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Abstract High sampling variability complicates estimation of demographic
rates in small areas. In addition, many countries have imperfect vital registra-
tion systems, with coverage quality that varies significantly between regions.
We develop a Bayesian regression model for small-area mortality schedules
that simultaneously addresses the problems of small local samples and under-
reporting of deaths. We combine a relational model for mortality schedules
with probabilistic prior information on death registration coverage – derived
from demographic estimation techniques such as Death Distribution Meth-
ods, and from field audits done by public health experts. We test the model
on small-area data from Brazil. Incorporating external estimates of vital reg-
istration coverage though priors improves small-area mortality estimates by
accounting for under-registration, and by automatically producing measures
of uncertainty. Bayesian estimates show that when comparing mortality levels
in small areas, noise often dominates signal. Differences in local point estimates
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of life expectancy are often small relative to uncertainty, even for relatively
large areas in a populous country like Brazil.

1 Introduction

Small-area mortality estimation is a challenge for demographers and public
health researchers, for two main reasons. First, there is the universal problem
of small populations and high sampling variability in recorded deaths (Riggan
et al. 1991; Bernardinelli and Montomoli 1992; Pletcher 1999). With low mor-
tality rates and short periods of exposure, observed event/exposure ratios are
very unstable and estimation of mortality patterns is difficult. In such situa-
tions models must fill the gap: smoothing procedures that use known, robust
patterns in rate schedules must be combined with available data (e.g. Brass
1971; Wilmoth et al. 2012).

Second, in many countries or regions, vital registration is incomplete and
some deaths go unrecorded in official statistics (Mathers et al. 2005; Frias
et al. 2013). Demographers have proposed a variety of methods to estimate
the completeness of death registration and adjust mortality estimates accord-
ingly (Brass and others 1975; Preston et al. 1980; Preston and Hill 1980;
Bennett and Horiuchi 1981, 1984; Hill 1987, 2007; Hill et al. 2009; Queiroz
et al. 2013, 2017). However, most methods depend on approximate stability of
the population’s sex and age composition (Bhat 2002; Murray et al. 2010), an
assumption that is not met in countries that have experienced recent, rapid
demographic transitions. Migration between subnational areas can also make
the methods’ stability assumptions unlikely (Bhat 2002; Hill and Queiroz 2010;
Bignami-Van Assche 2005). Finally, standard methods cannot provide uncer-
tainty measures about the completeness of death records (Murray et al. 2010).

Demographers and statistical epidemiologists have improved models of
small-area mortality schedules significantly in recent years. New approaches
based on Bayesian models that "borrow strength" over different dimensions
(age, time, space, and/or sex) allow estimation of life expectancies and mortal-
ity rates in regions with sparse, high-quality data (Congdon 2009; Ocaña Riola
and Mayoral-Cortés 2010; Jonker et al. 2012; Stephens et al. 2013; Tsimbos
et al. 2014; Alexander et al. 2017).

Although it is not directly related to small-area estimation, there is a grow-
ing literature on the use of Bayesian approaches in international demographic
forecasting (e.g. Raftery et al. 2013, 2014; Gerland et al. 2014; Ševčíková et al.
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2016) and in methods for constructing coherent sets of estimates over large
numbers of administrative units (e.g. Alkema et al. 2011, 2013; You et al. 2015).
The methods used in these studies have important features in common with
our approach – in particular, partial pooling of information across related ob-
servational units, and incorporating information from external sources through
prior distributions for parameters.

Statisticians have also addressed estimation in cases of incomplete or un-
derreported data. Raftery (1988) proposed a Bayesian approach to the general
problem of inferring the number of binomial trials from the number of suc-
cesses. Moreno and Girón (1998) developed a model for estimating crime rates
from imperfectly reported data, which is closely related to the model for mor-
tality that we propose in this paper. Very recently, de Oliveira et al. (2017)
have analyzed Brazilian infant mortality data with a model in which death
reports may be censored in some geographic regions.

In this paper we propose a Bayesian regression model that specifically ad-
dresses the fundamental problems in small-area mortality estimation in coun-
tries with potentially defective registration. The model smooths age-specific
mortality rates in small samples, while also accounting for uncertainty about
the level of death registration. Bayesian regression produces estimates of small-
area mortality rates and life expectancies, and of the uncertainty in those
estimates.

Our model offers several advantages over existing non-Bayesian approaches
to estimating age-specific mortality schedules in small areas with vital registra-
tion errors. It incorporates two sources of uncertainty: sampling variability and
uncertainty about registration coverage. In addition, it uses a novel functional
form for mortality schedules that stabilizes small-sample estimates without
requiring strong assumptions about age-specific mortality patterns. Finally,
estimated rate schedules from the model are continuous, smooth functions –
unlike many existing corrections for under-registration that require different
methods for infant, child, and adult deaths and may consequently have dis-
continuities in the estimated rate schedule.

Prior distributions for death coverage can include any available empirical
information related to local data quality. In principle, prior information could
include expert opinion, demographic estimates, or both. In our specific ap-
plication to Brazilian data, prior information on age- and sex-specific vital
registration comes mainly from standard demographic estimates, and from an
intensive field audit conducted by public health researchers.
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2 Modeling Strategy

2.1 A simple statistical model for deaths and registered deaths

For each age x within an area of interest, we observe exposure Nx and reg-
istered deaths Rx. The true number of deaths Dx ≥ Rx is not observed. We
assume that true deaths have independent Poisson distributions at each age
that depend on age-specific mortality rates µx:

Dx ∼ Poisson(Nxµx) (1)

We further assume that each death is registered independently with an
age-specific probability πx, so that the total number of registered deaths at
age x has a binomial distribution:

Rx ∼ Binomial(Dx, πx) (2)

As shown in the Appendix, the distribution of registered deaths Rx implied
by (1) and (2) is1

Rx ∼ Poisson(Nxµxπx) (3)

2.2 Identifiability of mortality rates

A distribution R ∼ Poisson(Nµπ) for registered deaths implies that the mor-
tality rate is not identifiable from data on R and N , because all (µ, π) pairs
that have the same product will have identical likelihoods L (R|N,µ, π) ∝
e−Nµπ (Nµπ)

R. In other words, from the likelihood alone one cannot distin-
guish between situations of (high mortality, low registration) and situations of
(low mortality, high registration).

In a classical, frequentist approach to mortality estimation this lack of
identifiability is fatal. Unless the coverage probability π is known, there is
no unique µ that maximizes the likelihood, and it is impossible to estimate

1 The Appendix also demonstrates that a negative binomial distribution for total deaths
implies a negative binomial distribution for registered deaths. A negative binomial model
would be appropriate if the data exhibits overdispersion – i.e, higher variance than pre-
dicted by a Poisson model. With the Brazilian data that we use in this paper, extensive
experimentation produced no evidence of overdispersion, and posterior distributions of mor-
tality rates and life expectancies were virtually identical with Poisson and Negative Binomial
specifications. We therefore use a standard Poisson distribution for D.
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Fig. 1 Prior distribution for vital registration coverage; Posterior distribution of the mor-
tality rate

the mortality rate from R and N . In contrast, a Bayesian approach allows the
analyst to use probabilistic information about which coverage probabilities are
more likely (expressed as a prior distribution π ∼ fπ) to produce probabilistic
statements about mortality rates µ, given R and N .

As an intuitive example, consider an age group in which we observe N =

1000 person-years of exposure and R = 10 registered deaths. Suppose that a
small field audit in this location, conducted five years earlier, found that 12
out of 15 total deaths had been registered. From the field audit information it
is reasonable to use π ∼ Beta(12, 3) as an expression of our prior knowledge
about local death registration (Lynch 2007, pp 54–57). As seen in the left
panel of Figure 1, this prior implies that the expected registration probability
is π = 0.80, that there is a 80% probability that coverage is in the [0.66,0.92]
range indicated by the solid bar, and so forth.

In a Bayesian approach, the mortality rate µ is treated as an uncertain
value with a statistical distribution, and the prior for π adds probabilistic
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information about coverage that allows us to infer which mortality rates are
more and less likely, given exposure and a count of registered deaths. Based
on the field audit information in our example, π = 0.8 is a very likely coverage
level and π = 0.4 is very unlikely. Therefore, a posteriori (i.e. after observing
R = 10 and N = 1000) one can say that µ = (10/1000)

0.8 = .0125 is a very
plausible mortality rate, while µ = (10/1000)

0.4 = .0250 is much less plausible.
The full posterior distribution combines the likelihood for R with the prior for
π, producing a posterior distribution for µ that summarizes which mortality
rates are more and which are less plausible given the observed data2:

P (µ|R,N) =

∫ 1

0

L (R|N,µ, π) fπ(π) dπ (4)

In our specific example, with likelihoodR ∼ Poisson(Nµπ), prior π ∼ Beta(12, 3),
and data (R,N) = (10, 1000), this distribution is

P (µ| R = 10, N = 1000) ∝
∫ 1

0

e−1000µπ(µπ)10 π11(1− π)2 dπ (5)

which appears in the right panel of Figure 1: the posterior median of the
mortality rate is .014, and an 80% credible interval (10-90%ile) is [.009, .021].

In the full model, we use a parametric, relational system for log mortality
rate schedules, as described in the next section. However, the main principle is
illustrated by this simple example: we combine probabilistic prior knowledge
about death registration with a statistical model that relates registered deaths,
coverage, and exposure. The result is an a posteriori distribution for local
mortality rates.

2.3 TOPALS relational model for mortality schedules

We model mortality by age with the TOPALS relational model (de Beer 2012;
Gonzaga and Schmertmann 2016). In a TOPALS model the log mortality
schedule is a sum of two functions: (1) a constant schedule (called the standard)
that reflects basic age patterns, and (2) a parameterized, piecewise-linear func-
tion made up of straight-line segments between designated ages (called knots)

2 For simplicity we leave the prior distribution of µ implicit in this introduction. By
omitting an explicit prior we assume a priori that µ is equally likely to take any positive
real value. The omitted (improper) prior is therefore fµ(µ) ∝ I(µ ≥ 0), where I() is a
(0,1) indicator function. This yields a proper posterior distribution for (µ, π) and a proper
marginal posterior for µ in equation (4).
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that represents differences between the standard and the mortality schedule
in the population of interest.

The vector of log rates over ages x = 0 . . . 99, λ ∈ R100 in the TOPALS
model is

λ = λ∗ +Bα

where λ∗ ∈ R100 is the standard schedule of log mortality rates (in our case,
derived from national data for Brazil in 2010), B is a 100x7 matrix of fixed
B-spline linear basis functions (de Boor 2001), and α ∈ R7 is a parameter
vector.

The seven model parametersα = (α0 . . . α6)
′ are the values of the piecewise-

linear function at exact ages 0,1,10,20,40,70, and 100. For example, λ40 =

λ∗40 + α4 and λ70 = λ∗70 + α5. Between knots the additive offsets to the stan-
dard schedule change linearly with age – for example, λ50 = λ∗50 +

2
3α4 +

1
3α5,

λ55 = λ∗55 + 1
2α4 + 1

2α5, and λ60 = λ∗60 + 1
3α4 + 2

3α5. The space of possible
mortality schedules in a TOPALS model is thus the set of curves that can
be constructed by adding piecewise-linear functions to the standard log-rate
schedule.3

The mortality rate at age x in a TOPALS model is

µx(α) = exp(λ∗x + b′xα)

where b′x is the xth row of B. Under the distributional assumptions outlined
above, the log likelihood is

lnL(R |N, α, π) = c−
∑
x

[Nxπx · µx(α)] +
∑
x

[Rx lnµx(α)] (6)

where c is a constant that does not vary with α.

Figure 2 illustrates a fitted TOPALS model, for males in the northern
Brazilian state of Amapá in 2010. The figure shows a national standard λ∗

for males (thin black line), observed ln(Rx/Nx) values from registered deaths
and exposure in Amapá (open circles), the seven TOPALS offset parameters
α0 . . . α6 (the vertical positions of the solid red dots), the linear spline offsets

3 Gonzaga and Schmertmann (2016) show that this property makes the specific choice of a
standard schedule λ∗ far less important than in other relational models used in demography.
Note also that this TOPALS model includes indirect standardization as a special case – in
which all α values are equal and the standard schedule is shifted up or down by the same
amount at all ages.
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Fig. 2 TOPALS model for males in Amapá state 2010. Open circles are observed ln(Rx/Nx)
from registered deaths. Smooth dark line is national standard log mortality schedule. Heights
of solid dots are maximum likelihood offsets α0 . . . α6. Fitted TOPALS schedule is the sum
of the standard schedule and the linear spline.

Bα (thin red line connecting the offsets), and the fitted TOPALS model sched-
ule (standard+spline, λ∗+Bα, thick red line). In broad terms this fit suggests
that Amapá’s male mortality is higher than the standard at ages below 25, and
lower at ages above 25. More subtly, the fit suggests that downward deviations
from the standard are slightly larger at higher ages.

This particular fit for Amapá maximizes equation (6) over α under the
assumption of 100% death registration (πx = 1, Rx = Dx) at all ages. It
serves only to illustrate the components of a parametric TOPALS model. In
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practice we relax the assumption of complete coverage, replacing it with prior
distributions for πx.

2.4 Model summary

Figure 3 summarizes our statistical approach to estimating mortality and life
expectancy in a small area. We use information from other sources to develop
priors for age-specific coverage. (In the hypothetical example above, for in-
stance, a field audit suggested a beta distribution with a = 12 and b = 3). As
indicated in the top right of Figure 3, we use a weak multivariate normal prior
on α (described in detail in section 4) to stabilize schedule estimates in very
small populations.

Age-specific exposure N0 . . . N99 and registered deaths R0 . . . R99 are ob-
served. The model combines the prior distributions for coverage and mor-
tality parameters (fπ and fα) with the Poisson likelihood L (R|N,α,π) =∏
x L(Rx|Nx, µx(α), πx) to produce a posterior marginal distribution for α =

(α0 . . . α6)
′, similar to Equation (4):

P (α|R,N) =

∫
L (R|N,α,π) fα(α) fπ(π) dπ (7)

In English, the left-hand side of (7) answers the question “Given age-specific
populations and registered deaths, combined with our uncertain knowledge of
local death registration probabilities, which local mortality schedules are more
and which are less plausible?’ ’. In practice, we answer by drawing a large
number of random realizations α∗1 . . .α∗K from the distribution in Equation (7)
via Markov Chain Monte Carlo (MCMC) simulation. It is then an easy logical
step to ask the same question about more and less plausible life expectancies
e0, via the simulated posterior distribution of e0 (α∗1) . . . e0 (α∗K)

P (e0 < c |R,N) ≈ 1

K

∑
k

I [e0(α
∗
k) < c] (8)

where I[ ] is a (0,1) indicator function equal to 1 if the condition in brackets
is true.
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Fig. 3 An integrated coverage and mortality model. Registered deaths Rx and exposure
Nx are observed. α and πx are uncertain parameters.

3 Data

We apply the model to small-area estimation in Brazil. Brazil has good census
data, but incomplete vital registration. Death reporting has improved signif-
icantly over the past several decades, but there are still large regional differ-
ences in the quality of coverage (Paes 2005; de Mello Jorge et al. 2007; Instituto
Brasileiro de Geografia e Estatística 2013; Queiroz et al. 2017). There are in-
creasing demands for fine-grained mortality (and especially life expectancy)
estimates, but the complications of small samples and differential coverage
make this a difficult task. In short, Brazil is a good test case for a model that
incorporates under-registration into small-area mortality estimation.
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Population and deaths by sex and single-year age come from the Brazilian
Demographic Census (2010) and from the Mortality Information System of the
Ministry of Health (MS/SVS/CGIAE), respectively. The Mortality Informa-
tion System is an official registry for deaths, with data collected from health
providers(de Mello Jorge et al. 2007).

Population and registered deaths are available for 5565 Brazilian munici-
palities4, 100 single-year ages 0 . . . 99, and 2 sexes. For each of the 1,113,000
combinations of (municipality, age, sex) we recorded the 2010 census popu-
lation, the number of registered deaths over calendar years 2009–2011, and
geographic identifiers. We used the 2010 census populations to estimate age-
and sex-specific exposure over 2009–2011 for each (municipality, age, sex) com-
bination. Details are in Gonzaga and Schmertmann (2016)

Brazilian census geography begins with 5 major regions (North, North-
east, Southeast, South, and Center-West) comprising 27 states5 that cover
the entire national territory. States are subdivided into mesoregions (137 to-
tal), mesoregions into microregions (558), and microregions into municipalities
(5565). Our goal in this analysis is to estimate age- and sex-specific mortal-
ity schedules and life expectancies for all 27 states, and for each of the 558
microregions.6

4 Priors

4.1 Using death registration estimates from previous studies

Prior information about the likely levels and age patterns of death registration
is essential for our model. In the case of Brazil, we identified six published
estimates of death registration coverage, by state and sex, for 2010 (Queiroz
2012; Queiroz et al. 2013; Freire et al. 2005; Instituto Brasileiro de Geografia
e Estatística 2013; Queiroz et al. 2017). These estimates all come from Death
Distribution Methods (DDM), and refer mainly to deaths at ages 30+. The
six estimates differ substantially in some cases. For example, for males 30+

4 In Brazil, municipalities are the smallest areas responsible for registering vital events.
5 For simplicity we call the Federal District that contains Brasília a state.
6 It is important to note that even microregions are fairly large “small areas”. With a single

exception (the remote island of Fernando de Noronha had a total resident population of only
2630 in 2010), all had resident populations of at least twenty thousand in 2010. Rounded
to the nearest thousand, the 10th , 50th , and 90th percentiles of microregional population
were 63, 173, and 557 thousand, respectively. The largest microregion, metropolitan São
Paulo, had a 2010 population of over 13 million.
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in the Northeastern state of Maranhão (widely regarded as the state with the
lowest vital registration coverage) the alternative coverage estimates were 50,
66, 75, 78, 78, and 97%. The range of these estimates suggests that in addition
to being low, coverage levels for adult male deaths in Maranhão are uncertain.

At the municipal level, we use published estimates of death registration
coverage from a research project known as busca ativa7, which we translate as
field audit. The field audit project (Szwarcwald et al. 2010; Frias et al. 2013)
randomly selected 133 municipalities in Brazil’s poorest regions, and compared
the registered deaths in 2009–2010 with total deaths found for the same pe-
riod from an exhaustive search of notary offices, clinics, official and unofficial
cemeteries, and from interviews with health workers, midwives, funeral homes,
pharmacies, and others. Based on correlations between municipal-level char-
acteristics and levels of mortality coverage in the study areas, the field audit
researchers estimated the likely probability of death registration in all 5565
Brazilian municipalities – for infant deaths (π0) and for all deaths (which we
call πall). Field audit estimates can be aggregated to higher levels of geography
– in particular, to microregion or state level – by using published information
from the project on the estimated numbers of deaths in each municipality.

When aggregated to the 27 Brazilian states, field audit estimates of in-
fant mortality coverage π0 range from 65% (Maranhão) to 100% in several
southern states. The range is naturally wider across the 558 microregions --
from 31% in some remote Amazonian locations to 100% in many southern
microregions. Field audit estimates for death registration probabilities at all
ages combined πall range from 78 to 100% across states, and from 44 to 100%
across microregions.

4.2 Prior Distributions for Coverage

To utilize the available coverage data in Brazil, we assume that in each small
area there are distinct probabilities of death registration for three age intervals:

πx =


π0 ifx = 0

π1 ifx ∈ {1 . . . 29}

π2 ifx ∈ {30 . . . 99}

(9)

7 The complete name in Portuguese is Busca ativa de óbitos e nascimentos no Nordeste e
na Amazônia Legal [Active search for deaths and births in the Northeast and the Amazonian
administrative region]
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that can be combined to produce an overall probability of registration

πall = w0 π0 + w1 π1 + w2 π2 (10)

where wx terms represent the proportion of all deaths that occur in the cor-
responding age group.8

Our choice of age groups was based in part on the availability of age ranges
in the external coverage estimates – for example, DDM provides straightfor-
ward estimates of state-level π2. However, our choice of age groups is also based
on the demographic literature and on expert opinions. First, many Brazilian
studies indicate that coverage of infant deaths π0 is lower than coverage in
any other age interval (Paes and Albuquerque 1999; Instituto Brasileiro de
Geografia e Estatística 2013; Frias et al. 2013). This fits the pattern of other
countries with defective vital records, in which infant deaths generally have
the lowest coverage rates (Målqvist et al. 2008). Field audits also found high
percentages of unreported infant deaths (Szwarcwald et al. 2010; Frias et al.
2013). Second, some Brazilian researchers suggest that external causes of death
(such as homicides and transit accidents) have almost complete coverage in
all Brazilian regions (Campos and Rodrigues 2004; Agostinho 2009). This is
plausible, because deaths by violence and transit accident must be reported
to the local health department not only by family or relatives, but also by the
municipal coroner’s office. Although the quality of information varies between
regions, the notification procedures are determined by national law and the
path of the death certificate from coroner’s office to the Mortality Information
System is identical in all Brazilian states (Borges et al. 2012). Deaths from
external causes in Brazil have increased in the last decades, and these deaths
are concentrated in the young adult age interval (de Mello Jorge et al. 1997;
Souza et al. 2007; Matos et al. 2013). Taken together, this evidence suggests
that coverage of infant deaths should not he higher than coverage of deaths at
ages 1–29 : π0 ≤ π1.

For infant deaths π0, and for all deaths πall, we build priors from field audit
estimates. For every area, we aggregate the corresponding municipal field audit
estimates, weighted by deaths, to calculate estimated coverage levels π̂0 and

8 In practice we used identical weights for each region: w = (.035, .109, .856) for males
and w = (.037, .047, .916) for females. These were calculated from national deaths over
2009-2011.
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π̂all. The associated priors are

π0 ∼ Beta(K0 π̂0 , K0 [1− π̂0] ) , (K0 − 5) ∼ exponential(0.05) (11)

πall ∼ Beta(Kall π̂all , Kall [1− π̂all]) , (Kall − 5) ∼ exponential(0.05) (12)

where K0 and Kall are hyperparameters representing (uncertain) levels of
precision from the field audit estimates.9

For mortality coverage at ages 30+, which we denote π2, external infor-
mation consists of state-level estimates from the six DDM studies. We use the
mean and variance of the DDM estimates to estimate the parameters of a beta
distribution by the method of moments. The resulting prior is

π2,STATE ∼ Beta (K2 φ2 , K2 [1− φ2] ) (13)

where φ2 is the mean of the six DDM estimates and K2 is an estimated preci-
sion index.10 For example, for Maranhão males the DDM estimates are (.50,
.66, .75, .78, .78, .97), so we use π2,Maranhão ∼ Beta(7.00× 0.74 , 7.00× 0.26)

. This prior distribution answers the question “Given the DDM estimates, how
plausible are different levels of coverage for males 30 and older in Maranhão?’ ’
The answer is probabilistic: a priori, there is a 10% probability that the cov-
erage level is below .52, a 50% probability that it is between .64 and .86 (the
interquartile range), a 10% chance that it is above .92, and so on.11

Prior information for π2 is at the state level, so when estimating coverage
for substate areas like microregions the prior applies to the weighted registra-
tion probability

π2,STATE = γaπ2a + · · ·+ γzπ2z ∼ Beta(K2 φ2 , K2 [1− φ2] ) (14)

9 Hyperparameters K correspond to sample sizes in a field audit. Prior uncertainty about
K represents uncertainty about the precision of the field audit estimates of π. Our (hy-
per)priors for K are fairly conservative: they imply that the most likely precision of the field
audit estimates is equivalent to results from an audit slightly fewer than K=25 deaths in a
region.
10 Denoting the mean and variance of DDM estimates as x̄ and s2, the method of moments
estimators (cf. Glen and Leemis 2017, pp. 227–228) are φ2 = x̄ and K2 =

x̄(1−x̄)

s2
− 1.

11 Note that priors based on busca ativa estimates are constructed from a single coverage
estimate for each region, by adding a hyperparameter for the estimate’s unknown precision.
In contrast, priors from DDM estimates are based on multiple estimates per region, and
use the variance of those estimates as an index of (im)precision. A third alternative, which
we do not use here, is to choose beta distribution parameters φ and K so that available
estimates are all in a specified range of prior probability – for example, a 90% probability
that π ∈ [min(DDM),max(DDM)] .
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where γi is the proportion of state deaths at ages 30+ that occur in substate
area i ∈ {a . . . z} and π2i is the death registration probability in area i.12

Finally, we use qualitative information from the literature, by adding a
prior that completely rules out any triples of local coverage probabilities that
do not match our assumed order:

π0 ≤ π2 ≤ π1 (15)

That is, we insist that in every local area infant mortality coverage cannot be
higher than coverage at other ages, and that coverage of deaths at ages 1–29
cannot be lower than at other ages.

4.3 Prior distribution for TOPALS parameters

TOPALS parameters α ∈ R7 determine the shape and level of the age-specific
mortality schedule. We use a vague prior for α, so that local death and expo-
sure data are the primary determinants of rate estimates, via the likelihood
function. Our prior for α is multivariate normal distribution derived from two
principles: (1) each αi component should have very similar prior probabilities
over a wide range of possible values, and (2) very large differences between
consecutive components αi − αi−1, i = 1 . . . 6 are unlikely.

Based on those principles, we use the prior distribution α ∼ N(0, Σ) with
covariance matrix13

Σ =


3.11 2.71 2.39 2.15 1.97 1.86 1.80
2.71 2.80 2.47 2.22 2.03 1.92 1.86
2.39 2.47 2.62 2.35 2.16 2.03 1.97
2.15 2.22 2.35 2.56 2.35 2.22 2.15
1.97 2.03 2.16 2.35 2.62 2.47 2.39
1.86 1.92 2.03 2.22 2.47 2.80 2.71
1.80 1.86 1.97 2.15 2.39 2.71 3.11

 .
The marginal priors for each αi component are uninformative about levels,

which are measured on the log-mortality rate scale. For example, the infant
mortality offset α0 ∼ N(0, 3.11) a priori, so there is a 57% prior probability

12 Because we have only state-level prior information about death registration in this
age group, we can only assess the prior probability of a set of substate coverage levels
(π2a . . . π2z), by looking at whether their weighted average is likely.
13 This prior distribution arises from two lines in the Stan programming language. From
our first principle (diffuse marginal distributions for each αi) we add α ∼ normal(0,4)
to the model. From the second principle (small differences between consecutive parameter
values) we add αi−αi−1 ∼ normal(0,sqrt(0.5)) – as in Gonzaga and Schmertmann (2016).
These statements in Stan both represent changes to the log prior density of any proposed α
vector, which together yield this specific multivariate normal distribution. The results that
we report in this paper are extremely insensitive to the choice of priors for α.
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that it falls in [-1.39,+1.39]. This corresponds to a very vague prior assumption
about a region’s infant mortality rate: it says that there is a 57% probability
that infant mortality rates are between one-fourth and four times the rate in
the standard schedule, and a 43% prior probability that rates might be even
more extreme. The correlation structure in Σ is also only weakly informative
about differences between α components; it serves mainly to stabilize esti-
mates in extremely small populations with very few deaths, by giving slightly
higher prior probabilities to simple up-and-down shifts in the standard sched-
ule (which occur when α0 = α1 = · · · = α6 and differences between consecutive
αs are all zero).

5 Results

We implemented the full model in Stan (Carpenter et al. 2017), a language that
allows MCMC sampling from complex posterior distributions. For both sexes,
we estimated posterior distributions of mortality parameters α, complete log
mortality schedules λ(α) = λ∗ +Bα, and life expectancy e0[λ(α)] for all 27
Brazilian states and all 558 microregions. We call this the adjusted model.
In order to learn about the effects of under-registration of deaths, we also
estimated the same posterior distributions under the (incorrect) assumption
of 100% registration (π0 = π1 = π2 = 1). We call this second version the
unadjusted model. We focus here on summary results for male life expectancy.
Complete results, together with data and code, are available on the paper’s
companion website at http://mortality-subregistration.schmert.net/.

5.1 Effects of imperfect mortality coverage π on estimated state-level life
expectancy

Figure 4 illustrates posterior distributions of male life expectancy for two
states: the small state of Amapá (total population ≈ 0.6 million), and the
Federal District that contains Brasília (≈ 2.5 million). The figure includes
posterior densities before any adjustment for under-registration (black lines
on the right in each panel), and after adjustment (blue lines on the left).

Life expectancy is a complicated nonlinear function of the underlying α

parameters, but a Bayesian approach to estimation permits easy calculation of
uncertainty in e0 for both the unadjusted and adjusted estimates, via equation
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(8). Figure 4 shows that even if death registration were complete (right-hand
densities), there would still be considerable uncertainty about state-level life
expectancy because of sampling variability. Sampling uncertainty is naturally
greater for Amapá, which has a smaller population, but is non-trivial even for
the Federal District, which has a male population of over one million.

Adjusting for under-registration lowers life expectancy estimates. The dif-
ference can be very large in areas where coverage is poor. A probabilistic model
allows us to estimate the magnitude of these effects. In Amapá, for example,
plausible corrections for under-registration of deaths reduce male e0 by ap-
proximately three years, as illustrated by difference between the unadjusted
and adjusted posterior medians in the top panel of Figure 4. The correspond-
ing adjustment is very small for the Federal District, where death registration
is nearly complete.

In addition to lowering the mean, uncertainty about vital registration cov-
erage also increases uncertainty about life expectancy. This effect is visible for
both states, but it is larger for the state with lower coverage levels (Amapá).
As with the decrease in means, the fact that the variance will increase is qual-
itatively obvious. However, a carefully constructed probabilistic model allows
demographers to estimate the increase in uncertainty caused by imperfect vital
registration.

Figure 5 shows estimated 2010 male life expectancies for all 27 states,
disaggregated by region. It reports the Bayesian model’s death registration
adjustments and distributional information using the abbreviated format on
the horizontal axes of Figure 4. Figure 4’s results for Amapá (AP) and the
Federal District (DF) appear on the fourth line from the top and the eleventh
line from the bottom, respectively, of Figure 5

For each state, Figure 5 includes the unadjusted male life expectancy (e0)
calculated directly from registered deaths (open circles) and the adjusted esti-
mates and 80% posterior interval from our partial-coverage model (two-letter
abbreviations and shaded bars). Horizontal distances between open circles and
state abbreviations in Figure 5 illustrate median adjustments in life expectancy
due to unregistered deaths.

Accounting for under-registration of deaths leads to large downward ad-
justments in life expectancy in the North and Northeast regions, and to small
or negligible downward adjustments elsewhere. The most extreme adjustment
is for the state of Maranhão (MA) in the Northeastern region. Direct use
of death registration data would suggest that Maranhão has Brazil’s highest
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Fig. 4 Male 2010 Life Expectancy in two Brazilian states, before and after adjustment
for under-registration of deaths. Black curves to the right represent the posterior density
under the assumption of perfect death registration (π = 1 at all ages). Blue curves to the
left include the priors for (π0, π1, π2) developed in the text. Horizontal bars represent 80%
posterior intervals (10–90%ile) for the adjusted distributions. Open circles at unadjusted
medians; state abbreviations at adjusted posterior medians.

male life expectancy (74.3 years). In contrast, adjusted Bayesian estimates
for Maranhão have a median of 70.4 years, almost four years lower. Northern
states such as Pará (PA: 72.2→ 68.6 years), Amapá (AP: 72.7→ 70.0), and
Amazonas (AM: 72.3→ 69.8) also require large downward adjustments in e0
to account for likely levels of unregistered deaths .
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Fig. 5 Male life expectancy by state, Brazil 2010. Unadjusted estimates from deaths regis-
tered by the Mortality Information System (SIM) are open circles. Official state-level esti-
mates from Brazil’s statistical agency (IBGE) are solid circles. Shaded bars represent 80%
posterior probability intervals after under-registration adjustment in the Bayesian coverage
model; IBGE state abbreviations (listed at http://schmert.net/BayesBrass/brazilian_
regions_and_states.txt) appear at posterior medians.

5.2 Comparison to Brazil’s official state-level estimates

Bayesian posterior distributions for e0 come from a range of plausible, state-
specific registration coverage levels. They are therefore useful as compara-
tive benchmarks for the official state-level estimates from IBGE, Brazil’s cen-
sus bureau. IBGE uses a complex, multistep procedure to correct for under-
registration of deaths (Instituto Brasileiro de Geografia e Estatística 2013).
Their procedure combines different indirect methods for mortality and cover-
age estimation, and differs by region. As a result of this complexity, researchers
(including us) have been unable to replicate the official state-level estimates.
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A comparison to adjusted and unadjusted means from vital registration data
is therefore useful for understanding the official state-level estimates.

Filled circles in Figure 5 correspond to IBGE estimates for male e0 in each
state. Thus, when a filled circle falls to the left of the open circle the IBGE
estimate is equivalent to assuming that deaths are underregistered. A filled
circle to the right of an open circle is equivalent to assuming over -registration
of deaths.

Figure 5 shows that official life expectancy estimates for Southern and
Southeastern states (bottom panels) are implausibly high. Comparison to reg-
istered death data indicates that IBGE estimates are plausible only if the vital
registration system substantially overcounts deaths in these states.14

Figure 5 also shows that the IBGE estimates for states in Brazil’s North
and Northeast regions are implausibly low. For almost all Northern and North-
eastern states, the official e0 estimate for males falls far below the 10%ile of
the adjusted posterior distribution. In other words, likely combinations of vi-
tal registration coverage and mortality schedules in these states produce life
expectancies much higher than the official estimates.

5.3 Signal and noise in state life expectancy estimates

Comparisons between areas are often important for public policy purposes,
including allocation of health expenditures and other resources. Realistic esti-
mates of the uncertainty of life expectancy highlight potential problems with
allocating resources based on the most likely point estimates. This is true
even for areas with large populations. As noted earlier, states are not espe-
cially small areas: the least populous Brazilian state (Roraima) has nearly
half a million residents. Even so, after adjusting for likely under-registration
of deaths, it can be difficult to determine which of a pair of states has the
higher life expectancy.

Figure 6 shows 80% credible intervals for each state’s male e0 in the full
model, including likely under-registration of deaths. As in the previous plot,
the horizontal bars span the interval between the 10th and 90th percentile of
the posterior distribution. Solid dots indicate the posterior medians. States
are sorted in order of posterior medians, which we use as best-guess point

14 The high estimates for Southern and Southeastern life expectancy probably result from
IBGE’s compatibilization step (Instituto Brasileiro de Geografia e Estatística 2013, Tables
6 and 13), in which they adjust national totals by removing deaths from these two regions.
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Fig. 6 Male Life Expectancy by state (medians and 80% posterior intervals), Brazil 2010

estimates. The Federal District has the highest estimate (72.3), Santa Catarina
has the second-highest (71.9), and so forth. Some states, such as Rio Grande
do Sul (8th line from the top, median=70.9) or Paraná (14th, 70.3) have very
large populations and almost perfect vital registration. Consequently there
is very high certainty about e0 in those states. In contrast, some of Brazil’s
sparsely-populated northern states such as Roraima (9th, 70.6) or Amazonas
(20th, 69.8) have smaller populations and much less certain coverage levels. In
these cases we are much less certain about which state actually has the higher
life expectancy.

Samples from the posterior distribution allow us to make probabilistic
statements about the ranking of areas, which could be important for alloca-
tion of health resources. For example, the posterior medians of e0 in Amazonas
and Roraima are 69.8 and 70.6 respectively, but in 730 of 4000 samples from
the posterior in equation (8) the Amazonas life expectancy was higher. Thus,
even though the point estimate for Amazonas life expectancy is almost one
year lower, the a posteriori estimate is P [eAM0 > eRO0 ] ≈ .18.
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Analysis of posterior samples also allows probabilistic statements about
which states have the lowest and highest life expectancies. For example, Alagoas
had the lowest e0(α) value in 3592 of 4000 samples, so there is approximately
a 90% probability that it has a lower male life expectancy than all other
states. Other candidates for lowest male e0 are Pará (plowest = 0.06) and
Pernambuco (plowest = 0.01). Analogous calculations show that the Federal
District (phighest = 0.91), Piauí (phighest = 0.05), and Rio Grande do Norte
(phighest = 0.02) are the top candidates for highest male life expectancy.

5.4 Microregion-level estimates

We also used the Bayesian TOPALS model to estimate adjusted posterior dis-
tributions of α and e0(α) separately by sex for all 558 Brazilian microregions.
Results for males appear in Figure 7, which displays posterior medians, and
in Figure 8, which displays the widths of each microregion’s 80% posterior
probability interval.

The point estimates in Figure 7 show that high-mortality (low-e0) regions
for males tend to be concentrated along the Atlantic coast, particularly in large
cities. There are also pockets of high mortality in scattered areas of northern
and western Brazil. Point estimates of mortality are especially low in parts of
southern Brazil, and in the states of Piauí and Ceará.

Some of the point estimates in Figure 7 are much more reliable than others,
however. Figure 8 shows a strong north-south gradient in the precision of
male e0 estimates. Posterior distributions (analogous the adjusted densities
for states in Figure 4) are notably narrower in southern microregions. As a
result, we can be much more certain about small-area life expectancies in
Brazil’s South and Southeast than in other regions.

Differences in the uncertainty of these small-area estimates arise for two
reasons. First, at any given level of vital registration coverage, microregions
with larger populations will have more reliable mortality estimates because
of larger sample sizes. Many regions in northern and western Brazil are very
sparsely populated, so that even if registration coverage were known exactly
local estimates would still be subject to considerable sampling error. Second,
the level of underregistration of deaths is also uncertain in many small areas.
The Bayesian model accounts for this extra source of uncertainty, resulting in
wider posterior distributions for small areas with more uncertain vital regis-
tration coverage.
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Fig. 7 Posterior medians of male life expectancy at birth, Brazilian microregions 2010.
Darker colors indicate higher mortality and lower e0. The state of Bahia is highlighted with
a thick border.

5.5 Signal and noise in microregion life expectancy estimates

We have already highlighted the difficulty of ranking or comparing state-level
e0 estimates. For smaller areas, the signal-to-noise ratio changes for the worse,
and comparisons become even more difficult. As an example, Figure 9 shows
Bayesian adjusted estimates of male e0 for the 32 microregions in the state of
Bahia (highlighted with a thick border in Figures 7 and 8). At this level of
geography, rankings of areas and differences in estimated life expectancy are
largely overwhelmed by uncertainty. For example, Livramento do Brumado
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Fig. 8 Uncertainty of male life expectancy at birth, as measured by the width of the
80% posterior probability interval, Brazilian microregions 2010. Darker colors indicate more
certain estimates. The state of Bahia is highlighted with a thick border.

(1st line of Figure 9) has the highest estimated male e0, with a posterior
median of 73.3 years. But there is only a 37% posterior probability that this
microregion has the highest male life expectancy: it ranked #1 in 1479 of
4000 posterior samples from the posterior in equation (7) . Cotegipe (2nd line,
posterior median of 73.0) has a 29% chance of being #1, and Jeremoabo (3rd
line, 72.2) has a 9% chance, and so on.

Consider comparing Livramento do Brumado (location #1, on the top line
of Figure 9, estimated e0=73.3 years) and Boquira (location #11, 11th line,
71.6 years). Repeated sampling from the posterior distribution (local priors +



Small-area mortality with defective vital records 25

Fig. 9 Male Life Expectancy (median and 80% posterior intervals) for 32 microregions in
Bahia

local data) produces a large number of plausible (e10, e110 ) pairs for male life ex-
pectancies in these two places, illustrated in Figure 10. Uncertainty is a result
of small sample sizes, very small numbers of registered deaths at some ages,
and imprecise estimates of local death registration probabilities. Although the
point estimate for e10 is nearly two years higher than the estimate for e110 ,
there is still considerable uncertainty about which region has the higher life
expectancy. Given data and priors about death registration, there is an esti-
mated 11% posterior probability that male life expectancy is actually higher in
Boquira than in Livramento do Brumado (e110 −e10 > 0 in 447 of 4000 samples),
and even a 3% probability that it is more than one year higher ((e110 − e10 > 1

in 107 of 4000 samples).

The main message of Figures 9 and 10 lies in the very high overlap between
the posterior distributions of many of the microregions. These are not espe-
cially small areas: Livramento do Brumado was the least populous microregion
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Fig. 10 Sample from joint posterior distribution of male life expectancies in two microre-
gions, Bahia 2010. Diagonal lines labeled by difference in life expectancies

in Bahia, but it had a total population of 97,786 in 2010, and the median total
population of Bahian microregions was slightly below 290,000.

Despite these fairly large areas, however, uncertainty dominates most pair-
wise comparisons. It is clear that at this geographic level researchers and pol-
icy makers should not rely on point estimates to distinguish high- and low-
mortality areas – especially if differences in best-guess estimates of median e0
are less than one year. That result applies even more strongly to smaller areas
such as municipalities.

6 Conclusion

A Bayesian model is a natural approach to estimating small-area mortality
when the vital registration system is imperfect. In this paper we show that it
is straightforward to combine age-specific mortality rates and coverage prob-
abilities in a unified model.

The TOPALS relational model for age-specific rates is a useful component
in Bayesian modeling for small areas. Because it is flexible but low dimensional,
the TOPALS parametric model for age-specific mortality schedules makes it
possible to estimate rates and life expectancies even for very small populations.
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It is illuminating to consider correction for under-registration as a statisti-
cal, rather than arithmetic, process. An explicitly statistical model naturally
emphasizes the uncertainty of results. Brazilian microregions are not especially
small areas, but nevertheless the uncertainty in life expectancy estimates is of-
ten much greater than the differences between local point estimates.

One of our main substantive findings concerns the signal-to-noise ratio
in small-area estimates. The levels of posterior uncertainty in microregional
life expectancy estimates for Brazil make it clear that attempts to estimate
mortality at even smaller levels of geography (for example, for the 417 munici-
palities in Bahia that are subregions of those displayed in Figure 9) face serious
and possibly insurmountable difficulties. Even with good statistical methods
for estimating mortality in very small populations, realistic assessment of un-
certainty suggests that it may be extremely difficult to draw meaningful dis-
tinctions about the mortality of those populations. Demographers should stay
humble.
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Appendix: Statistical distribution of registered deaths

A generalized Poisson distribution for a random count variable Y , using a
mixture of heterogeneous risks, is (Greene 1997, pp 939–940)

P (Y = k) =

∫ ∞
0

e−λz (λz)
k

k!
g(z) dz

where z is a multiplicative risk factor with density g(z) over positive real num-
bers. This mixture model Y ∼ PoissonMix(λ, g ) describes the distribution
of count variable Y ∈ {0, 1, 2, . . .} in terms of a scalar parameter λ and a den-
sity function g( ). It generalizes the Poisson distribution by allowing the mean
and variance of Y to differ. In particular, it provides a framework for modeling
overdispersion (V (Y ) > E(Y )), which is often observed in count data.

The mixture model includes the standard Poisson distribution as a limiting
case: as the distribution g(z) approaches a constant at z = 1, Y ’s distribution
approaches a Poisson with E(Y ) = V (Y ) = λ. It also includes the negative
binomial distribution: if g(z) is a gamma density with E(z) = 1 and V (z) = 1

θ ,
then Y has a negative binomial distribution with E(Y ) = λ and V (Y ) = λ+λ2

θ .
Other {λ, g( )} mixtures yield other discrete distributions for Y .

Suppose that total deaths in a population follow a distribution in this
generalized family, so that the probability of D deaths is

P (D) =

∫ ∞
0

e−λz (λz)
D

D!
g(z) dz

If deaths are registered independently with probability π, then

P (R|D) =
D!

R!(D −R)!
πR (1− π)D−R for R ∈ {0, 1, 2, . . . D}

and the joint probability of a pair of integers (R,D) is

P (R,D) =

∫ ∞
0

e−λz (λz)
D

R!(D −R)!
πR (1− π)D−R g(z) dz for D ∈ {0, 1, 2, ...} and R ∈ {0, 1, 2, . . . D}

In terms of registered deaths R and unregistered deaths U = D−R the same
expression is

P (R,U) =

∫ ∞
0

e−λz (λz)
R+U

R!U !
πR (1− π)U g(z) dz for R ∈ {0, 1, 2, ...} and U ∈ {0, 1, 2, . . .}
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The marginal probability of R registered deaths is therefore

P (R) =

∞∑
U=0

[∫ ∞
0

e−λz (λz)
R+U

R!U !
πR (1− π)U g(z) dz

]

=

∫ ∞
0

[ ∞∑
U=0

e−λz (λz)
R+U

R!U !
πR (1− π)U

]
g(z) dz

=

∫ ∞
0

e−λz (λz)
R

R!
πR

[ ∞∑
U=0

(λz)
U

U !
(1− π)U

]
g(z) dz

=

∫ ∞
0

e−λz (λz)
R

R!
πR

[
e+λz(1−π)

]
g(z) dz

=

∫ ∞
0

e−λz (λz)
R

R!
πR

[
e+λz(1−π)

]
g(z) dz

=

∫ ∞
0

e−λπz (λπz)
R

R!
g(z) dz

The distribution of registered deaths R therefore has exactly the same math-
ematical form as the marginal distribution of total deaths D, except that
parameter λ is replaced with λπ. That is

D ∼ PoissonMix(λ, g )

R ∼ Binom(D,π)

}
⇒ R ∼ PoissonMix(λπ, g )

This general proof applies to special cases where D ∼ Poisson or D ∼
NegBinom, as well as to other Poisson mixtures. Most importantly for this
paper, it demonstrates that if total deaths have a Poisson distribution with ex-
pected value λ = Nµ, then registered deaths also have a Poisson distribution,
with expected value λπ = Nµπ.

———————
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