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Abstract

Recent research has contrasted the travel patterns of young adults of Generation Y (or, synonymously,

the Millennial Generation) with the travel patterns of earlier generations of young adults such as

those belonging to Generation X. Young adults of Generation Y are found to drive less and, in some

contexts, are found to exhibit more multimodal travel patterns and to use public transit more often.

Potential causes for these observed shifts in transport mode use have also been theorised: One view

is that period effects in the form of contemporaneous changes in socio-cultural, socio-economic and

socio-technical factors are responsible for the observed shifts in transport mode use; another view

is that members of Generation Y have inherently different preferences and values due to formative

socio-cultural, socio-economic and historical experiences. Motivated by this yet-to-be-resolved di-

alectic, this paper uses a hierarchical Bayesian multivariate Poisson log-normal model to examine

intergenerational differences in transport mode use among young adults. The model is applied to

23 waves of the German Mobility Panel and captures between-cohort and between-period variation

of parameters of interest. The trained model informs a counterfactual prediction exercise aiming

to decompose intergenerational differences in transport mode use into demography-, cohort-, and

period-specific effects. Our findings suggest that all three sets of effects account for intergenerational

differences in transport mode use, while the absolute and relative importance of each set of effects

vary across transport modes. For the period from 1998 to 2016, two thirds of the decline in car

use can be ascribed to period effects; nearly all of the increase in public transit use and 42% of the

increase in bicycling can be ascribed to cohort effects.

Keywords: intergenerational differences, Generation X, Generation Y, Millennials, transport mode use,

hierarchical Bayesian multivariate Poisson log-normal model, multi-level model
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1. Introduction

In recent years, the analysis of intergenerational differences in travel behaviour has attracted consid-

erable attention. In particular, recent research has focussed on contrasting the travel patterns of the

current generation of young adults, who are considered to belong to Generation Y (or, synonymously,

the Millennial Generation), which comprises the birth cohorts from the mid-1980s to the early 2000s,

with the travel patterns of earlier generations of young adults such as those who are considered to

belong to Generation X, which comprises the birth cohorts from the mid-1960s to the early 1980s (e.g.

Hjorthol, 2016; Klein and Smart, 2017; Kuhnimhof et al., 2011, 2012a,b; McDonald, 2015; Thigpen

and Handy, 2018).

The literature widely consents that the day-to-day travel behaviour of young adults of Generation

Y differs from that of previous generations of young adults: In comparison with their equally-

aged counterparts of prior generations, young adults of Generation Y are observed to drive less

(Kuhnimhof et al., 2011, 2012a; McDonald, 2015); and in some contexts, they are found to exhibit

more multimodal travel patterns and to use public transport more frequently (Brown et al., 2016;

Grimsrud and El-Geneidy, 2014; Kuhnimhof et al., 2011, 2012b). Moreover, members of Generation

Y are observed to delay driving licence acquisition and to be less likely to own a car (Hjorthol, 2016;

Delbosc, 2017; Delbosc and Currie, 2013; Klein and Smart, 2017; Kuhnimhof et al., 2011).

Two contrasting explanations for these observed intergenerational differences in young adults’ travel

behaviour have emerged in the literature (also see Delbosc and Ralph, 2017; McDonald, 2015): One

view is that period effects in the form of contemporaneous changes in socio-cultural, socio-economic

and socio-technical factors account for the observed intergenerational differences in travel behaviour.

In particular, the observed decline in car use has been attributed to lower disposable incomes as well

as increased vehicle ownership and running costs (Bastian et al., 2016; Klein and Smart, 2017; Ralph,

2015). In addition, it has been hypothesised that young adults of Generation Y substitute the use of

information and communication technologies for physical travel (Kroesen and Handy, 2015; Polzin

et al., 2014). The second, contrasting view is that members of Generation Y have inherently different

preferences, attitudes and values, which manifest in less car-dependent lifestyle choices. For example,

young adults of Generation Y are observed to prefer to live in dense, urban, walkable neighbourhoods,

where personal mobility need not be predicated on private car use (Myers, 2016). Moreover, young

adults of Generation Y are observed to delay entering into life stages that are typically associated with

increased car use such as living independently, marriage and parenthood (Garikapati et al., 2016).

Motivated by this yet-to-be-resolved dialectic, the current paper employs a hierarchical Bayesian

multivariate Poisson log-normal model to analyse intergenerational differences in transport mode

use among young adults of Generations X and Y. The model is applied to 23 waves of the German

Mobility Panel and allows for a decomposition of the variation of parameters into cohort- and period-

specific terms. The trained model informs a counterfactual prediction exercise aiming to decompose

intergenerational differences in transport mode use frequencies into demographic as well as cohort-

and period-specific effects.1

1We note that counterfactual predictions are widely used in applied economics and the quantitative social sciences to
decompose group differences into different explanatory factors (see e.g. Fortin et al., 2011). In fact, the studies by
McDonald (2015) and Vij et al. (2017) also rely on counterfactual predictions to explain intergenerational differences
in transport mode use.
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We organise the remainder of this paper as follows: We review pertinent literature and describe

the data used for our analysis. We outline the modelling approach and present the estimation results.

To evaluate the predictive ability of the trained model, we perform posterior predictive checks. Then

we carry out the counterfactual prediction exercise and finally, we conclude.

2. Literature review

Initial research on intergenerational differences in young adults’ travel behaviour primarily relied

on descriptive analyses of a variety of mobility indicators such as mode-specific travel distances

and trip rates, licence-holding and car availability (e.g. Delbosc and Currie, 2013; Kuhnimhof et al.,

2011, 2012a,b). Descriptive analyses of mobility indicators are pivotal in identifying trends in travel

behaviour, yet they do not afford profound insights into the behavioural processes underlying the

observed changes in young adults’ travel behaviour. For this reason, a growing body of literature

employs disaggregate approaches to explain observed changes in young adults’ travel behaviour

(Brown et al., 2016; Delbosc and Currie, 2014; Hjorthol, 2016; Klein and Smart, 2017; McDonald,

2015; Thigpen and Handy, 2018; Vij et al., 2017).

Most disaggregate studies employ some form of period-cohort analysis to isolate the effects of

periods and cohorts on the examined dependent variables (Brown et al., 2016; Delbosc and Currie,

2014; Hjorthol, 2016; Klein and Smart, 2017; McDonald, 2015; Thigpen and Handy, 2018; Vij et al.,

2017). Periods are the points in time, at which measurements are taken; cohorts are groups of

individuals who were born in the same exogenously-defined time period. Period effects refer to

external changes in socio-cultural, socio-economic and socio-technical factors and are experienced

by all individuals, who are observed at the time the period effects in question occur (Yang, 2008).

Cohort effects, on the other hand, pertain to intergenerational differences in values, beliefs, attitudes

and preferences and are the consequence of unique socio-cultural, socio-economic and historical

experiences shared among individuals belonging to the same cohort (Ryder, 1965). Period and cohort

effects may be mediated by demographic effects, i.e. changes in lifestyles across cohorts (McDonald,

2015). For example, the decision to take up residence in the urban core rather than in a suburb

may be reflective of cohort-specific preferences or period-specific constraints. Thus, demographic

effects can be viewed as indirect effects absorbing period and cohort effects that manifest in shifts in

observable lifestyle orientations across cohorts.

Given the observed intergenerational differences in young adults’ travel behaviour, the question

arises as to what extent these changes are associated with either cohort or period effects: Do young

adults of Generation Y have inherently different travel preferences? Or, are the observed changes in

young adults travel behaviour reflective of broader societal shifts transcending generational cohorts?

By and large, evidence on the absolute and relative importance of cohort and period effects in

explaining the observed intergenerational differences in young adults’ travel behaviour is mixed. The

findings reported in the literature differ across behaviours, contexts and methods.

Two studies relying on household travel surveys conducted in Melbourne, Australia and respectively,

Norway suggest that declining licensing rates among young adults can be attributed to shifts in

underlying lifestyle preferences (Delbosc and Currie, 2014; Hjorthol, 2016). In a retrospective study

relying on data collected from a convenience sample, Thigpen and Handy (2018) find that driving

licence acquisition remains subject to unobserved intergenerational heterogeneity, when systematic
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differences in parental, attitudinal, social and regulatory variables are accounted for; the authors are,

however, unable to decompose the unobserved heterogeneity into cohort- and period-specific terms.

Using data sourced from the United States Panel Study of Income Dynamics, Klein and Smart (2017)

examine intergenerational differences in car ownership levels and find that declining car ownership

levels among members of Generation Y can be attributed to period effects in the form of economic

constraints.

Analysing data sourced from two cross-sections of the United States National Household Travel

Survey, Brown et al. (2016) find that higher levels of public transit use among young adults are mostly

linked to life-cycle, demographic and locational factors rather than to other period- or cohort-specific

effects. Using three cross-sections of the United States National Household Travel Survey, McDonald

(2015) estimates a linear regression model to explain young adults’ daily travel distances by car. In a

counterfactual prediction exercise asking what the level of car use would have been, had demographic,

cohort and period effects not been present, the author demonstrates that the decline in demand for

car travel can be decomposed into three distinct sources, namely lifestyle-related demographic shifts

that cut across all cohorts, other period-specific effects and cohort-specific effects. Lifestyle-related

demographic shifts are found to account for 10% to 25% of the decline in car travel; cohort effects

are shown to account for 35% to 50% of the decline; and period effects account for the remaining

40% of the decline. Finally, drawing from two cross-sectional household travel surveys of the San

Francisco Bay Area, United States, Vij et al. (2017) develop a latent class mode choice model to

explain observed changes in transport mode use in terms of underlying preference shifts. By means of

counterfactual prediction, the authors show that preference shifts have occurred across all considered

birth cohorts and have not been limited to one particular generational cohort. The authors conclude

that the observed overall reduction in car dependency in the considered study area can be attributed

to broader socio-cultural changes rather than to cohort-specific effects.

As a whole, the literature does not give a clear indication as to what extent either cohort or period

effects account for the observed intergenerational differences in young adults’ travel behaviour. While

one study attributes the observed intergenerational differences to changes in socio-demographic

factors rather than to cohort- or period-specific effects (Brown et al., 2016), another study suggests

that young adults of Generation Y respond to period-specific effects in the form of economic constraints

(Klein and Smart, 2017). Other studies underline the possibility of a cultural shift that may or may not

transcend generational cohorts (Delbosc and Currie, 2014; Hjorthol, 2016; Thigpen and Handy, 2018;

Vij et al., 2017). Finally, one study takes an intermediate position by demonstrating that the observed

intergenerational differences can be linked to both cohort and period effects as well as lifestyle-

related demographic shifts (McDonald, 2015). Another observation is that disaggregate studies of

intergenerational differences in young adults’ travel behaviour have focused on different aspects of

travel behaviour. A comparatively large set of studies investigates intergenerational differences in

licence-holding and car ownership (Delbosc and Currie, 2014; Hjorthol, 2016; Klein and Smart, 2017;

Thigpen and Handy, 2018). Two studies focus on either public transit use or car use (Brown et al.,

2016; McDonald, 2015). One study of intergenerational differences in transport mode use is not

limited to any one particular mode (Vij et al., 2017).

In that vein, the current paper aims to advance the literature’s understanding of the absolute and

relative importance of period and cohort effects in explaining intergenerational differences in transport

mode use among young adults. Our analysis draws from a rich data source containing information
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about the day-to-day travel behaviours of young adults of Generations X and Y in Germany during a

23-year period. Amongst other industrialised countries, Germany has been witness to changing travel

patterns among young adults (Kuhnimhof et al., 2011, 2012a,b). A flexible hierarchical Bayesian

multivariate Poisson log-normal model is used to jointly characterise daily trip rates by car, public

transit, bicycle and walking.

3. Data

3.1. Primary data source

The primary data source for our analysis is the German Mobility Panel (MOP), a longitudinal household-

based travel survey intended to capture long-term trends in the day-to-day travel behaviour of the

German population. The MOP has been conducted annually since 1994 and is designed as a rotating

panel survey to compensate for attrition and fatigue. Households regularly stay on the panel for three

consecutive years before being replaced by new households. The collected data include information

about socio-economic attributes of participating households and their members as well as a trip

diary, in which participating household members record details about all trips undertaken during a

week-long period in autumn. Zumkeller and Chlond (2009) describe the design of the MOP in more

detail.

3.2. Sample composition

In the present paper, we consider 23 MOP waves covering the period from 1994 to 2016. Given

our interest in the travel behaviour of young adults, we restrict our analysis to records from 1,846

individuals aged between 20 and 29 years old at the time of data collection. We define six five-year

birth cohorts ranging from 1965 to 1996, whereby the sixth cohort includes seven years, as the size

of a potential seventh cohort would be too small, when five-year brackets are used to define birth

cohorts. We note that defining five-year birth cohorts is a convention in demography (e.g. Yang,

2008). The resulting sample has a cross-classified structure where the data for each observation

period consist of varying proportions of records from individuals from different birth cohorts (see

Figure 1).

Each individual record is associated with a maximum of three trip diaries, each of which covers a

maximum of seven consecutive days. We exclude weekends from the analysis so that a maximum of

five diary days remain in each trip diary. For model validation, the sample is partitioned into training

and hold-out samples: We construct the training sample by randomly selecting a maximum of three

diary days from each trip diary, and in cases where a trip diary includes fewer than three diary days,

all reported diary days are assigned to the training sample. Any remaining diary days are assigned to

the hold-out sample. The constructed training and hold-out samples include 9,001 and, respectively,

5,721 diary days.

We observe that the sample sizes of individuals for each cohort and period are relatively small (see

Figure 1). In addition, it has been noted that self-selection and attrition are disproportionately high

among young adults (Eisenmann et al., 2018). For this reason, the considered data may not give

a perfect representation of the population of young adults in Germany at all time periods, even if

sampling weights were applied. There is, however, no apparent reason as to why any self-selection
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and attrition effects should be non-orthogonal to either cohort or period effects. Therefore, we argue

that any limitations pertaining to the limited representativity of the sample are offset by the richness

and consistency of the considered microdata.
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Figure 1: Sample composition by observation period and birth cohort (zero sample shares are
not shown)

3.3. Dependent variable

The dependent variable considered in our analysis is a four-variate vector of category counts cor-

responding to daily trip frequencies by the four transport modes car, public transit, bicycling and

walking. In the current paper, we examine daily mode use frequencies rather than another variable

such as daily travel distances by mode, as we are interested in explaining intergenerational differences

in mode-specific demand for mobility rather than in the mode-specific consumption of transportation

infrastructure and services.2 The daily mode use frequencies are derived from the trip diary data

of the MOP; business-related trips are excluded from the analysis. We acknowledge that tour-based

approaches can provide benefits over trip-based approaches (e.g. Krizek, 2003), but for consistency

with the original design of the MOP and with published studies relying on MOP data, we adhere to a

trip-based analysis approach.

Figure 2 shows the evolution of the mean number of trips by different transport modes and by

cohorts from 1994 to 2016 for the training sample; an additional category represents the mean

number of trips by all transport modes combined. In the considered observation period, the overall

daily trip rates decreased substantially from an average of 4.4 daily trips in 1998 to an average of

3.3 of daily trips in 2016. Moreover, the mean number of daily trips by car declined sharply from an

average of 3.0 trips in 1998 to an average of 1.7 trips in 2016. In turn, the daily trip rates by public

transportation increased considerably from an average of 0.1 daily trips to an average of 0.6 trips

2Clearly, considering other mobility indicators such as transport mode choices or mode-specific travel distances is equally
valid and may likely offer different perspectives on the problem studied.
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in 2016. Daily trip rates for bicycling and walking remained relatively stable during the considered

observation period. By and large, these observations are consistent with the literature (Kuhnimhof

et al., 2011, 2012b) and indicate an overall decrease in trip rates in combination with a modal shift

away from automobile-dependent travel to increasing public transport use. Figure 2 also suggests

substantial inter-cohort differences in transport mode use. For example, the mean daily trip rates by

public transportation are generally greater for individuals born in or after 1980. However, Figure 2

also suggests that the transport mode use of specific cohorts is not decoupled from the overall time

trend. For the cohort of young adults born between 1975 and 1979, the mean number of daily trips

by car decreased from an average of 3.3 daily trips in 1998 to an average of 2.0 daily trips in 2005;

in the same period, the overall number of daily trips by car also declined from an average of 3.0 daily

trips to an average of 2.2 daily trips.
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Figure 2: Mean number of trips by transport mode and cohort from 1994 to 2016 (training
sample only)

3.4. Explanatory variables

For our analysis, we consider a variety of explanatory variables pertaining to the socio-economic

attributes and the long-term travel decisions (household car ownership and licence-holding) of
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the studied individuals and their household. We restrict our analysis to variables that have been

consistently surveyed in all 23 considered MOP waves. Notably, income information has not been

surveyed until 2002 and is therefore not considered in our analysis.

To control for changes in mobility costs, we supplement the MOP data with information about

the price levels of petrol and public transportation services in each period. Information on petrol

prices is sourced from International Energy Agency (2016) and adjusted for inflation by dividing

the nominal prices for each year by the consumer price index values in the respective years. The

consumer price index for passenger transport services is used as a proxy for price levels of public

transportation services and is sourced from Federal Statistical Office Germany (2018); the price index

for passenger transport services is adjusted for inflation by dividing the nominal index values of each

year by the general consumer price index values in the respective years. The general consumer price

index assumes 2010 as reference year and is sourced from Federal Statistical Office Germany (2018).

Figure 3 shows the evolution of the means of all considered explanatory variables by cohort from

1994 to 2016. The variable “education level 1” indicates whether an individual has completed

secondary school without having obtained a university-entrance qualification; the variable “education

level 2” indicates whether an individual has completed secondary education and has also obtained a

university-entrance qualification. The variable “currently in education” denotes whether an individual

is currently attending an educational institution or is completing vocational training. The variable

“household with young children” denotes whether children under the age of ten years live in the

individual’s household. The variable “household in urban location” captures accessibility information.3

For the most part, the means of the considered explanatory variables are relatively stable during

the observation period. Notable exceptions are the means of the variables “education level 1” and

“education level 2”, which decrease and, respectively, increase substantially over periods and across

cohorts. The trend towards higher educational attainment is mirrored in the evolution of the means

of other lifestyle-related explanatory variables: The means of the variables “employed (full-time)”

and “currently in education” also decrease and, respectively, increase considerably over periods and

across cohorts. Altogether, Figure 3 suggests a profound shift in observable lifestyle orientations

across cohorts: On average, individuals belonging to later birth cohorts exhibit comparatively higher

rates of participation in education, attain higher levels of education and therefore enter the workforce

at a comparatively greater age. These observed changes in demographic factors are consistent with

the literature (see for example Brown et al., 2016; Chatterjee et al., 2018; Kuhnimhof et al., 2012b;

Garikapati et al., 2016; McDonald, 2015, and the literature referenced therein).

3The MOP data contain two kinds of accessibility information: First, the MOP data include information about the
settlement structure of the subnational entity, in which the respondent resides. This information is provided for different
subnational entities (regions, district, municipalities) in the form of scales with five to seventeen categories. Second, the
MOP data contain self-reported information about the ease of accessibility of different forms of public transportation
and other places of interest (shopping centres, cinemas, gyms etc.) from the respondent’s residence. This second type
of accessibility information comes with the known limitations of self-reported data. The variable “household with
young children” is derived from a nine-point scale characterising the settlement structure of the municipality, in which
the respondent resides, and subsumes categories nos. 1, 2, 3, 5, and 6 of this scale. During the development of the
hierarchical Bayesian multivariate Poisson log-normal model (see Section 5.1), we explored incorporating more refined
measures of accessibility, using both types of accessibility information, but did not obtain better outcomes in terms of
model tractability and fit. In the interest of parsimony, the variable “household in urban location” is therefore the only
variable capturing accessibility information in the final model specification presented in Section 5.

9



Driving licence 0.5 * petrol price [2010 EUR/litre] 0.5 * PT price index

Household with young children Household in urban area 0.25 * no. of cars in household

Employed (part−time) Employed (full−time) Currently in education

Female Education level 1 Education level 2

19
95

20
00

20
05

20
10

20
15

19
95

20
00

20
05

20
10

20
15

19
95

20
00

20
05

20
10

20
15

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Year

M
ea

n

Cohort

All cohorts

1965−1969

1970−1974

1975−1979

1980−1984

1985−1989

1990−1996

Figure 3: Means of independent variables by cohort from 1994 to 2016

4. Modelling approach

4.1. Overview and background

Motivated by the cross-classified multi-level structure of the MOP data, we devise a hierarchical

Bayesian multivariate Poisson log-normal model for the analysis of daily trip frequencies by transport

mode. The multivariate Poisson log-normal model (Chib and Winkelmann, 2001) is a flexible

multivariate count data model, which accommodates repeated observations for the same analytical

unit, unrestricted correlation across categories of counts and overdispersion in the marginal counts. By

contrast, other well-established multivariate count data models are less flexible (see e.g. Zhang et al.,

2017): The multinomial model does not account for overdispersion and can only capture negative

correlation in the response data; the negative multinomial model can account for overdispersion, but

only allows for positive correlation in the response data.

The term hierarchical Bayesian refers to hierarchical models that are estimated using Bayesian

methods. Hierarchical models (Gelman and Hill, 2006; Gelman et al., 2013) appreciate the multi-

level structure inherent to many empirical datasets. For example, in a typical household travel

survey, observations are nested within individuals and individuals are nested within households. In a

hierarchical model, parameters are allowed to vary across the units of a level and the parameters
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are given their own models to infer the distribution of the parameters at each level. A special case

of a hierarchical model is the cross-classified multi-level model, which recognises that a unit can

belong to multiple clusters at a time. The MOP data are an instance of a dataset with a cross-classified

multi-level structure: Observations are nested within individuals and individuals are nested within

cohorts; however, observations are also nested within periods. The application of a hierarchical model

that reflects the cross-classified multi-level structure of the MOP data induces correlation between

observations within nests and allows for the decomposition of the total variance of parameters of

interest into level-specific terms.

The complexity of many hierarchical models precludes the application of classical inference methods.

The Bayesian approach, however, lends itself well to the estimation of hierarchical models, as the

unit-level parameters can be viewed as unknown quantities whose posterior distribution is learnt by

combining prior information about the distribution of the latent quantities with the observed data

(see e.g. Gelman et al., 2013, for a general treatment).

In the following subsection, we present the basic formulation of the multivariate Poisson log-normal

model, before we extend the basic model in Section 4.3 to account for the cross-classified multi-level

structure of the MOP data.

4.2. Multivariate Poisson log-normal model

The multivariate Poisson log-normal model (Chib and Winkelmann, 2001) is established as follows: For

each individual n ∈ {n, . . . , N} in the sample, Rn independent measurements indexed by r ∈ {1, . . . , Rn}
are taken. Each measurement is a J -variate vector yn,r =

�

yn,r, j

	J
j=1 of counts on J categories indexed

by j ∈ {1, . . . , J}. Furthermore, ξn =
�

ξn, j

	J
j=1 is a collection of individual- and category-specific

random effects drawn from a multivariate normal distribution with zero mean and unrestricted

covariance matrix Σ, i.e.

ξn ∼ N(0,Σ), n= 1, . . . , N . (1)

The random effects ξn play an integral role in the multivariate Poisson log-normal model: They induce

correlation between measurements for the same individual and allow for correlation across categories.

Moreover, the random effects account for overdispersion when Σ j, j > 0, where Σl,k denotes element

(l, k) of Σ.

Conditional on category-specific parameters β j and random effect ξn, j , the probability distribution

of count yn,r, j pertaining to category j, individual n and measurement r is Poisson, i.e.

P(yn,r, j|β j ,ξn, j , Xn,r, j) =

�

λn,r, j

�yn,r, j exp
�

−λn,r, j

�

yn,r, j!
, (2)

with

lnλn,r, j = Xn,r, jβ j + ξn, j , (3)

where Xn,r, j is a row-vector of covariates including a constant. The conditional probability of the

sequence of measurements for individual n is obtained by iterating (2) over categories and measure-

ments:

P(yn|β j ,ξn, Xn) =
Rn
∏

r=1

J
∏

j=1

P(yn,r, j|β j ,ξn, j , Xn,r, j), (4)
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where yn =
�

yn,r

	Rn

r=1 and Xn =
¦

�

Xn,r, j

	J
j=1

©Rn

r=1
. The unconditional probability is obtained by

integrating out the unobserved random effects ξn from (4):

P(yn|β j ,Σ, Xn) =

∫

P(yn|β j ,ξn, Xn) f (ξn|Σ)dξn. (5)

Iterating (5) over all individuals in the sample yields the likelihood of the multivariate Poisson

log-normal model:

L (y |β ,Σ, X) =
N
∏

n=1

P(yn|β j ,Σ, Xn). (6)

We note that the multivariate Poisson log-normal model receives its name from the fact that (5) can

be viewed as a multivariate log-normal mixture of Poissons, because
�

λn,r, j

	J
j=1 ∼ N

�

�

Xn,r, jβ j

	J
j=1 ,Σ

�

such that
�

lnλn,r, j

	J
j=1 is multivariate log-normally distributed (Aitchison and Ho, 1989; Chib and

Winkelmann, 2001).

To assess the instantaneous effect of an explanatory variable on the predicted count, marginal

effects can be calculated. In the multivariate Poisson log-normal, marginal effects are given by

∫

∂ λn,r, j

∂ Xn,r, j
f (ξn, j|Σ j, j)dξn, j . (7)

This integration cannot be expressed in closed form and therefore, marginal effects need to be

simulated or can be obtained as a by-product of posterior sampling.

Finally, we highlight that the multivariate Poisson log-normal model is an appealing model to char-

acterise transport mode use frequencies, as the conditional distribution of counts in the multivariate

Poisson log-normal model can be represented as a two-stage process where an individual first decides

on a budget for consumption and subsequently divides the budget between categories (Gopalan et al.,

2013). In lieu of

yn,r, j|ξn, j ∼ Poisson
�

λn,r, j

�

, j = 1, . . . , J , (8)

which is a re-expression of (2), it is possible to write

zn,r |ξn ∼ Poisson

 

J
∑

j=1

λn,r, j

!

, (9)

yn,r |ξn ∼Multinomial



zn,r ,

(

λn,r, j
∑J

j′=1λn,r, j′

)J

j=1



 , (10)

where zn,r ≡
∑J

j=1 yn,r, j . However, to add a caveat, we note that the multivariate Poisson log-normal

model gives a probabilistic representation of total and category-specific demand, but it is not a

utility-consistent model per se (Bhat et al., 2015).

4.3. Extension

The basic formulation of the multivariate Poisson log-normal model assumes that the regression

parameters β j are invariant across analytical and observational units. To accommodate unobserved

heterogeneity in the regression parameters β j , we devise a hierarchical formulation that reflects the

12



cross-classified structure of the MOP data. To be specific, the generic category-specific parameters β j

are replaced by category- and measurement-specific parameters βn,r, j . We let

βn,r, j = β0, j + vc(n), j + wt(n,r), j , (11)

where β0, j is a fixed parameter representing the mean of βn,r, j. vc(n), j and wt(n,r), j are random

parameters representing cohort- and, respectively, period-specific perturbations around the mean.

Here, we use c ∈ {1, . . . , C} to index cohorts and t ∈ {1, . . . , T} to index periods. c(n) is a mapping

indicating individual n’s cohort such that c(n) = c if n belongs to cohort c. Similarly, t(n, r) provides

a mapping from measurement r for individual n to the period in which the measurement was taken.

vc, j and wt, j are both realisations from normal distributions with zero means and covariance matrices

whose off-diagonal elements are restricted to zero, i.e.

vc, j ∼ N
�

0, diag
�

ζ j

��

, c = 1, . . . , C , j = 1, . . . , J (12)

wt, j ∼ N
�

0, diag
�

η j

��

, t = 1, . . . , T, j = 1, . . . , J , (13)

with ζ j and η j denoting vectors of variances. Hence, the distribution of βn,r, j is

βn,r, j ∼ N
�

β0, j , diag
�

ζ j

�

+ diag
�

η j

��

, (14)

such that the total variation of βn,r, j is decomposed into within-cohort variance ζ j and within-period

variance η j .

4.4. Model inference

The Bayesian inference approach requires us to specify prior distributions for all parameters. For

fixed parameters, we employ N(0,5) as a weakly-informative prior. The choice of a prior for scale

parameters in a hierarchical model requires careful consideration, especially when the number of

groups is small (Gelman et al., 2013). In the present application, we follow Chung et al. (2013) and

employ Gamma(2, 0.1) as a weakly-informative prior for all scale parameters. Since Gamma(2, 0.1)

is not consistent with zero, the choice of this prior reflects the belief that the scale parameters in

question are non-zero, which in turn concurs with our motivation to employ a hierarchical model in

the current empirical context. Following the examples of Gelman (2006) and Polson and Scott (2012),

we also explored the use of half-Cauchy priors. The half-Cauchy distribution has appreciable mass

near the origin and thus favours small values, but its heavy tail also allows for large estimates if the

likelihood provides support for such estimates. In the present application, we found that the Markov

Chains of the posterior draws of some scale parameters exhibited poor mixing, when a half-Cauchy

prior was used, whereas all chains converged nicely, when the Gamma(2,0.1) prior was employed.

For numerical reasons, we do not directly estimate the covariance matrix Σ, but rather a scale vector

σ and the Cholesky factor L of the correlation matrix Ω. To this end, we exploit the relationship

Σ= DΩD with D = diag(σ) and Ω= LL′. We let σ ∼ Cauchy(0,5) and a suitable prior for L is the

LKJ-Cholesky distribution (Lewandowski et al., 2009) with scale four.

We implement the hierarchical Bayesian multivariate Poisson log-normal model in Stan (Carpenter

et al., 2016), a probabilistic programming language, which interfaces the No-U-Turn sampler (Hoffman

and Gelman, 2014). For the estimation of all models presented in this paper, the sampler is executed
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with four parallel Markov chains and 4,000 iterations for each chain, whereby the initial 2,000

iterations of each chain are discarded for burn-in. Convergence is assessed by considering the Gelman-

Rubin diagnostic values (Gelman and Rubin, 1992) and by visually inspecting the trace plots of the

posterior draws of selected parameters.

5. Results

5.1. Final model specification

The final model specification presented in this section is the product of an extensive specification

search and represents a constrained implementation of the general modelling approach outlined

in the previous section. To be specific, the final model specification does not allow for unobserved

heterogeneity in all regression parameters and treats selected regression parameters as fixed. The

decision to treat a regression parameters as either fixed or random is motivated by both theoretical

and empirical considerations. In the cases of covariates that pertain to price levels, car availability

and education, we do not hypothesise that the sensitivities to these variables vary across either

cohorts or periods all else unchanged. In the cases of the covariates indicating licence-holding and

part-time employment, we found that a lack of variation in sensitivities with respect to these variables

caused the sampler to slow down and the respective Markov chains exhibited poor mixing, when the

respective regression parameters were treated as random; consequently, the regression parameters in

question are treated as fixed parameters in the final model specification.

Furthermore, we note that age is not considered as an explanatory variable in our analysis because

of the well-known age-period-cohort identification problem. Any model aiming to jointly identify age,

period and cohort effects is not identifiable, because the identity age = period−cohort implies perfect

collinearity between age, period and cohort effects. Mechanical solutions to the age-period-cohort

identification problem are generally ineffective and therefore, constraints must be imposed on one set

of effects. In the present application, we assume that age effects are fixed to zero. We argue that for

the stratum of young adults aged between 20 and 29 years old, economic factors and lifestyle factors

have more prominent effects on travel behaviour than any effects that are immediately associated

with an individual’s age. For more details on the issues associated with the joint modelling of age,

period and cohort effects, we refer to the literature (Bell and Jones, 2013, 2014).

5.2. Overall model evaluation and model selection

To quantify the benefits of accommodating unobserved heterogeneity between both cohorts and

periods, we allow the parameters to vary one level at a time and also estimate a basic null model, which

only accounts for unobserved inter-individual differences, but not for unobserved between-cohort

and between-period differences. The null model is therefore equivalent to a standard multivariate

Poisson log-normal model (see Section 4.2). As shown in Table 1, we contrast the performance

of the model variants by considering in-sample and predictive log-likelihood values as well as the

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, we apply

likelihood-ratio tests to assess whether the goodness of fit of the hierarchical Bayesian multivariate

Poisson log-normal model with both cohort and period random effects is statistically better than the

goodness of fit of each of the competing models. Note that the competing models are nested within
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the hierarchical Bayesian multivariate Poisson log-normal model with both cohort and period random

effects, as the competing models can be obtained by constraining some of the scale parameters to

zero.

As seen in Table 1, the hierarchical Bayesian multivariate Poisson log-normal model with both

cohort and period random effects outperforms the competing models in terms of in-sample and

predictive log-likelihood values; the likelihood-ratio tests indicate that the goodness of fit of the

hierarchical Bayesian multivariate Poisson log-normal model with both cohort and period random

effects is statistically better than the goodness of fit of each of the competing models. We also observe

that the hierarchical Bayesian multivariate Poisson log-normal model with only period random effects

yields better in-sample and predictive log-likelihood values than the hierarchical Bayesian multivariate

Poisson log-normal model with only cohort random effects; a possible explanation for these differences

is that the model with only period effects allows for greater distributional flexibility than the model

with only cohort effects, as there are 23 periods and only six exogenously-defined birth cohorts in the

considered data.

The information criteria give divergent indications of which model variant is superior. The Akaike

Information Criterion suggests that the model with both cohort and period random effects is the best

model. However, the Bayesian Information Criterion, which favours parsimony, indicates that the

model with only period effects should be preferred. We acknowledge that the model with only period

random effects may provide a more parsimonious representation of the unobserved heterogeneity

of the data. Yet, the model with both cohort and period random effects performs better in terms of

in-sample fit and out-of-sample predictive ability. For these reasons, our subsequent discussion and

analysis focus on the more complex model variant.

Null CRE PRE CRE + PRE

No. of parameters 50 74 74 98

Log-likelihood

In-sample −31,649.7 −31,553.2 −31,171.2 −31,116.9

Hold-out −21,976.4 −21,933.1 −21,833.1 −21,817.2

AIC 63,399.4 63,254.4 62,490.4 62,429.8

BIC 63,754.7 63,780.2 63,016.2 63,126.1

Likelihood-ratio test w.r.t. CRE + PRE

χ2 1065.6 872.6 108.6

d f 48 24 24

p < 0.001 < 0.001 < 0.001

Note: CRE = cohort random effects; PRE = period random effects.

Table 1: Comparison of model specifications with different levels of parameter variation

5.3. Parameter estimates and marginal effects

The estimation results for the hierarchical Bayesian multivariate Poisson log-normal model with cohort

and period random effects are given in Table 2. The reported estimation results include the posterior

means of the fixed regression parameters as well as of the location and scale hyper-parameters of

the random regression parameters. Based on the posterior means of the scale hyper-parameters, the

total variation of the random regression parameters is decomposed into individual-, cohort-, and
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period-specific terms. To assess the instantaneous effect of the considered explanatory variables on

mode use frequencies, marginal effects can be calculated. As can be seen from (7), marginal effects

are computed for each observational unit. The rightmost column of Table 2 gives the mean marginal

effects for the entire sample. In addition, Figure 4 shows the mean marginal effects by cohort. In the

subsequent paragraphs, we describe noteworthy estimation results for each category of counts.

First, we consider the estimation results for the sub-model characterising daily car use frequencies.

We observe that for all random regression parameters, with the exception of the constant, the between-

cohort variation is greater than the between-period variation. Next, we consider the estimates of

the mean marginal effects. Interestingly, the overall mean marginal effect of the variable “female”

is positive and the evolution of the corresponding cohort-specific means is comparatively stable.

However, the mean marginal effect of the variable “education level 2” changes quite substantially

across cohorts. While the mean marginal effect of this covariate is approximately zero for birth

cohort 1965–1969, the mean marginal effect is approximately −0.25 for birth cohort 1990–1996.

Interestingly, the mean marginal effects for the variables “driving licence” and “no. of cars in

household” decrease substantially across the considered birth cohorts. This implies that on average,

given the same mobility resources and all else being equal, individuals belonging to later birth cohorts

undertake fewer daily trips by car compared to individuals from earlier birth cohorts.

Second, we consider the estimation results for the sub-model characterising daily trips by public

transportation. Again, we observe that for all random regression parameters, with the exception of

the constant, the between-cohort variation is greater than the between-period variation. The mean

marginal effects of most explanatory variables are relatively stable across the examined birth cohorts.

A noteworthy exception is the mean marginal effect of the variable “household in urban location”.

For birth cohort 1965–1969, the mean marginal effect is approximately 0.25, but individuals born in

or after 1980, the mean marginal effect is approximately 0.75. This implies that on average, given

the same residential location and all else being equal, individuals born in or after 1980 undertake

more daily trips by public transportation than individuals born before 1980.

Third, we consider the estimation results for the sub-model characterising daily trips by bicycle.

Again, we observe that for most random regression parameters, the between-cohort variation is greater

than the between-period variation. Noteworthy exceptions are the random regression parameters

pertaining to the intercept and the explanatory variable “currently in education”. For the most part,

the mean marginal effects are relatively stable across the considered birth cohorts. A noteworthy

exception is the mean marginal effect of the variable “education level 2”. For birth cohort 1965–1969,

the mean marginal effect of this variable is approximately 0.25, but for individuals born in or after

1980, the mean marginal effect is approximately 0.50. This implies that on average, given the same

level of education and all else being equal, individuals born in or after 1980 undertake more daily

trips by bicycle than individuals born before 1980.

Fourth, we consider the estimation results for the sub-model characterising daily walking trips. We

observe that for all random regression parameters, with the exception of the constant, the between-

cohort variation is greater than the between-period variation. All mean marginal effects are relatively

stable across the considered birth cohorts.

Finally, Figure 5 visualises the estimated correlation structure across daily mode use frequencies.

On the whole, the estimated correlation parameters are consistent with common mode use patterns:

For example, counts of daily trips by car are negatively correlated with counts of daily trips by each of
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the remaining modes; likewise, counts of daily trips by public transit and counts of daily walking trips

are weakly and positively correlated. Moreover, we stress that both positive and negative correlation

parameters are estimated, which in turn underlines the benefits of the multivariate Poisson log-normal

model, which is able to capture unrestricted correlation patterns in the response data.
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Parameter estimates

Scales PoTV due to...

Covariate Location IRE CRE PRE BCV BPV MME

Car
Constant −0.0469 0.6860∗ 0.1930∗ 0.0820∗ 0.0724 0.0131
Female 0.0694 0.0986∗ 0.0726∗ 0.6483 0.3517 0.1519
Employed (full-time) 0.1209 0.1761∗ 0.0827∗ 0.8191 0.1809 0.2650
Currently in education 0.0367 0.1079∗ 0.1035∗ 0.5212 0.4788 0.0632
Education level 1 0.1277 0.1591∗ 0.0552∗ 0.8925 0.1075 0.2894
Education level 2 −0.0338 0.2058∗ 0.0905∗ 0.8379 0.1621 −0.0743
Employed (part-time) 0.1177∗ 0.2631
Household with young children 0.1203∗ 0.2688
Household in urban location −0.1963∗ −0.4386
Petrol price [2010 EUR/litre] −0.3808 −0.8509
Driving licence 0.7061∗ 1.5780
No. of cars in household 0.2198∗ 0.4911
Public transit
Constant −3.7126∗ 1.7387∗ 0.6010∗ 0.1312∗ 0.1062 0.0051
Female 0.1390 0.4057∗ 0.1904∗ 0.8196 0.1804 0.1093
Employed (full-time) −0.1855 0.4512∗ 0.2910∗ 0.7063 0.2937 −0.0620
Currently in education 0.4968∗ 0.2928∗ 0.2318∗ 0.6148 0.3852 0.2718
Education level 1 −0.6380∗ 0.4649∗ 0.1810∗ 0.8683 0.1317 −0.3353
Education level 2 −0.0689 0.5055∗ 0.2233∗ 0.8367 0.1633 −0.0385
Employed (part-time) 0.2590∗ 0.1448
Household with young children −0.4670∗ −0.2611
Household in urban location 1.1213∗ 0.6269
PT price index 0.5872 0.3282
Bicycling
Constant −5.5075∗ 2.8790∗ 1.0766∗ 0.5647∗ 0.1187 0.0327
Female −0.0911 0.9536∗ 0.4730∗ 0.8025 0.1975 −0.0459
Employed (full-time) 0.0861 0.7345∗ 0.6598∗ 0.5535 0.4465 0.0275
Currently in education 0.2668 0.5900∗ 0.8186∗ 0.3419 0.6581 0.0753
Education level 1 0.7190 1.2543∗ 0.5079∗ 0.8591 0.1409 0.2987
Education level 2 1.1992∗ 0.9139∗ 0.5131∗ 0.7603 0.2397 0.4413
Employed (part-time) 0.5839∗ 0.2047
Household with young children −0.1447 −0.0507
Household in urban location 0.3428∗ 0.1202
Walking
Constant −0.4855∗ 1.3117∗ 0.4020∗ 0.0744∗ 0.0856 0.0029
Female 0.1669 0.4003∗ 0.1510∗ 0.8755 0.1245 0.1257
Employed (full-time) −0.5362∗ 0.1703∗ 0.0995∗ 0.7455 0.2545 −0.3850
Currently in education −0.4206∗ 0.2552∗ 0.2304∗ 0.5510 0.4490 −0.2850
Education level 1 −1.0123∗ 0.3554∗ 0.1280∗ 0.8853 0.1147 −0.6971
Education level 2 −0.4934∗ 0.3393∗ 0.1376∗ 0.8588 0.1412 −0.3379
Employed (part-time) −0.2880∗ −0.2028
Household with young children 0.5734∗ 0.4038
Household in urban location 0.2213∗ 0.1558

Note: The reported parameter estimates are posterior means. ∗ at least 95% of the posterior mass exclude zero. IRE =
individual random effect; CRE = cohort random effect; PRE = period random effect; PoTV = proportion of total variation;
BCV = between-cohort variation; BPV = between-period variation; MME = mean marginal effect.

Table 2: Estimation results and mean marginal effects for the hierarchical Bayesian multivari-
ate Poisson log-normal model with cohort and period random effects

18



● ● ●

●

●

●

●

●

●

● ●
●

● ●
●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ● ●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

● ● ●

●
●

●

●

●

●

Driving licence No. of cars in household PT price index

Household with young children Household in urban location Petrol price [2010 EUR/litre]

Education level 1 Education level 2 Employed (part−time)

Female Employed (full−time) Currently in education

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

19
65

−
19

69

19
70

−
19

74

19
75

−
19

79

19
80

−
19

84

19
85

−
19

89

19
90

−
19

96

−0.4

−0.2

0.0

0.2

0.4

−0.2

0.0

0.2

−1.0

−0.9

−0.8

−0.7

0.2

0.3

0.4

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

−0.5

0.0

0.5

0.40

0.45

0.50

0.55

0.60

−0.3

−0.2

−0.1

0.0

0.1

0.2

−0.8

−0.4

0.0

0.4

−0.2

0.0

0.2

0.4

1.4

1.6

1.8

2.0

Cohort

M
ea

n 
m

ar
gi

na
l e

ffe
ct

Mode
● Car

Public transit

Bicycle

Walking

Figure 4: Mean marginal effects by cohort for the hierarchical Bayesian multivariate Poisson
log-normal model with cohort and period random effects
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fects (the reported values are posterior means; * at least 95% of the posterior mass
exclude zero)

6. Posterior predictive checking

To assess the predictive ability of the trained hierarchical Bayesian multivariate Poisson log-normal

model, we perform posterior predictive checks (Gelman et al., 2013, 1996). In a posterior predictive

check, model predictions are compared to observed data or to quantities derived from observed

data. In the present application, posterior predictive checks are performed on the hold-out sample

and cumulative trip counts by mode and period are considered as test quantities. The observed test

quantities are given by

zt, j ≡
N
∑

n=1

Rn
∑

r=1

[t(n, r) = t] · yn,r, j , t = 1, . . . T, j = 1, . . . J , (15)

where [a = b] denotes the Kronecker delta, which gives one if a = b is true and zero otherwise. We

argue that these test quantities have pivotal policy-relevance, as cumulative trip counts by mode

inform modal split calculations.

First, we conduct a graphical posterior predictive check, in which the posterior distribution of the

test quantities for unseen data is compared with the actual values of the test quantities for the same

unseen data. As seen in Figure 6, the observed values closely overlap with the posterior distributions

of the corresponding predicted values. In the case of car and public transit, the observed values are

always located within the 90% central credible intervals of the corresponding predicted values. By

contrast, in the cases of bicycling and walking, few observed values are located outside of the 90%

central credible intervals of the corresponding predicted values.

20



●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

● ●

● ●
●

●

●
●

●

● ● ●

●

●

●

●

●
● ● ●

●

● ●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

● ●

●

●
●

●

●

C
ar

P
ublic transit

B
icycle

W
alking

1995 2000 2005 2010 2015

400

600

800

1000

50

100

150

200

250

40

80

120

160

50

100

150

200

250

Year

C
um

ul
at

iv
e 

tr
ip

 c
ou

nt

●●●●

Observed

Predicted (mean)

Predicted (5th percentile)

Predicted (95th percentile)

Figure 6: Posterior predictive check on the cumulative trip counts by mode and period for the
hold-out sample

To quantify the overlap between the predicted and the observed test quantities, we perform a

numerical posterior predictive check. As a test statistic, we consider Pearson’s (1900) χ2-discrepancy:

χ2(z,θ ) =
T
∑

t=1

J
∑

j=1

�

zt, j − E(zt, j|θ )
�2

E(zt, j|θ )
, (16)

where E(zt, j|θ ) =
∑N

n=1

∑Rn
r=1 [t(n, r) = t]·E(yn,r, j|θ ) =

∑N
n=1

∑Rn
r=1 [t(n, r) = t]·λn,r, j and θ denotes

the collection of all model parameters. The test statistic χ2(z,θ ) represents the normalised sum

of squared deviations between the observed and predicted cells of a contingency table giving trip

frequencies by mode and period. χ2(z,θ ) can be assumed to be approximately χ2
d f -distributed with

d f = (T − 1) · (J − 1) = (23− 1) · (4− 1) = 66 degrees of freedom. As both the test statistic and

the tail-area probability of χ2
d f depend on the model parameters θ , the posterior predictive p-value

(Meng, 1994) is given by:

pb(z) =

∫

P
�

χ2
d f ≥ χ

2(z,θ )
�

P(θ |y , X)dθ . (17)

This posterior predictive distribution is easily obtained as a by-product of posterior sampling. In the

present application, the posterior mean of pb(z) is equal to 1.000. Hence, we cannot reject the null

hypothesis that the observed cumulative mode use frequencies are the same as the predicted ones.

To conclude, graphical and numerical posterior predictive checks show that the trained hierarchical

Bayesian multivariate Poisson log-normal model performs very well at predicting the considered test

statistic for external data. However, to add caveat, we acknowledge that the hold-out data for the
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posterior predictive check come from the same set of individuals whose other observations were used

to train the model. Ideally, posterior predictive checks would be performed on external data from a

new set of individuals. Yet, in the present application, the relatively small sample sizes of individuals

for each cohort and period preclude such an approach.

7. Counterfactual analysis

7.1. Overview

Having established that the hierarchical Bayesian multivariate Poisson log-normal model with cohort

and period random effects fares well at prediction, we follow the example of McDonald (2015) and

perform a counterfactual prediction exercise to decompose intergenerational differences in daily trip

frequencies by different modes into three sources of change, namely demography- as well as period-

and cohort-specific effects.

In principle, period effects refer to external changes in socio-cultural, socio-economic and socio-

technical factors and are experienced by all individuals, who are observed at the time the period

effects in question occur (Yang, 2008). By contrast, cohort effects pertain to inter-generational

differences in values, beliefs, attitudes and preferences and are the consequences of unique socio-

cultural, socio-economic and historical experiences shared among individuals from the same birth

cohort (Ryder, 1965). Demographic effects refer to changes in lifestyles across cohorts and mediate

cohort and period effects (McDonald, 2015). For example, differences in education levels across

cohorts may be reflective of both cohort and period effects: On the one hand, different generational

cohorts may attach varying levels of importance to higher education; on the other hand, changes in

the labour market as well as in the cost and quality of higher education over time may affect young

adults’ participation in higher education.

Here, we argue that demographic effects manifest in differences in transport mode use across

cohorts due to observable differences in demographic characteristics across cohorts, whereas period

effects manifest in differences in transport mode use over time due to changes in macro-economic

factors, i.e. the price levels of petrol and public transportation services, as well as in unobserved

behavioural factors, i.e. the regression parameters, across periods. Cohort effects manifest in

differences in transport mode use across cohorts due to changes in unobserved behavioural factors,

i.e. the regression parameters, across cohorts.

7.2. Method

The counterfactual prediction exercise is implemented as follows: To account for changes in demo-

graphic factors across Generations X and Y, we randomly select two subsamples of 250 individuals

each from the total sample. The first random subsample is composed of young adults born before

1980 and therefore reflects the typical demographic characteristics of Generation X; analogously,

the second random subsample is composed of young adults born in or after 1980 and therefore

reflects the typical demographic characteristics of Generation Y. For each of these two subsamples,

we predict the mean number of daily trips by different transport modes in different time periods

and for different birth cohorts. Recall that the regression parameters in the hierarchical Bayesian

multivariate Poisson log-normal model are cohort- and period-specific (see Section 4.3). In the
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counterfactual prediction exercise, we configure the regression parameters such that each individual

from each random subsample is effectively pseudo-observed in each time period and in each birth

cohort. Technical details concerning the computation of the counterfactual predictions are provided

in Appendix A.1.

With the exception of the explanatory variables pertaining to the price levels of petrol and public

transportation services, the values of the explanatory variables remain unchanged in each prediction

for each subsample. For the price levels of petrol and public transportation services, the values of the

period in question are used to systematically account for fluctuations in these variables over time. As

a consequence, the reported period effects are inclusive of fluctuations in the price levels of petrol

and public transportation services. We highlight that the counterfactual analysis does not explicitly

account for changes in other factors that may change over periods and cohorts such as differences in

disposable incomes or changes in the transport system, because this information is not available to us.

Recall that the model includes constants, which capture the average effect of all excluded factors.

Since the constants are allowed to vary across cohorts and periods, the average effect of all excluded

factors can be absorbed into both cohort- and period-specific effects. However, excluded factors

may also capture changes in demographic characteristics across cohorts such that the measurement

of demographic effects is also affected. We re-iterate that demographic effects cannot be entirely

separated from period and cohort effects, as differences in demographic characteristics across cohorts

can be manifestations of both period-specific constraints and cohort-specific preferences.

The counterfactual predictions inform a Blinder-Oaxaca decomposition for non-linear models

(Bauer and Sinning, 2008; Blinder, 1973; Oaxaca, 1973) in order to systematically decompose

intergenerational differences in daily trip frequencies by different modes into demography- as well as

period- and cohort-specific terms. In principle, a Blinder-Oaxaca decomposition can be carried out

for any combination of target and reference cohorts and periods, but for the sake of brevity, we focus

on differences between the two larger generational cohorts, when examining cohort differences, and

on differences between the years 1998 and 2016, when examining period effects. We note that 1998

is the year in which the greatest mean number of trips by car are observed (see Section 3.3), while

2016 is the most recent survey year available for our analysis.

The Blinder-Oaxaca decomposition is implemented as follows: We treat the prediction results for

subsample 1, year 1998, cohort 1965–1979 as a baseline, i.e. we ask what the mean predicted daily

trip frequencies would be for a sample of individuals with demographic characteristics reflective of

those born between 1965 and 1979, if the sample was observed in 1998 and if the sensitivities to the

explanatory variables were the same as for individuals born between 1965 and 1979. The baseline

is then compared against three counterfactual scenarios: In the first scenario (DE), we ask what

the mean predicted daily trip frequencies would be, if the sample was replaced by another sample

of individuals with demographic characteristics reflective of those born between 1980 and 1996,

while the sample was still observed in 1998 and while the sensitivities to the explanatory variables

were still the same as for individuals born between 1965 and 1979. In the second scenario (DE +

PE), we ask what the mean predicted trip frequencies would be, if the sample from the first scenario

was observed in 2016, while the sensitivities to the explanatory variables were still the same as for

individuals born between 1965 and 1979. Finally, the third scenario (DE + PE + CE) asks what

the mean predicted daily trip frequencies would be for a sample of individuals with demographic

characteristics reflective of those born in or after 1980, if the sample was observed in 2016 and if
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the sensitivities to the explanatory variables were the same as for individuals born in or after 1980.

Stated succinctly, the first scenario (DE) asks what the mean predicted daily trip frequencies would

be, if only demographic effects were at play; the second scenario (DE + PE) additionally accounts

for period effects; and the third scenario (DE + PE + CE) factors in all three—demographic, period

and cohort—effects. Technical details concerning the implementation of this specific Blinder-Oaxaca

decomposition are provided in Appendix A.2.

7.3. Results

Figure 7 visualises the mean predicted number of daily trips by mode, cohort, period and subsample.

We report the mean predicted number of daily trips for each of the six exogenously-defined birth

cohorts as well as for two additional, larger generational cohorts comprising the years from 1965

to 1979 and from 1980 to 1996 respectively; the two larger generational cohorts therefore broadly

correspond to Generations X and Y.4 Moreover, Table 3 enumerates the results for the Blinder-Oaxaca

decomposition. Based on Figure 7 and Table 3, we discuss noteworthy prediction results for each

transport mode.

First, we consider the prediction results for the mean daily trip frequencies by car. Figure 7 suggests

that the decline in the mean predicted number of daily trips by car from 1998 to 2016 can be largely

attributed to period effects and to smaller extents to demographic and cohort effects. The results

given in Table 3 confirm this observation. When all three—demographic, period and cohort—effects

are factored in, the decrease in the mean predicted number of daily trips by car amounts to 1.50

relative to the base case. Two thirds of the total decrease can be ascribed to period effects, while the

remainder of the decrease can be attributed in roughly equal parts to demographic and cohort effects.

Second, we consider the prediction results for the mean daily trip frequencies by public transit.

Figure 7 suggests that the increase in the mean number of daily trips by public transit from 1998 to

2016 can be largely ascribed to cohort effects. The results given in Table 3 confirm this observation.

Relative to the baseline, the increase in the mean predicted number of daily trips by public transit is

0.14, when all three effects are factored in. Cohort effects explain the greatest share of this increase.

The contribution of cohort effects to the total increase is 0.17 daily trips, but the total change is

slightly less than 0.17 daily trips due to the presence of negative period effects.

Third, we consider the prediction results for the mean number of daily trips by bicycle. As can be

seen in Table 3, the increase in the mean predicted number of daily trips by bicycle is 0.52 relative

to the base case, when all three effects are factored in. Cohort effects account for 42% of the total

increase, while demographic and period effects each account for 29% of the total increase.

Furthermore, we only find a marginal change in the mean predicted number of daily walking trips

from 1998 to 2016 relative to the baseline, when all three effects are factored in, as period effects are

neutralised by negative cohort effects.

4Note that the cohort effects reported for the two larger generational cohorts, which broadly correspond to Generations X
and Y, are unaffected by the decision to consider five-year birth cohorts (see Section 3.2), as it is not critical whether
the aggregation occurs over many small or over few large birth cohorts.
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Figure 7: Mean predicted number of daily trips by mode, cohort, period and subsample

Counterfactual scenarios

Baseline DE DE + PE DE + PE + CE

Mode z̄0 z̄1 z̄1 − z̄0 z̄2 z̄2 − z̄1 z̄3 z̄3 − z̄2 z̄3 − z̄0

Car 2.92 2.66 −0.26 1.67 −1.00 1.43 −0.24 −1.50

Public transit 0.45 0.47 0.02 0.42 −0.05 0.59 0.17 0.14

Bicycle 0.28 0.43 0.15 0.58 0.15 0.80 0.22 0.52

Walking 0.73 0.73 0.00 0.83 0.10 0.77 −0.06 0.05

Note:
Baseline (subsample 1, year 1998, cohort 1965–1979);
DE = demographic effects (subsample 2, year 1998, cohort 1965–1979);
DE + PE = demographic + period effects combined (subsample 2, year 2016, cohort 1965–1979);
DE + PE + CE = demographic + period + cohort effects (subsample 2, year 2016, cohort 1980–
1996);
z̄i = mean predicted number of daily trips in scenario i

Table 3: Detailed results for the counterfactual analysis
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8. Conclusions

In this paper, we employ a hierarchical Bayesian multivariate Poisson log-normal model to analyse

intergenerational differences in transport mode use among young adults of Generations X and Y. The

model is applied to 23 waves of the German Mobility and recognise the cross-classified multi-level

structure of the considered data by allowing parameters of interest to vary across periods and cohorts.

The trained model informs a counterfactual prediction exercise aiming to decompose changes in daily

trip rates by car, public transit, bicycle and walking into demographic as well as into cohort- and

period-specific effects.

Our study adds to a body of literature reasoning about the absolute and relative importance of

period and cohort effects in explaining intergenerational differences in travel behaviour among

young adults of Generation Y and prior generations of young adults. While one view is that period

effects in the form of contemporaneous changes in socio-cultural, socio-economic and socio-technical

factors are responsible for the observed shifts in transport mode use, another, contrasting view is

that the observed changes in travel behaviour can be ascribed to cohort effects, i.e. due to formative

socio-cultural, socio-economic and historical experiences, members of Generation Y have inherently

different values and preferences, which manifest in travel choices that differ from those of previous

generations of young adults.

The results of our counterfactual prediction exercise suggest that three sets of effects, i.e. demo-

graphic as well as cohort- and period-specific effects, can explain intergenerational differences in

transport mode use among young adults of Generations X and Y, while the absolute and relative

importance of each set of effects vary across transport modes. In the case of private car use, we find

that the decline in the mean predicted number of daily trips from 1998 to 2016 can be predominantly

ascribed to period effects, while the absolute contribution of demographic and cohort-specific effects

is also appreciable. In the case of public transit use, the increase in the mean predicted number of

daily trips from 1998 to 2016 can be largely ascribed to cohort effects, while the role of other effects

is negligible. In the case of bicycling, the increase in the mean predicted number of daily trips from

1998 to 2016 can be attributed to all three sets of effects, while cohort effects account for the greatest

proportion of the total change. In the case of walking, the total change in the mean predicted number

of daily trips from 1998 to 2016 is marginal and period effects are neutralised by cohort effects.

The findings of this study are subject to the following caveats: The availability and inclusion of

control variables may affect the measurement of observed and latent period and cohort effects. This is

because the model includes constants, which capture the average effect of all excluded factors. Since

the constants are allowed to vary across cohorts and periods, the average effect of excluded factors

can be absorbed into both period and cohort effects. However, excluded factors may also capture

changes in demographic characteristics across cohorts so that the measurement of demographic

effects is also affected. Therefore, studies relying on different data sources and model specifications

may reach different conclusions about the absolute and relative importance of demography-, cohort-

and period-specific effects in explaining intergenerational differences in transport mode use, and the

findings of this current study should not be overgeneralised. Moreover, it is known that the Blinder-

Oaxaca decomposition, which is used to separate demography- as well as period- and cohort-specific

effects, is sensitive to the selection of the reference groups (Oaxaca and Ransom, 1999). We have also

highlighted that is difficult to entirely separate demographic effects from period and cohort effects,

as differences in demographic characteristics across cohorts can be reflective of both period-specific
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constraints and cohort-specific preferences. More research is thus needed to unfold what mechanisms

determine changes in demographic characteristics across cohorts.

Moreover, there are other several directions in which future research may build on the work

presented in the current paper. First, the literature widely consents that the travel patterns of the

current generation of young adults differ from those of previous generations of young adults. Yet, it

has been questioned whether members of the current generation of young adults will continue to

embrace comparatively less car-dependent lifestyles, as they mature and reach middle adulthood

(e.g. Brown et al., 2016; Garikapati et al., 2016); once sufficient amounts of data become available,

the hierarchical Bayesian multivariate Poisson log-normal modelling approach employed in the

current paper can be applied to examine intergenerational differences in the daily transport mode use

frequencies among members of Generation Y and members of other generations in life stages other

than young adulthood. Second, another avenue for future research is to give period and cohort effects

a hierarchical structure, which explicitly represents relationships between generic and mode-specific

effects, to allow for a decomposition of period and cohort effects into generic and mode-specific terms.

Third, our analysis does not afford insights into the concrete socio-economic and behavioural factors

underlying the measured demography-, cohort- and period-specific effects—the measured effects

are generic in that they do not pertain to any specific socio-economic and behavioural factors. Thus,

future research may explore ways to triangulate different data sources, which provide information

about changes in travel behaviour and other factors of interest and to incorporate this additional

information into the disaggregate model framework. Finally, our analysis highlights that young

adults’ travel behaviours can be subject to substantial intergenerational heterogeneity. Therefore, it is

critical to better understand the mobility needs and preferences of current and future generations of

young adults to allow for the design of effective interventions aiming to encourage sustainable travel

behaviours throughout the life course, and to allow for an equitable provision and distribution of

transportation infrastructure investments.
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A. Counterfactual analysis

A.1. Counterfactual predictions

We explain in more detail how the counterfactual predictions are obtained. In the hierarchical

Bayesian multivariate Poisson log-normal model, the mean predicted number of daily trips by mode j

for an individual nS from a subsample S in period t is

ȳ
�

XnS t j , P(βc t j ,ξnS j|y)
�

=
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exp
�

XnS t jβc t j + ξnS j

�

P(βc t j ,ξnS j|y)dβc(nS)t jdξnS j , (18)

where P(βc t j ,ξnS j|y) denotes the posterior distribution of
�

βc t j ,ξnS j

	

. The mean predicted number

of daily trips by mode j in period t for sample S is then

z̄
�

X1:NS ,t, j , P(βc t j ,ξ1:NS , j|y)
�

=
1
NS

NS
∑

nS

ȳ
�

XnS t j , P(βc t j ,ξnS j|y)
�

(19)

We use X to label the first subsample and Y to label the second subsample. Moreover, we partition

the explanatory variables X1:NS ,t, j into two groups Xt, j,M and X1:NS ,t, j,D such that

X1:NS ,t, j =
�

Xt j,M , X1:NS , j,D

	

(20)

and

z̄
�

X1:NS ,t, j , P(βc t j ,ξ1:NS , j|y)
�

= z̄
�

Xt j,M , X1:NS , j,D, P(βc t j ,ξ1:NS , j|y)
�

. (21)

Here, Xt j,M includes macro-economic factors, i.e. price levels of petrol and public transportation

services, while X1:NS , j,D includes demographic factors, i.e. all other non-price explanatory variables

(see Section 3.4). Moreover, X1:NS ,t, j,D includes the mode-specific constant.

A.2. Blinder-Oaxaca decomposition

We perform a Blinder-Oaxaca decomposition for non-linear models (Bauer and Sinning, 2008; Blinder,

1973; Oaxaca, 1973) to decompose the total change ∆DE + PE + CE
j in daily trip frequencies for mode j

31



into three terms, namely ∆DE
j , ∆PE

j and ∆CE
j . To be specific, we have

∆DE + PE + CE
j =z̄

�

X2016, j,M , X1:NY , j,D, P(βcY ,2016, j ,ξ1:NY , j|y)
�

−

z̄
�

X1998, j,M , X1:NX , j,D, P(βcX ,1998, j ,ξ1:NX , j|y)
�

=∆DE
j +∆

PE
j +∆

CE
j ,

(22)

where

∆DE
j =z̄

�

X1998, j,M , X1:NY , j,D, P(βcX ,1998, j ,ξ1:NY , j|y)
�

−

z̄
�

X1998, j,M , X1:NX , j,D, P(βcX ,1998, j ,ξ1:NX , j|y)
�

,
(23)

∆PE
j =z̄

�

X2016, j,M , X1:NY , j,D, P(βcX ,2016, j ,ξ1:NY , j|y)
�

−

z̄
�

X1998, j,M , X1:NY , j,D, P(βcX ,1998, j ,ξ1:NY , j|y)
�

,
(24)

∆CE
j =z̄

�

X2016, j,M , X1:NY , j,D, P(βcY ,2016, j ,ξ1:NY , j|y)
�

−

z̄
�

X2016, j,M , X1:NY , j,D, P(βcX ,2016, j ,ξ1:NY , j|y)
�

.
(25)

Here, cX is the set of all birth cohorts that make up generational cohort X. We let

z̄
�

Xt j,M , X1:NX , j,D, P(βcX ,t, j ,ξ1:NX , j|y)
�

=
1
|cX |

∑

c∈cX

z̄
�

Xt j,M , X1:NX , j,D, P(βc t j ,ξ1:NX , j|y)
�

(26)

and proceed similarly for generational cohort Y.
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