighboring species.  Since natural hybridization has been recorded 20 

between the most morphologically distinct (chacmas, Papio ursinus vs. Kinda baboons, P. 21 

kindae), the most behaviorally different (hamadryas, P. hamadryas vs. olive, P. anubis) and two 22 

of the most phylogenetically distant (olive vs. yellow, P. cynocephalus) species, it is likely that 23 

hybridization occurs at all the geographic regions where baboon ranges are in contact.54 The 24 
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best-known examples of ongoing hybridization in baboons are from hybrid-zones between 1 

hamadryas and olive baboons in Awash National Park, Ethiopia,55,56 and between olive and 2 

yellow baboons in Kenya.57,58 The earliest studies were confined to morphological and 3 

behavioral traits, and showed, at least in the case of the hamadryas-olive hybrids, that 4 

species-characteristic behaviors (such as the male hamadryas' herding, a behavior that is not 5 

expressed by olive baboons) most likely have a genetic basis.  Hybrid males show an outer 6 

appearance (e.g., coat color and pattern) and behavior that is intermediate between the two 7 

parental species.56,59-61  8 

Baboon hybrid zones are a manifestation of a long-standing evolutionary process. 9 

Results of whole genome analyses of all six Papio species reveal a history of population 10 

differentiation and genetic divergence among lineages that includes multiple episodes of gene 11 

flow (admixture or introgression) among distinct lineages (phylogenetic species) and the 12 

presence of ghost lineages.62 Like the genus Homo, baboons are the products of a radiation 13 

that began in non-forest, tropical Africa around two million years ago. Along with the rest of 14 

the fauna of tropical Africa (e.g., Dolotovskaya et al.63; Grubb64; Kingdon65), they have been 15 

subject to climatic fluctuations and geological events that caused repeated fragmentation and 16 

reconnection of populations, producing successive intervals of genetic divergence due to 17 

geographical isolation and secondary contact with admixture. The ecological and habitat 18 

parallels make them a prime analog for hominin evolution.21,23,66 They are especially relevant 19 

for early African savanna-adapted hominins with possibly similar patterns of range 20 

expansion and contraction, population isolation, secondary contact and admixture.  21 

Recent genetic work has revealed a complex history of natural gene flow among 22 

baboon species lineages, and even between Papio and another, closely-related but distinct 23 

genus, Rungwecebus (the kipunji). It suggests that we entertain the possibility of similar 24 
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episodes in human history, with gene flow not only among Pleistocene species of Homo, but 1 

also, at an earlier time, between emerging Homo populations and other hominins, such as 2 

Paranthropus, that were morphologically and adaptively distinct. Phylogeographic analyses 3 

(mostly mitochondrial-based) show that in baboons the distribution of mitochondrial 4 

haplogroups is not reciprocally monophyletic among phenotypic lineages, and geographic 5 

co-occurrence with phenotypic characters that define species is weak.  For example, 6 

northern chacma baboons carry mitochondrial haplotypes that are closely related to those of 7 

southern yellow baboons, northern yellow baboons carry mitochondrial haplotypes related 8 

to those of hamadryas baboons, and ancient mitochondrial lineages exist within western 9 

olive baboons, most likely derived from baboon populations that no longer exist.67,68  These 10 

incongruences between mitochondrial haplogroup and external phenotypes (and the species 11 

they define) suggest past episodes of gene flow among diverging baboon lineages.69-71  12 

Mitochondrial-nuclear discordance might result from “mitochondrial capture” or “nuclear 13 

swamping”.70,72,73  These examples are relevant to hominin evolution; for example, genetic 14 

affinities between mitochondrial and autosomal DNA are discordant, with closer 15 

mitochondrial DNA relationships between Neandertals and modern humans, and closer 16 

autosomal relationships between Neandertals and Denisovans.15 17 

South American Callithrix marmosets (Figure 3) also demonstrate extensive 18 

hybridization between subspecies and species, in variable environments and with different 19 

levels of reproductive isolation, therefore making them an additional comparative primate 20 

model for considering hominin hybridization. Speciation of current Callithrix marmosets 21 

began approximately 3.7Ma, with the most recent divergence event taking place less than 22 

1Ma between C. jacchus and C. penicillata.74,75 Experimental interspecific crosses revealed 23 

different levels of reproductive isolation between different species pairs, as captive C. jacchus 24 
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x C. penicillata hybridized with relative ease, but physical anomalies such as blindness were 1 

common when other species pairs were crossed.76-78 The genus originated in the humid 2 

Atlantic Forest biome of southeast Brazil and migrated north to also occur in Brazil’s 3 

savannah- and desert-like semi-arid biomes,79 with the six Callithrix species settling into 4 

allopatric distributions80 and hybridizing naturally at distribution borders under secondary 5 

contact.81 Genetic and phenotypic accounts of natural Callithrix hybridization exist between 6 

four different Callithrix species pairings occurring along river barriers and in areas of 7 

ecological transition.81-84 Relationships among Callithrix genomes are better represented by 8 

reticulating species trees as opposed to bifurcating ones, with divergence occurring under a 9 

scenario of speciation with gene flow.81 Thus, marmoset speciation also serves as a 10 

referential model of the splitting, subsequent contact and admixture of closely related 11 

lineages, a dynamic that was also important for recent human evolution.  12 

Anthropogenic hybridization as a result of the illegal pet trade introduced Callithrix 13 

species from northern and central Brazil, particularly C. jacchus and C. penicillata, into other 14 

regions of the country and created artificial secondary contact with other exotic and native 15 

Callithrix populations (e.g., Malukiewicz et al.81; Malukiewicz et al.82; Mendes83; Passamani et 16 

al.84). Although illegal and undesirable from a conservation biology perspective, the artificial 17 

introduction of marmoset into the ranges of existing species may provide unique insights 18 

into the effects of demographic differences in the hybridization process of ancient hominins, 19 

especially those that involved long-range (and possibly rapid) movements of hominin groups 20 

into occupied territories, including the geographic radiation of Neanderthals into Asia (and 21 

probably North Africa) and the movement of ancient H. sapiens both within and out of 22 

Africa. Moreover, anthropogenic Callithrix hybridization may also be particularly useful for 23 

considering shifts in demographic and genomic composition of admixed populations whose 24 
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parental taxa are closely related but display different degrees of relatedness (as in 1 

Neanderthals, Denisovans, and H. sapiens). For example, hybridization between more 2 

divergent species (e.g., C. aurita x C. jacchus; C. aurita x C. penicillata) often results in mixed 3 

social groups where individuals possess both hybrid and parental phenotypes.85,86 In both 4 

cases, male C. aurita hybrids (with ancestry from C. penicillata or C. jacchus) tend to possess the 5 

Y chromosome of the former85,87 and mtDNA of the latter,85 suggesting that some hybrid 6 

allele combinations may be less favorable. In contrast, hybrid swarms, or highly variable 7 

populations, whose genomes consist of products of subsequent segregation and 8 

recombination, backcrossing, and crossing between the hybrids, are common among more 9 

closely related Callithrix species (C. jacchus, C. penicillata, C. geoffroyi, and C. kuhlii) hybridizing 10 

under artificial secondary contact.81 Overall, anthropogenic movement of C. jacchus and C. 11 

penicillata is driving them to dominate modern Callithrix hybridization - and in some cases 12 

possibly causing genetic swamping of (if not only introgression into) other marmoset 13 

populations. Further study of this process could provide some insight into the dynamics of 14 

hominin dispersal(s) out of Africa.  15 

Natural hybridization has also been genetically confirmed among more divergent 16 

primate species pairs. In particular, the study of a hybrid zone between two howler monkey 17 

species (Alouatta pigra x A. palliata)88,89 has provided interesting parallels to the observed 18 

outcomes of hybridization between Neanderthals and H. sapiens. Despite the much deeper 19 

divergence (~3Ma)90 between the parental howler monkey species than between H. sapiens 20 

and now-extinct congeners, in both cases there is evidence of reduced or null introgression 21 

of sex chromosomes. In particular, studies that mapped Neanderthal91 and Denisovan92 22 

ancestry in modern human genomes found reduced ancestry of these species’ alleles on the 23 

H. sapiens X chromosome. This pattern has been observed among other organisms that 24 
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hybridize and is referred to as the “large X-effect”,93 for which the prevailing hypothesis is 1 

that the X chromosome is enriched for genes associated with reproductive barriers (e.g., 2 

hybrid sterility or inviability)94 and therefore does not introgress during hybridization. 3 

Analyses of introgression of autosomal (microsatellite) and X chromosome markers in the 4 

howler monkey hybrid zone show that the X chromosome has reduced introgression when 5 

compared to the autosomes.95 Thus, despite differences in divergence, studying the 6 

mechanisms that are responsible for this pattern in howler monkeys may allow us to 7 

contribute to the understanding of possible scenarios that led to the observed reduction of 8 

Neanderthal and Denisovan ancestry on the X chromosome in the genome of our own 9 

lineage.91 10 

With regards to the Y chromosome, analyses of 91 admixed males in the howler 11 

monkey hybrid zone showed a pattern consistent with a lack of introgression of SRY gene 12 

variants that are diagnostic for each species.95 This pattern contrasts with the observed bi-13 

directional introgression of mtDNA haplotypes (exclusively transmitted by the mother). 14 

Together these patterns are consistent with Haldane’s rule, where hybrids of the 15 

heterogametic sex (XY males in this case) are often inviable or infertile.96 If males from the 16 

first (F1) generation were fertile, we would expect that Y chromosome variants would be 17 

passed through backcrossing to later generation hybrids in a similar fashion as the mtDNA. 18 

Similarly, Mendez et al.97 analyzed and compared Neanderthal Y chromosome sequence data 19 

to those of humans and chimpanzees and found no evidence of Neanderthal Y chromosome 20 

haplotypes in modern humans. The authors speculate that this may be a consequence of 21 

hybrid incompatibilities. However, the ancient nature of this admixture coupled with the 22 

extinction of Neanderthals makes it difficult to directly test this hypothesis. Thus, the 23 

current study of the patterns of introgression in the howler monkey hybrid zone may add to 24 
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our understanding of the general mechanisms that led to the lack of Y chromosome 1 

introgression, a topic that is also of great interest in the study of speciation genetics. 2 

Comparative analyses of the evolutionary mechanisms leading to these patterns of restricted 3 

introgression in sex chromosomes among model and non-model species in natural and 4 

laboratory conditions will shed light on the evolutionary mechanisms that produced similar 5 

patterns during the ancient hybridization among Homo species. 6 

Although the patterns on sex chromosome introgression in the howler monkey 7 

hybrid zone are similar in some respects to what is known for ancestral populations of 8 

anatomically modern humans, Neanderthals, and Denisovans, the deeper divergence 9 

between hybridizing howler monkey species make this system a better analogue for general 10 

patterns of admixture between more divergent hominin lineages (e.g., Paranthropus and 11 

Homo), comparable to what is seen between Papio and Rungwecebus (above), and may suggest 12 

that admixture between more divergent hominin taxa that overlapped in time and space 13 

could have been possible. Thus, this hybrid system also provides us with a living model to 14 

understand the types of processes and mechanisms that may have played a role in the 15 

hybridization events at different stages during our evolutionary past. 16 

To sum, although we have chosen to focus here only on a select group of organisms, 17 

they illustrate how hybridization and introgression are important for shaping mammal 18 

genomes, comparable to what has been observed across myriad organisms living today (e.g., 19 

Arnold and Kunte31), including primates,98,99 but also other organisms more distantly related 20 

to us. The influence of hybridization on the genetic and phenotypic variation observed in the 21 

present day suggests that the magnitude of gene exchange, the loci most affected, and 22 

whether parental species persist after hybridization, are influenced by levels of divergence 23 

between hybridizing taxa, as well as by climate, biogeography, and demography.  These 24 
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results also suggest an important role for stochastic factors. This is important to keep in 1 

mind when interpreting the results of hybridization between different hominin lineages. 2 

Comparative models in the form of other hybridizing organisms illustrating the importance 3 

of climate (bears), dispersal (canids), population dynamics and behavior (baboons; howler 4 

monkeys), intrinsic hybrid fitness (howler monkeys), and more particular ecological 5 

circumstances (Callithrix) will be vital for building a better understanding of the role of 6 

hybridization among hominin taxa. 7 

3 Genetic data are limited in their ability to interpret the fossil record, necessitating a 8 

phenotypic approach 9 

 10 

We cannot understand the details of evolutionary process from genetic material 11 

alone.  There is growing evidence that DNA can only be recovered from a small fraction of 12 

human fossils, even among those from the most recent period of inter-species contact in the 13 

Late Pleistocene. Furthermore, genomic studies to detect gene exchange among taxa such as 14 

early Homo, Australopithecus and Paranthropus are currently impossible due to the advanced 15 

degradation of DNA in all remains of these more ancient lineages. Genomic studies also 16 

cannot tell us much about the phenotypes of our archaic ancestors because of the limits in 17 

our understanding of how genotypes might influence phenotypes. Features with a simple 18 

genetic basis or those with detailed and generalizable genotype-phenotype maps (e.g., 19 

pigmentation100) may allow reconstruction of fossil phenotypes, but complex characteristics 20 

and/or characteristics with the potential for complex interactive bases (e.g., skeletal 21 

morphology101) are not likely candidates. 22 
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The kinds of perturbations that hybridization imposes on morphology, however, can 1 

serve as a guide to identifying admixture in the fossil record using phenotypes alone, a 2 

necessary precursor to understanding the dynamics of past gene exchange. This possibility 3 

exists because morphological variation within species and among closely related species 4 

arises from the channeling of genetic and environmental influences into phenotypic variation 5 

through conserved common developmental pathways.102 The kinds of perturbations that 6 

stem from epistatic interactions in hybrids might lead to characteristic phenotypic changes 7 

even if the underlying genotypes are different.  8 

Most of the morphological studies purporting to identify fossil hominin hybrids are 9 

uninformed by genetic and comparative perspectives on the morphological effects of 10 

hybridization (but see Ackermann18). In these cases, evidence for admixture is largely based 11 

on the presence of mixed (mosaic) or intermediate morphology, rather than the application 12 

of theory bound analyses, resulting in the identification of several candidate hybrid hominin 13 

fossils. These include Lagar Velho 1,103 Mladeč 5 and 6,104 Cioclovina 1,105 Peştera cu Oase 14 

2,106 Vindija,107 Klasies River Mouth,108 Jebel Iroud and Mugharet el ‘Aliya in North 15 

Africa,108,109 Lingjing (Xuchang crania) in China,110 Middle Pleistocene hominins111,112 and 16 

possibly others.113,114 However, none of these specimens have been widely accepted as 17 

hybrids, and hybrid status has specifically been disputed for several of them (e.g., Grine et 18 

al.115; Harvati et al. 116; Stringer117; Tattersall and Schwartz118).  19 

Ackermann (2010)18 used a systematic and theoretically informed approach based on 20 

comparative mammalian data to identify fossil hybrids, and concluded that the fossils Skhul 21 

IV and V and Peştera cu Oase 2, and other specimens from Qafzeh, Krapina and Amud, 22 

possibly showed many of the characteristic signs of hybridization identified in genetic and 23 

comparative studies of mammals18 (see section below: Comparative and experimental 24 
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approaches to studying the phenotypic effects of hybridization). The Peştera cu Oase 1 1 

individual, which, like associated Peştera cu Oase 2, shows admixture based on 2 

morphology,106,119 was confirmed to be a hybrid using ancient DNA (ca. 4-6 generations 3 

prior).10  At a population level, the recent evidence for admixture at 100ka35 supports 4 

proposals that specimens like Skhul are admixed, while genetic evidence of Neanderthal 5 

influence in North Africa120 support earlier morphology-based suggestions.108,109 This 6 

consilience between morphological and genomic approaches at the individual and 7 

population levels suggests that a general biologically informed perspective on hybridization 8 

may yield further insights into the dynamics of gene exchange in the fossil record.  9 

The limited genomic reach into the past poses important challenges for identifying 10 

hybridization in the fossil record and understanding its evolutionary consequences. A unified 11 

comparative and experimental approach will afford a clearer picture of the ways in which 12 

hybridization drives perturbations of development that may allow for a general set of 13 

diagnostics for identifying hybrid individuals and populations in the fossil record. Moreover, 14 

from a comparative perspective, we would like a better sense of the variational (phenotypic, 15 

but also genetic) and evolutionary consequences of hybridization in the wild. A more 16 

thorough understanding of the phenotypic consequences of hybridization, particularly in the 17 

skeleton, is a pressing concern for the study of human evolution. 18 

4 Comparative and experimental approaches to studying the phenotypic effects of 19 

hybridization 20 

4.1 Baboons as phenotypic models for hybridization 21 

Currently our best comparative basis for identifying the morphological effects of 22 

hybridization on the skeleton in primates comes from research on hybrids of Papio 23 
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cynocephalus (the yellow baboon) and P. anubis (the olive baboon), one of the hybridizing 1 

moieties described above. Studies of captive, known-pedigree, purebred yellow and olive 2 

baboons and their hybrids have shown that these hybrids exhibit high frequencies of skeletal 3 

and dental traits that are rare in parents, including small and/or supernumerary canine teeth, 4 

rotated molars, and sutural anomalies.20,21 These traits suggest that hybridization results in a 5 

breakdown in the coordination of early development, reflected in visible perturbations in 6 

dental and sutural formation.17,18  In addition to these rare non-metric features, baboon 7 

hybrids also show a greater degree of overall size variation (Figure 4),20,21 including in the 8 

interior of the nasal cavity.121 On average, baboon hybrid crania tend to be large, with many 9 

individuals at or outside the range of the largest parent species. 10 

Transgressive phenotypes are particularly marked in the craniofacial skeleton and 11 

dentition.20,21 This is a stroke of good fortune as arguments over taxonomy and phylogeny in 12 

the hominin fossil record mostly revolve around dental and craniofacial characteristics. Both 13 

atypical traits and extreme size are transgressive relative to the parents.  Moreover, close 14 

examination of specific aspects of the cranium that exhibit heterosis and dysgenesis in 15 

hybrids suggest that the overall form of hybrid baboon crania differs from that of the 16 

parents.20,21 Based on overall covariation of metric features, comparisons of parents and first 17 

generation (F1) hybrids indicate that the hybrids exhibit lower overall trait covariation than 18 

either parent (Ritzman & Ackermann, unpublished data). While these differences are small, 19 

the fact that they occur with increased phenotypic variance suggests a decrease in integration 20 

in hybrids.102,122 21 

Results from baboons are consistent with what we know about the skeletal anatomy 22 

of hybrids in other mammalian lineages. Features such as the presence of supernumerary 23 

teeth, rotated teeth, and sutural anomalies in the neurocranium and face, appear in 24 
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ungulates,16 rodents,123 and primates,17,19-21 although they manifest somewhat differently in 1 

each taxon. Moreover, specific patterns in supernumerary teeth (i.e., the presence of 2 

mandibular v. maxillary supernumerary teeth and/or unilateral v. bilateral expression of 3 

supernumerary teeth) have also been observed to differ between hybrids and parents.20,123 4 

The consistency of these findings across taxa strongly suggests that the presence of such 5 

non-metric traits in relatively high frequencies is a general indicator of hybridization.  6 

Moreover, second generation hybrids and back-crossed individuals show that these traits 7 

persist in later generation hybrids21 (see also Ackermann and Bishop19).  8 

Although less well-studied, signatures of hybridization in the size and shape of the 9 

skull have also been identified. As discussed above for baboons, the most noteworthy 10 

signature of hybridization is large cranial size, with hybrids either (and statistically 11 

significantly): (1) exceeding the midpoint value of the means of the parental taxa (e.g., 12 

Cheverud et al.124), or more strictly (2) exceeding the means of both parents. Using these 13 

definitions, extreme cranial size in hybrids has been identified in mice125-127 and in 14 

primates.20,124 Heterotic phenotypes are also evident beyond the F1 generation. Taken 15 

together, these results suggest that, in addition to the presence of rare non-metric traits (as 16 

above), large cranial size may be a more general feature of mammalian hybrids. Further 17 

research needs to be done into the ways in which hybridization causes the genomic 18 

interactions that underlie these changes in conserved developmental pathways. Finally, the 19 

effects of hybridization on the postcranial skeleton are largely unstudied, except insofar as 20 

many previous studies in mice and primates have found that hybrids generally exhibit longer 21 

limbs and increased body size relative to parents.18,20,21,125,127-133 Furthermore, the apparent 22 

effect of hybridization on overall morphology may be diminished after multiple generations 23 
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of backcrossing, making backcrossed individuals physically undistinguishable from the 1 

parental species with whom they share most of their genome.130 2 

 3 

4.2 Mice as phenotypic models for hybridization 4 

Outside of primates, mice stand out as a powerful mammalian model for 5 

investigating the effects of hybridization on phenotypic variation because they can be bred in 6 

controlled conditions and have short generation times, making it feasible to perform large, 7 

multigenerational experiments with replication.  This makes them excellent model organisms 8 

for understanding the morphology of mammalian hybrids, including hominins. There is also 9 

a broad literature regarding hybridization and introgression among sub-species of Mus 10 

musculus,134-137 as well as some research focusing on hybridization among more divergent 11 

species of the genus Mus.138-140 In addition to comparative analysis of wild and captive 12 

organisms, an ongoing experimental research project aims to determine whether hybrids 13 

show any relationships between variation in coat color and variation in cranio-14 

mandibular/skeletal traits, as a result of shared developmental processes being affected by 15 

hybridization.22,141,142  Breeding experiments have produced multi-generation mouse 16 

recombinants of three closely related subspecies of M. musculus, as well as two species (M. 17 

musculus and M. spretus), with various degrees of introgression.  18 

Morphometric analyses of variation in cranio-mandibular size and shape have been 19 

performed among the subspecies, first generation (F1), second generation (F2) and first 20 

generation backcrossed (B1) hybrids.22,141 Important patterns are emerging that might shed 21 

light on human evolution.  In particular, the results indicate that hybrids are typically as large 22 

or larger than the parent taxon, with mean shape generally intermediate to the parents but 23 

more closely resembling the smaller parent.22,141 Features such as molar length are relatively 24 
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large in hybrids, while later generation (F2, B2) hybrids more variable that F1s, and 1 

backcrosses more closely approximating the shape of the parental groups they are 2 

backcrossing into. When combined with unusual non-metric traits,20,21 these features can be 3 

considered suggestive of mixed ancestry in the fossil record (see also Ackermann18). For the 4 

mice, this pattern appears to hold across very different scenarios of hybridization, e.g., 1) 5 

between species that hybridize in nature but gene-flow and fertility rates of hybrids are low; 6 

2) between species that hybridize in nature and the hybrids are successful; and 3) between 7 

species that do not hybridize in nature (due to geographic separation), but where hybrids can 8 

be produced under laboratory conditions.22  This suggests that these results are fairly robust 9 

and can be applied to a wide range of contact scenarios in different sets of lineages.  10 

Analyses of coat color variation, focused on comparisons of dorsal-ventral (DV) 11 

patterning in F1 animals and parental strains,142 indicate that hybrids have highly variable coat 12 

morphologies.143,144  Given that the DV pattern is established during prenatal development,145 13 

observed differences in the ventral coat morphology of the F1 mouse hybrids relative to the 14 

parents, as well as new combinations of dorsal and ventral coat colors, could be the result of 15 

two differently co-adapted genomes and developmental patterns coming together. 16 

Interestingly, the development of DV patterning can be tied to the development of the 17 

skeleton, with mutations in the Tbx15 gene affecting both DV patterning and skeletal 18 

morphology.146  This has interesting potential implications for human evolution. We know 19 

some of the major changes in human evolution are soft tissue changes, such as changes in 20 

hair and sweat gland structure, function and distribution,147,148 and that genes related to 21 

skin/hair phenotypes have introgressed from other ancient lineages into our own lineage and 22 

remain in people today (e.g.,Vernot and Akey40; Sankararaman et al.91). A variant of the 23 

TBX15 gene which is derived from a hominin closely related to the Denisovans is found at 24 
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high frequencies in some modern human populations.149 The results from the mice suggest 1 

that some of the skeletal changes/differences we observe in hominins could result from 2 

introgression of gene variants that were retained due to the adaptive value of other 3 

phenotypes.  Further understanding of the links between these systems has the potential to 4 

provide information into the underlying target of selection and could allow us to extrapolate 5 

from the fossil skeletal phenotype to such soft-tissue features.   6 

Some suggested hominin hybrid samples express patterns similar to what the mouse 7 

and baboon studies indicate for hybrids (although it is not possible to know what generation 8 

- F1, F2, B1 etc.- the fossil samples represent).  For example, the Vindija Neanderthals (Figure 9 

5) have an intermediate facial anatomy compared to most Neanderthals and early modern 10 

humans; facial size is more like modern humans but morphological features of the mandible 11 

and supraorbital torus are more like the Neanderthals.107,150  At Klasies River Mouth, there is 12 

evidence of extensive intra-sample variation with indications of a very large face (for one 13 

individual) and mandibles that exhibit a mosaic of both modern and archaic features.108  14 

These and other individuals/samples are generally more like the smaller hominin on the 15 

landscape (H. sapiens) in terms of morphology, if not gracility (e.g., Cioclovina 1, Mladeč 5 16 

and 6, Oase 1 and 2, Jebel Irhoud and Lagar Velho1). Atypical traits are also present in 17 

hominins,151 including a number of anomalies of the maxilla and dentition in Upper 18 

Palaeolithic samples. Strikingly, Abri Pataud 1 has two supernumerary teeth adjacent to the 19 

right upper second molar, while the isolated tooth Dolní Vĕstonice 33 has been suggested to 20 

be a distomolar.151 Although these patterns are commensurate with hybridization, clearly 21 

more work is necessary to identify conclusively the prevalence, demographics, and lingering 22 

morphological effects of hybridization in past humans (but see152-154 for recent attempts at 23 

the latter).  24 
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5 The interplay between hybridization and adaptation 1 

 2 

The burgeoning literature on the phenotypic and adaptive consequences of 3 

hybridization in the wild provides several further insights relevant to problems we encounter 4 

in understanding human evolution. Hybridization and introgression can facilitate adaptation 5 

in several distinct ways. By introducing alleles into a new population that have already been a 6 

part of the evolution of an adaptation to a local condition in a different population, a new 7 

population borrows fitness-enhancing variants. Hybridized populations will, in most cases, 8 

have higher heterozygosity than either parent population. This can lead to an increase in the 9 

genetic variance underlying individual differences in a phenotypic characteristic and a 10 

concomitant increase in its propensity to respond to directional selection. Likewise, 11 

interactions arising from novel combinations of alleles at loci (dominance) and genotypes 12 

across loci (epistasis) can cause increases in the genetic variance of phenotypic characteristics 13 

out of proportion to any increase in genomic variation. The generation of new variation can 14 

thereby aid in the adaptation of a population to novel conditions.  15 

Adaptive radiations are canonical examples of divergence through natural selection 16 

resulting in species with diverse phenotypes associated with ecological variation in their 17 

habitats.155 For instance, recent (post-australopithecine) hominins and Darwin’s finches both 18 

diversified over the last 1-2Ma, and both diversifications were influenced by glacial cycles of 19 

changing climate. Continental habitats and Galápagos Islands fluctuated in size and 20 

connectivity along with the availability of conspecific mates, with periods of isolation. A 21 

feature common to both systems was the exchange of genes between previously isolated 22 

populations. In some cases, the genes were adaptive, for example genes affecting beak size in 23 

finches, and genes affecting properties of the immune system in hominins.91,156  24 
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A long-term study of one adaptive radiation, Darwin’s finches (Subfamily: 1 

Geospizinae) in the Galápagos archipelago, provides an example of how hybridization and 2 

its consequences can facilitate adaptation to new environments and the origins of new 3 

species. Two features make this group suitable for intensive study. Most of the islands are in, 4 

or close to, the natural state, and no finch species has become extinct through human 5 

activity.157 An uninterrupted 40-year study of finches on the small (0.34 ha) island of Daphne 6 

Major has demonstrated instances of evolution by natural selection and identified the 7 

circumstances under which it occurs.158 However, it has also revealed the unsuspected 8 

prevalence of introgressive hybridization.159  9 

A central concern in the study of hybridization in the human fossil record is the 10 

degree to which hominin hybrids might have been viable and capable of reproduction.91,160,161 11 

Darwin’s finches add some perspective to this issue. Hybridization in the finches was 12 

observed in the first year of the long-term breeding study on the island.158 A few breeding 13 

pairs of Geospiza fortis, the medium ground finch, bred successfully with G. fuliginosa, the 14 

small ground finch, and with G. scandens, the cactus finch. Offspring fledged from nests of 15 

both types of heterospecific pairs, thus demonstrating the lack of strong genetic barriers to 16 

reproduction in the early stages of offspring development. Unanswered, however, was the 17 

question of whether the hybrids were fertile. Another seven years elapsed before there was 18 

an (affirmative) answer: when ecological conditions were favorable for their survival in dry 19 

seasons they bred successfully in the following wet seasons. They did not, however, breed 20 

with each other but backcrossed to one or other of the parental species according to the 21 

song of their fathers that they learned when in the nest and during the period of parental 22 

dependence as fledglings. The comparisons demonstrated that hybrids and backcrosses 23 

survived as well as, and perhaps better than, contemporary non-hybrids in each of the three 24 
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cohorts. Moreover, they were as successful in obtaining mates and raising offspring as were 1 

G. fortis and G. scandens (G. fuliginosa does not have an independent breeding population on 2 

the island). Thus, in terms of survival and reproduction they were as fit as their respective 3 

parental species.159 Additionally, the importance of song in this scenario highlights the degree 4 

to which the dynamics of hybridization and introgression are behaviorally/culturally 5 

mediated, a particularly relevant and relatively unexplored aspect in hominin contact 6 

scenarios. 7 

Hybridization has the potential to lead to the formation of a new species through 8 

introgression of genes from one species to another, and hybrids then evolve along a new 9 

trajectory in a different environment.158 Again Darwin’s finches on Daphne provide an 10 

example. An immigrant G. conirostris arrived in 1981, bred with G. fortis and initiated a new 11 

lineage. After two generations a severe drought in 2003-04 caused heavy mortality among all 12 

finches leaving two survivors. They were a brother and a sister, and they bred with each 13 

other. Their offspring and grand-offspring also bred only with other members of the lineage 14 

and not with G. fortis or G. scandens. Their beaks were larger than the beaks of either species, 15 

and the males sang a unique song and, coupled with apparent reproductive isolation, the 16 

lineage behaves as a new species.158,162 This example differs from the standard allopatric 17 

model of speciation by incorporating introgressive hybridization as an important factor in 18 

the development of reproductive isolation on a small island. It also once again highlights the 19 

importance of altered behavior as a phenotypic outcome of hybridization, and something on 20 

which selection can act, a phenomenon also seen in primates. For example, in the case of 21 

hybridization between olive and hamadryas baboons, behavior can be strongly affected by 22 

hybridization. Hybrid males between these two species show intermediate forms of mating 23 

behavior. Whereas olive baboon males form temporary consortships with estrous females, 24 
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hamadryas baboon males monopolize females irrespective of their reproductive status. 1 

Hybrid males show less monopolization tendencies than hamadryas males and also show a 2 

weak form of the hamadryas typical herding behavior.56,59,163 The possibility that 3 

hybridization-induced behavioral novelty might have played a role in human evolution has 4 

not been well-explored (but see Ackermann et al23).  5 

Another example of hybrid speciation from even more phylogenetically diverged 6 

organisms are African clawed frogs of the genus Xenopus. About 30 allo-tetraploid, allo-7 

octoploid, and allo-dodecaploid species exist in this genus, and each was formed by 8 

speciation of hybrid individuals (the progeny of two diploids, two tetraploids, and tetraploid 9 

and octoploid species, respectively).164 Potential adaptive consequences of these hybrid 10 

speciation events include increased resistance to parasites165,166 and increased tolerance to an 11 

acidic embryonic environment.167 Allopolyploid Xenopus provide an interesting perspective 12 

into early genomic evolution of ancient polyploid ancestors of hominins;168 also similar to 13 

hominins, some hybrid Xenopus are not polyploid (e.g., Furman et al.169). Moreover, hominins 14 

are themselves descended from ancient ancestors that underwent two rounds of 15 

polyplopidization before jawed vertebrates diversified over 500 million years ago.170  Some of 16 

the duplicated genes that arose from these ancient events persist today, and small scale gene 17 

duplication contributes to copy number variation between closely related primate species.171 18 

Gene copy number variation thus may contribute to adaptation and reproductive isolation in 19 

modern primates, including humans. Whether the ancient (>500 million years old) whole 20 

genome duplication events occurred via spontaneous genome duplication within a species 21 

(autopolyploidization) or in association with hybridization among species 22 

(allopolyploidization)172 may never be known, though the later possibility has several 23 

intriguing implications. Similar to the benefits associated with hybridization without genome 24 



 

31 
 

31 

duplication, allopolyploidization brings together (a) beneficial alleles that evolved 1 

independently in two diverged parental species, (b) deleterious alleles from each parental 2 

species, and perhaps most significantly, (c) genetic variants that function well in each 3 

parental species but that are incompatible when combined. 4 

Returning to our previous example of gray wolves, the transfer of an allelic variant 5 

that causes black coat color in most dogs to North American gray wolves provides another 6 

insight into the adaptive consequences of hybridization.173 In North America, black wolves 7 

are common in many populations and are nearly as frequent as gray (wild type) wolves. 8 

Genetic analysis has demonstrated that the genetic variant, called the K locus, originated in 9 

domestic dogs, and was likely transferred to wolves from pre-Columbian dogs of Native 10 

Americans.173 This dominant mutation causing black coat color enhances the fitness of 11 

heterozygote black individuals, but decreases the fitness of homozygous black wolves174,175 12 

suggesting coat color alone is not the primary object of selection. Black wolves may have 13 

higher survivorship during viral disease epidemics, such as distemper and mange, given that 14 

the K locus is a beta-defensin gene that responds to viral infections.173 Moreover, selection 15 

has favored disassortative mating, where individuals have a preference for mates of a 16 

different color.176 One possible model for the persistence of the black gene is that in areas 17 

where canine disease is common and persists in carnivore reservoirs such as domestic dogs 18 

or other wild carnivore species, the coat color polymorphism is maintained. In other areas 19 

where this is not the case, such as the High Arctic, the disease burden is lower, and observed 20 

black wolves are rare. Such adaptive introgression can occur from wolves into dogs as well.   21 

Hypoxia adaptation in high altitude Tibetan wolves and dogs involves selection at the 22 

EPAS1 gene, for which some alleles may have been transferred to dogs from wolves as the 23 
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former have recently arrived in the Tibetan Plateau. Living Tibetans also obtained new allelic 1 

variation for the same gene via ancient admixture between H. sapiens and Denisovans.36,177,178     2 

In the wild, coyotes and wolves hybridize, most commonly in the Great Lakes area 3 

of the US and Canada.179-182 A genome-wide analysis showed that all genomic segments did 4 

not introgress equivalently, as some fragments had a more extensive distribution and were 5 

more frequent than predicted by the effects of background levels of admixture alone.41 The 6 

regions that were differentially introgressed from gray wolves into coyotes, and from coyotes 7 

into gray wolves, contained genes that affected morphology and physiology, which are gene 8 

categories that might be expected to have important functions in hybrids, as body size and 9 

morphology are essential components of successful prey capture. Moreover, the prey size in 10 

the Great Lakes is smaller than elsewhere consisting of deer rather than larger prey such as 11 

elk or moose. In this situation, an intermediate sized canid (between coyote and gray wolf) 12 

may have higher fitness than the parental forms. Interestingly, this intermediate morphology 13 

was detected in preliminary studies of the morphology of the Eastern coyote or “coywolf,”179 14 

and an ongoing study suggests they have atypical cranio-dental traits (L. Schroeder, 15 

unpublished data). As with Darwin’s finches, should the nature of available food change, a 16 

different sized canid may be selected. In fact, body size has changed in coyote-sized canids in 17 

North America throughout the Pleistocene,183 and some of these body size changes may 18 

reflect admixture between coyote and wolf-sized canids as observed today. Moreover, many 19 

of the North American wolf species (including Canis lupus, Canis rufus and Canis lupus lycaon) 20 

are hybrids themselves, with these populations displaying between 30% and 50% coyote 21 

ancestry.41   22 

The canid example is useful for understanding the dynamics and potential adaptive 23 

consequences of introgression in hominins. Like canids, hominins dispersed widely resulting 24 
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in gene introgression between lineages that diverged recently in some cases and more deeply 1 

in others. Introgressed DNA linked to phenotypic characteristics in living people has been 2 

subject to the effects of natural selection after introgression.  Jolly (2001) and Garrigan & 3 

Kingan (2007) hypothesized that introgression from now-extinct species of Homo may have 4 

provided H. sapiens with locally adapted allelic variation;66,184 this hypothesis is now well 5 

substantiated.36,40,91,154,185-187  The persistence of ancient gene variants in extant human 6 

populations, especially those associated with skin and hair characteristics (including 7 

pigmentation, toughness of the skin (perhaps tied to better cold adaptation), and other 8 

factors related to keratin (e.g., Vernot and Akey40; Sankararaman et al.91; Dannemann and 9 

Kelso185)), immunity (specifically the human leucocyte antigen (HLA) class 1 genes),156,188 10 

and high-altitude adaptations,36,186 is in striking parallel to what we see in canids. Genes 11 

affecting morphology and physiology have also diverged in hominin ancestral groups and 12 

could have been affected by hybridization.  13 

Returning to the EPAS1 example, strong selection at the EPAS1 locus in Tibetan 14 

populations living at extreme elevation led to changes in oxygen metabolism, which allowed 15 

individuals in this group to better function and reproduce in hypoxic environment.36,186  The 16 

allele subject to the resulting selective sweep is derived from EPAS1 alleles introgressed 17 

from the Denisovan lineage.36 Hackinger et al. (2016) showed a similar effect of EPAS1 was 18 

present in other high elevation parts of the Himalayan region.186  The Denisovan ‘Core 19 

haplotype’ in human populations living above 2,000 meters in elevation was enriched. 20 

Introgressed Denisovan alleles were absent in human samples from lowland populations.186 21 

Variants apparently conferring adaptive advantages for cold adaptation,189 immune 22 

responses,188 and sundry other functions185,190 introgressed from ancient hominins are also 23 

evident in the genome today. 24 
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Adaptation to combinations of local and novel conditions is not the entire story, 1 

however. Genetic drift and neutral mutations drive human genome evolution to the extent 2 

that expectations of neutrality form the null hypothesis of tests for natural selection in the 3 

genome.191 Additionally, some of the genomic evidence for hybridization observed in living 4 

humans suggests that there may have been purifying selection against variants formerly in 5 

Neanderthal populations,192-194 although recent research suggests that negative selection 6 

against Neandertal ancestry did not play as strong a role in recent human evolution as 7 

previously suggested.195  8 

Taken together, these different pieces of evidence point to the ways in which 9 

hybridization and introgression form an indispensable part of the understanding of the role 10 

of natural selection and adaptation in recent human evolution. They provide a path to 11 

produce novel genotypic combinations that would not readily arise through mutation alone. 12 

Some of these novel genotypic combinations influence fitness, sometimes for ill, but often 13 

to adaptive ends.  14 

 15 

6 Conclusion: the (exciting!) way forward 16 

 17 

The question of what makes humans different from other species has captured the 18 

imagination of both scientists and non-scientists. At a certain level, we know the answer: our 19 

DNA is different from that of other species, and this allows us to abstract, create, and 20 

destroy like no other. So how did our species acquire its unique genome?  Genetic and fossil 21 

evidence demonstrate that the ancestors of humans split into distinct branches as they 22 

spread and diversified, adapting to local conditions. Archaic human "cousins," often 23 
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recognized as species separate from Homo sapiens, were similar to us in many ways – they 1 

wore clothes, buried their dead, and made art (e.g., Klein160; Hoffmann et al.196; Rodríguez-2 

Vidal et al.197). Before they became extinct, they exchanged genetic material with humans by 3 

hybridizing on multiple occasions (e.g., Green et al.12; Kuhlwilm et al.35; Vernot and Akey40; 4 

Sankararaman92; Vernot et al.198).  Which bits of our DNA did we get from these archaic 5 

"cousins", and what are the biological consequences? We are just starting to learn this.  We 6 

know, for example, that several disease-related genes were affected, not all people got the 7 

same bits of DNA, and not all parts of our genomes received the same amount of DNA 8 

from these extinct species. The question now is why and how this happened.  9 

Beyond documenting the quantity and results of gene exchange, this exciting avenue 10 

of research also challenges much of the existing framework for considering hominin 11 

diversity.  Yes, it is causing us to rethink the details of modern human origins and accept that 12 

neither a strict replacement scenario nor a multiregional gene flow model can explain recent 13 

human evolution.  But more profoundly, it is expanding the model of divergence through 14 

reproductive isolation and adaptation, to one that recognizes gene exchange as a key player 15 

in the speciation process.  We now know that gene exchange has played a central role in 16 

providing new diversity, injecting new variation from one population into another, and 17 

thereby facilitating the rapid (adaptive) diversification of lineages in well studied and 18 

evolutionarily relevant taxa. We have detailed much of this evidence in the preceding 19 

sections of this paper and argue that human evolution provides yet another example of this 20 

critical evolutionary process. 21 

The interspecific exchange of gene variants also complicates our concepts of species.  22 

This is a real challenge for palaeoanthropologists, for whom finding and categorizing new 23 

fossils – or even new species – is sometimes a primary (and exciting) goal. How do we 24 



 

36 
 

36 

recognize and appreciate diversity when it has been shaped by gene exchange?  How do we 1 

rethink and visualize our phylogenies as a reticulating network rather than a branching bush? 2 

How do we continue to improve our models of population dynamics through time to reflect 3 

this?  Part of that will involve a much better grasp of within-taxon variation and the effects 4 

interacting evolutionary forces have on complex developmental systems and on the 5 

phenotype. Paleoanthropologists can benefit from considering other organisms and 6 

disciplines, where there has been a growing acceptance that boundaries of species are 7 

imprecise and more porous than previously believed, and that the dynamics of gene 8 

exchange complicate relationships. These issues provide conceptual and practical challenges 9 

for our field, but they also provide opportunities for fresh exploration into the dynamics of 10 

human evolution.  More broadly, gene flow between related species is one of several ways 11 

the generation of variation produces macroevolutionary implications.199 12 

The research presented here provides some exciting material for commencing such 13 

exploration.  These organismal models can help us consider new explanations, and develop 14 

new explanatory hypotheses, for the patterns we observe in the fossil record. For example, 15 

the majority of closely related hybridizing taxa discussed here have been shown to have a 16 

greater frequency of hybridization and amount of introgression than originally thought, as 17 

well as differential contribution of sexes in hybridization, a model which is likely to fit the 18 

Middle Pleistocene hominin situation. It is also quite plausible that – like in finches – the 19 

combined effects of introgression and natural selection were important for hominin gene 20 

exchange, but that cultural mechanisms like language were critical factors in the dynamics of 21 

this exchange. Climate fluctuations are also likely to have played a crucial role in these 22 

dynamics, bringing taxa together that are normally allopatric (as seen in bears), but also 23 

moving the geographic boundaries between taxa and shifting which taxa are favored over 24 
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time. Wide geographic dispersion (e.g., wolf-like canids) is also a characteristic of later 1 

hominins and the differentiation of skeletal phenotypes and skin/hair characteristics surely 2 

played a role in the emergent morphology of their hybrids (as suggested in canids, baboons 3 

and mice). All of these applications (and more; see Table 1) provide a rich opportuntiy for 4 

better understanding how, when and why human complexity emerged.  5 

 6 

 7 

 8 
  9 
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Glossary 

Adaptive introgression When the incorporation of new genetic variants through introgression leads to an 
increase of the fitness of the recipient gene pool.  
Backcross The breeding of a hybrid with a member of one of the parental species. 
Cohort A group of individuals born in the same year (or reproductive cycle). 
Dysgenesis Hybrid dysfunction, including sterility or lowered function. For analyses of morphology, 
dysgenesis can refer to measured features that are smaller or reduced in the hybrids relative to parents and/or 
to the mid-parental value.  
Enriched gene/haplotype Increased presence or expression of a gene/haplotype in a sample. 
Epistasis/Epistatic interactions Interactions between alleles at different loci, where the effects of an allele 
at one locus is modified by alleles at other loci in an interacting complex. 
Gene Flow The transfer of genetic variants (or alleles) from one population to another. 
Genome duplication Production of cells/organisms with additional copies of entire genome; resulting cells 
and organisms are polyploid. 
Ghost lineages Lineages that are now phenotypically extinct but whose presence can be detected by their 
genomic contribution to extant lineages.  
Heterosis Hybrid vigor that can result from heterozygote advantage or recombinant hybrid vigor. For 
analyses of morphology, heterosis is often used to describe measured features which are larger in hybrids 
relative to parents and/or to the mid-parental value. 
Heterospecific Other species, in contrast to same species (conspecific) 
Heterozygosity The probability that two alleles at a locus drawn from a population will differ. High 
heterozygosity indicates large amounts of genetic variation.  
Haldane’s Rule In the case where hybrids between taxa produce only one sex that is inviable or sterile, that 
sex is more likely to be the heterogametic sex, e.g., in mammals males with XY chromosomes (as opposed to 
the homogametic, e.g., in mammals females with XX chromosomes). 
Hybrid Offspring of a cross between genetically/phylogenetically divergent taxa (verb: hybridize). 
Hybridization Interbreeding between individuals from genetically differentiated lineages (typically at or 
above the rank of subspecies).  
Hybrid speciation A form of speciation where hybridization between two distinct species leads to the 
formation of a new (third) species.  
Hybrid vigor Increased fitness in the hybrid relative to the parents, often due to increased heterozygosity. 
Introgression Incorporation of gene variants (i.e., alleles) from one lineage into the gene pool of another. 
Large X-effect The disproportionately large involvement of the X chromosome in the reproductive isolation 
of closely related species and the process of speciation.  
Mitochondrial capture Complete mitochondrial introgression, e.g., the replacement of the original 
mitochondrial genome of a population/taxon with that of another as a result of female movement/invasion 
and interbreeding.  
Nuclear swamping Replacement of the nuclear genome in one population by the nuclear genome of 
another by repeated unilateral introgression, while leaving the mitochondrial genome in place, e.g., as a result 
of the repeat movement/invasion of males. 
Parapatric Spatial relationship between populations/taxa whose ranges do not significantly overlap but are 
immediately adjacent.  
Phylogeographic Relationship between the structure of gene genealogies and geography.  
Reticulation/Reticulate evolution The fusing of previously separated branches on an evolutionary tree, 
through repeated hybridization events, or other forms of horizontal gene transfer. 
Selective sweep A reduction or elimination of allelic variation due to strong positive selection on and 
subsequent fixation of (an)other allele(s). 
Transgressive phenotypes When traits in hybrids are outside of the range of the parents. 
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Figure 1: Illustration of the gradation from gene flow to introgression along a continuum of 
speciation, resulting in a reticulated pattern of speciation at the population level. Genetic distance 
refers to distance between the hybridizing parents (increasing as you move through time). Changing 
phenotypic effects with increasing genetic distance are shown to the right.  Phenotypic variance 
refers to within population variance of the hybrid population. The shapes of the effect curves are 
qualitative and so not to any scale; though based on available evidence to date, they remain working 
hypotheses. 
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Figure 2: Hypothesized directions and magnitudes of introgression in hominin evolution. Genetic 
evidence for known introgression indicated by black arrows between lineages. The green region 
indicates the time period of purported fossil (phenotypic) evidence for introgression between 
Neanderthals and H. sapiens (fossil/phenotypic evidence for introgression between Denisovans and 
other taxa is currently unknown, due to our limited understanding of the morphology of 
Denisovans).  Genetic evidence of a first generation hybrid (Denisova 11)37 between Neanderthals 
and Denisovans is shown with a dotted line, though the introgressive effect of this on future 
lineages is currently unknown. Presumably, evidence (both genotypic and fossil/phenotypic) for 
gene flow earlier in the separation of lineages would be more difficult to detect, as would 
phenotypic/genotypic differences among the hybridizing taxa.  This is consistent with the hominin 
fossil record of the Middle Pleistocene.  
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Figure 3: A comparison of facial variation among two Callithrix species and their hybrid. Left: 
anthropogenic Callthrix penicillata x C. geoffroyi hybrid from Viçosa, MG, Brazil. Top right: C. geoffroyi. 
Bottom right: C. penicillata. 
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Figure 4: Hybrid and purebred baboon crania, illustrating the wide variation and relatively large size 
of hybrids relative to their parent taxa. Top: Female baboons, with parent taxa on left (Papio anubis, 
top, P. cynocephalus, bottom), and three F1 hybrids on right. Bottom: Male baboons, from left to 
right, F1 hybrid, F1 hybrid, P. cynocephalus, and P. anubis. Images reprinted from Journal of Human 
Evolution, Vol 51, RR Ackermann, J Rogers and JM Cheverud, Identifying the morphological 
signatures of hybridization in primate and human evolution, Pages 632-645, Copyright (2006), with 
permission from Elsevier. 
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Figure 5: Intermediate features of the Vindija Neandertals. Details and data are available in Smith, et 
al.107 Clockwise from top left: (1) Vindija 259 left adult maxilla. Reconstructed nasal breadth falls 
almost three standard deviations (s.d.) below the Neandertal mean. (2) Vindija mandible 206 (lingual 
view). An incipient incurvatio mandibulae and mentum osseum are visible on the external mandibular 
symphysis. (3) Vindija mandible 231, oriented to the alveolar plane. The almost vertical symphysis 
reflects reduction of facial prognathism. The symphyseal angles of Vi 206 and Vi 231 fall more than 
three s.d. below the Neandertal mean. (4) Vindija 231 mandible. The symphysis exhibits a weak 
outline of the mental trigone, a modern human feature.  
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Table 1: Factors relating to hybridization in non-hominin organisms included in this discussion and their importance to understanding 
hybridization’s role in hominin evolution 
 
 

 

Greater 
Frequency of 
Introgression 
Than 
Expected 

Evidence for 
Introgression 
of Positively 
Selected 
Genes 
(Adaptation) 

Hybrids 
Exhibiting 
Increased 
Variation 
or 
Heterosis 

Hybridization 
and its 
Relationship 
to Climate 
and 
Environment 

Differential 
Contribution 
of Sexes in 
Hybridization 
– Including 
Haldane’s 
Rule and 
Large X 
Effect 

Direct 
Association 
Between 
Genetic and 
Morphological 
Traits Relating 
to 
Hybridization 

Specific Applications to Hybridization in 
Hominin Evolution 

Galapagos 
finches X X X X   X 

demonstration of combined effects of 
introgression and natural selection, evidence 
for long-term introgression in closely related 
species, evidence of critical role of climate, 
ecology and “cultural mechanisms” in 
successful hybridization 

Clawed 
frogs X speculated  speculated  speculated   X 

traits that appear identical in phenotype may 
actually have different patterns of genetic 
control; allopolyploidization may be a good 
model for understanding ancient 
polyplodization in jawed vertebrates 

Mice X   X   X   

demonstrate greater variability in hybrids and 
backcrossed samples than in parental groups, 
show that relatively high amounts of 
hybridization ( > 30% in mice) are necessary to 
accurately detect hybridization in a sample 
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Wolf-like 
canids   X X     X 

impact of wide geographic dispersions, 
examples of relatively recent divergence in 
many lineages and impact of this on 
establishment of reproductive barriers, role of 
skin/hair characteristics 

Recent and 
ancient 
bears 

      X X   
impact of climate, especially bringing 
species/populations together that normally 
are fully allopatric 

Marmosets X   X X     nature of hybrid zones critical in determining 
outcomes of hybridization 

Howler 
monkeys       X X   both Haldane’s rule and large X effects can be 

critical factors in primate hybridization 

Baboons X   X X X   

closely-related, relatively young species that 
commonly hybridize at species borders; 
hybrids can exhibit heterosis and high 
frequencies of skeletal anomalies. Extensive, 
ancient "swamping" hybridization by male 
introgression is attested by patterns of 
mitochondrial variation among populations 
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