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Abstract: Monitoring water conditions in real-time is a critical mission to preserve the water 

ecosystem in maritime and archipelagic countries, such as Indonesia that is relying on the wealth 

of water resources. To integrate the water monitoring system into the big data technology for real-

time analysis, we have engaged in the ongoing project named SEMAR (Smart Environment 

Monitoring and Analytic in Real-time system), which provides the IoT-Big Data platform for 

water monitoring. However, SEMAR does not have an analytical system yet. This paper proposes 

the analytical system for water quality classification using Pollution Index method, which is an 

extension of SEMAR. Besides, the communication protocol is updated from REST to MQTT. 

Furthermore, the real-time user interface is implemented for visualisation. The evaluations 

confirmed that the data analytic function adopting the linear SVM and Decision Tree algorithms 

achieves more than 90% for the estimation accuracy with 0.019075 for the MSE. 
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1 Introduction 

Monitoring water conditions in real-time is a critical 

mission to preserve the water ecosystem in maritime and 

archipelagic developing countries, including Indonesia that is 

relying on the wealth of water resources. For example, in 

Indonesia, approximately 70% of the overall area is water, 

and a soaring rainfall is expected every year due to the 

crossing of the equator line. The potential wealth of water 

resources is crucial to support Indonesian’s life sustainability. 

At the same time, Indonesia is also facing serious problem 

of the lack of awareness in preserving water resources 

(Hapsari et al., 2016). The environmental conditions of water 

have become increasingly critical. The clean water crisis is 

actually extended from year to year. In the rainy season, 

excessive water causes flooding, meanwhile in the dry 

season, water sources dry up. As time goes by, water 

resources may no longer be available due to pollutions. 

To solve the above-mentioned problem, we have engaged 

in the ongoing project named SEMAR (Smart Environment 

Monitoring and Analytic in Real-time system). SEMAR is a 

real-time system based on IoT (Internet of Things) and big 

data for monitoring and analysing water conditions. SEMAR 

can be used by the parties included in the decision making. 

SEMAR consists of water quality monitoring system using 

ROV (Remotely Operated Vehicle), wireless mesh network, 

portable water quality monitoring system, coral reef 

monitoring system, and big data storage system. 

However, SEMAR does not have an analytical system 

yet. In this paper, we propose the big data analytic system as 

SEMAR’s extension in real-time. Besides, we updated 

SEMAR’s transmission protocol from REST 

(Representational State Transfer) to MQTT (Message 

Queuing Telemetry Transport) (Banks and Gupta, 2014). 

Furthermore, we built the user interface which has an ability 

to handle the real-time data.  

This paper is organised as follows: Section II reviews 

some related works in literatures. Section III introduces our 

works of SEMAR. Section IV explains the proposed system. 

Section V shows experiment results for evaluations. Section 

VI concludes this paper with future works. 

2 Related Works 

Modaresi and Araghinejad (2014) have conducted the 

study of the water quality classification using CCME 

(Canadian Council of Minister of the Environment) Water 

Quality Index, with two parameters: nitrate and chloride. In 

this study they used three algorithms: SVM (Support Vector 

Machine), Probabilistic Neural Network, and K-Nearest 

Neighbour. The result revealed that SVM shows the best 

performance without any error in calibration and validation 

process. 

Ladjal et al., (2016) have also conducted the study of 

water quality classification using Dempster-Shafer theory. In 

this study, Ladjal et al., used four parameters: temperature, 

pH, conductivity, and turbidity, and used Neural Network 

and SVM. The result of this study indicated that SVM has 

better performance than Neural Network. 

Jaloree et al., (2014) have conducted another study on 

water quality classification using decision tree algorithm. As 

the parameters in determining the water quality, they used 

pH, DO, BOD, No3_N, and NH3_N. The results of the 

training process showed 95.4545% accuracy rate. 

Saghebian et al. (2014) have conducted a study of 

groundwater quality classification by using decision tree 

algorithm, based on the USSL (United States Salinity 

Laboratory) diagram. The results showed that the overall 

average of CCI (Correctly Classified Instances) and Kappa 

Statistic for prediction of the groundwater quality classes 

based on the USSL diagram were 0.88 and 0.83 %, 

respectively. Unfortunately, all of the four studies above did 
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not support real-time classification and did not integrate with 

big data technology. 

Fazio et al., (2015) have conducted the study of 

implementing big data as the storage for smart environment 

monitoring system. This study, presented in general, was 

about the sensor integrated system in the cloud environment 

for Advanced Multi-risk Management (SIGMA) which is a 

part of the Italian National Operative Program (PON). This 

project was expected to accommodate all sorts of data from 

various environment. Unfortunately, there is no clear 

descriptions of the implementation of the big data analytic. 

Moore et al., (2016) have conducted a study on real-time 

monitoring and big data solutions for storage and predictions. 

They implemented IAL (Independent Assisted Living) and 

patient monitoring system. 

Richter et al., (2015) have conducted several comparative 

studies on toolkits for machine learning in big data, including 

Mahout MapReduce, Mahout Samsara, Spark MLlib, H2O, 

and SAMOA. The study showed that on average, Spark 

MLlib and H2O has better performances than other toolkits 

in terms of the extensibility, scalability, usability, fault 

tolerance and speed. Spark MLlib implements 17 algorithms, 

Mahout MapReduce does 13, H2O does 10, Mahout Samsara 

does 7, and SAMOA does 3. Another advantage of Spark 

MLlib is the ability to cover the batch and stream processing. 

Conversely, Mahout and H2O only cover the batch 

processing, and SAMOA only covers the stream processing.     

Our system does not use conventional web and database 

services. Instead, big data technology is adopted, where 

HDFS is used as the file system for fast access. Besides, other 

technologies to support real-time processing and integrated 

with machine learning technology are incorporated. The big 

data technology allows diverse, large, and fast data to be 

addressed in more than one computer.  

3 SEMAR 

In SEMAR, water quality monitoring system using ROV 

(a small robot submarine) (Sukaridhoto et al., 2015) was 

developed to solve the problem in the government in taking 

samples to monitor the river conditions. The ROV with water 

quality sensors can be controlled remotely. The operator did 

not have to take samples manually. The sampling results from 

sensors can be delivered directly to the server by using 

internet. 

The wireless mesh network (Yuliandoko et al., 2016) was 

also adopted to extend the range of data communication 

between sensors and the server. The portable water quality 

monitoring system (Sukaridhoto et al., 2016) was developed 

as a portable low-cost COTS-based system that able to send 

data to the server directly. The coral reef monitoring system 

(Abdillah et al., 2016) was used to monitor the condition of 

coral in shallow water by using an active camera and directly 

send data to the server. The big data storage server (Berlian 

et al., 2016) collected and saved data from sensors in Hadoop 

server by utilising HDFS, Yarn and Map Reduce. 

3.1 System Overview 

Figure 1 shows the IoT reference model (Cisco, 2014). 

Our system design is based on the IoT reference model which 

consists of seven sections: 1) physical devices and 

controllers, 2) connectivity, 3) edge computing, 4) data 

accumulation, 5) data abstraction, 6) application and 7) 

collaboration and processes. Next, Figure 2 shows the overall 

system design. Physically, the infrastructure of this system 

consists of one master node and two slave nodes. 

Figure 1 IoT reference model 

  

3.1.1 Physical Devices and Controllers 

Physical Devices and Controllers are the nodes that have 

been equipped with water quality sensors scattered at several 

points along the river that runs through the city of Surabaya. 

The water quality sensors come from ‘Atlas Scientific’ 

(Atlas, 2017) kit water sensor. The ‘Atlas Scientific’ kit 

includes pH (Potential of Hydrogen), ORP (Oxidation 

Reduction Potential), DO (Dissolved Oxygen), EC 

(Electrical Conductivity), and Temperature. The nodes use 

Raspberry Pi 3, type B. In this research, there are six point 

nodes scattered along the river and retrieving data from the 

sensors in every 5 seconds. The arrangement of data sent uses 

comma as a separator with these orders: Sensor ID, Latitude, 

Longitude, Date, Time, ORP, pH, EC, TDS, Sal, SG, DO, 

Temperature. The data communication protocol uses MQTT.  
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Figure 2  System Design. 
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The sensor nodes will act as MQTT publishers which send 

the data to MQTT broker (server). The communication port 

uses 1883, and the topic of data sent is 'watermonitoring'. The 

algorithm of Physic Sensor App can be seen on algorithm 1. 

Algorithm 1  Physic Sensor App Procedure. 

1: Begin 

2: sensorInfo  sensorID, latitude, longitude, 

3: loop: 

4: time  system time 

5: sensorData  pH,DO,EC,ORP,Temp,TDS,Sal,Sg 

6: Send sensorInfo, time, sensorData to MQTT Server 

7: Save local 

8: Sleep (5) 

9: Goto loop. 

10: End 

3.1.2 Connectivity 

The 4G modem is used to connect between the embedded 

system and the server. The throughput of this 4G modem is 

around 20 Mbps. 

3.1.3 Edge Computing 

The process of data acceptance in the server uses MQTT 

broker by Mosquitto (Light, 2013), which is sent by the 

sensor nodes. The water data is received and stored in the 

‘watermonitoring’ topic.  

3.1.4 Data Accumulation 

Data Accumulation is a process of storing water data from 

sensor nodes to the Hadoop HDFS (Hadoop, 2009). Spark 

Streaming (Spark, 2015) consumes/subscribes water data 

from the Kafka Broker (Kafka, 2014) on topic 

‘watermonitoring’. The received water data by Spark 

Streaming is buffered in 10 seconds. Every 10 seconds, the 

data is loaded into Hadoop HDFS using Hive (Hive, 2017). 

The querying of Hive is executed using Spark SQL.  

In Hadoop HDFS, the data is saved into the table named 

‘watermonitoringku’. Ten seconds are allocated to give more 

time to the system for Map Reduce processing. Hive is used 

for data saving because it uses SQL queries. Besides, in this 

system, the real-time access is not necessary for data storage. 

The water’s data in Hadoop HDFS which required for further 

analysis is loaded in batch processing using Hive Query.  The 

water data is consumed/subscribed from Kafka Broker, so 

there is a mechanism for distributing data from MQTT 

Broker (Mosquitto) to Kafka Broker directly. 

MQTTKafkaBridge (Kalaria, 2016) is used to bridge the 

distribution of topic ‘watermonitoring’ from MQTT to Kafka 

Broker.  

3.1.5 Data Abstraction 

Kafka Broker is used to managing the data flow on the 

big data server. Thus, the water data from sensor nodes with 

the topic 'watermonitoring' in MQTT Broker (Mosquitto) is 

distributed to the Kafka Broker beforehand. The direct 

distribution of water data with the topic 'watermonitoring' 

from MQTT Broker to Kafka Broker is applied using 

MQTTKafkaBridge. Then, Kafka Broker produces/ 

publishes the data to the consumer/subscriber applications. 

Kafka Broker also uses the same scheme as MQTT but with 

different terminology. Kafka Producer stands for data sender, 

Kafka Consumer stands for those who take data and Kafka 

Broker stands as an intermediary. The data is stored in certain 

topics. The topic for data coming from sensor nodes is 

'watermonitoring', while the topic for data analysis result is 

'wateranalytic'. The water data is not retrieved from data 

storage, with the intention to speed up the flow of data so the 

real-time processing can be realised.  

3.1.6 Application 

The application layer of SEMAR consists of; 1) Learning 

Process, 2) Real-time classification, and 3) Real-time 

visualisation. Previously, SEMAR used the conventional 

visualisation which could not handle the real-time data. In 

this current research, we upgrade the visualisation of 

SEMAR to the real-time visualisation.  

3.1.7 Collaboration and Processes 

At this stage, there are some interactions between the 

analyst and the system. As an interface of this section, it uses 

Zeppelin (Zeppelin, 2017). Zeppelin is an open-source web-

based notebook to analyse and visualise in an interactive way. 

By integrating Zeppelin with Apache Spark (Sharma, 2016), 

the building of the classification model is performed through 

the web in an interactive way. 

3.2  Open Source Software 

In SEMAR system, we utilise open source software in 

the sensor, communication, big data server, analytic system, 

visualisation and for the application development. Mostly, 

we use the Python library to build SEMAR system. 

4 Proposed System 

In this section, we explain our proposed system on the 

Application layer. Our proposed system consists of; 1) 

Learning Process, which describes the building of the 

classification model used in the system, 2) Real-time 

classification, which describes the schema of real-time 

analysis and 3) Real-time visualisation, which describes the 

real-time visualisation process on the front-end web user 

interface. 

4.1  Learning Process 

The learning process is the stage for building the 

classification model which used in the system. This process 

is done before the real-time classification processing.  Then, 

the accuracy level of the generated model greatly affects the 

level of confidence in classification results. 
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This paper uses data which retrieved from PDAM Surya 

Sembada Surabaya (PDAM, 2016). The data are laboratory 

test data and live sensor data.  

The data of laboratory test is the data from the daily 

laboratory test result which conducted in 2014 to 2016 with 

1,347 samples and 20 attributes. The laboratory test data 

consists of: date, temperature, turbidity, colour, SS, pH, 

alkalinity, CO2 free, DO, nitrite, ammonia, copper, 

phosphate, sulphide, iron, hexavalent chromium, manganese, 

zinc, lead, and COD.  

The data of live sensor is the data from sensors which 

placed in several places in Surabaya’s river, the data is taken 

on March to August in 2016 with 205.720 samples and 6 

attributes. The live sensor data consists of: date-time, 

turbidity, TSS, pH, DO, and temperature. 

The determination of the class label uses Pollution Index 

method. Pollution Index is one of the two methods recognised 

in Indonesia in determining water quality. It can be calculated 

by eq. (1) (Hidup, 2003). 

PIj = √
(𝐶𝑖 𝐿𝑖𝑗⁄ )

𝑀

2
+(𝐶𝑖 𝐿𝑖𝑗⁄ )

𝑅

2

2
 

𝐿ij is the concentration of water quality parameter in water 

designation standard (j), and 𝐶i is expressed as the 

concentration of water quality parameter (i) obtained from 

the measurement result of a river channel. 𝑃Ij is Pollution 

Index for designation (j), it is the function of 
𝐶𝑖

𝐿𝑖𝑗
 and 

determined from the resultant maximum value (M) and the 

mean value (R) concentration ratio per parameter of the value 

of the water quality standard. Evaluate of the value 𝑃Ij can 

determine the categories of Pollution Index as shown in eq. 

(1). The category can be seen in Table 1. 

Table 1  Pollution Index Category. 

No. Pollution Index Categories 

1 0 ≤ 𝑃Ij ≤ 1.0 Fulfil Standard 

2 1.0 < 𝑃Ij ≤ 5.0 Lightly Polluted 

3 5.0 < 𝑃Ij ≤ 10.0 Polluted 

4 𝑃Ij > 10.0 Heavy Polluted 

In laboratory test and live sensor data, parameters used in 

determining Pollution Index are turbidity, TSS, pH, DO, and 

temperature. These five parameters are standard parameters 

used by PDAM Surya Sembada Surabaya in monitoring the 

condition of raw water before being processed into drinkable 

water. From the Pollution Index category, there are four 

possible labels, namely; Fulfil Standard, Lightly Polluted, 

Polluted, and Heavy Polluted. Then, the label is translated 

into the numerical to facilitate the training process as Fulfil 

Standard = 0, Lightly Polluted = 1, Polluted = 2, and Heavy 

Polluted = 3. 

In the training process of the dataset, Spark MLlib is used 

for conducting training process of the dataset. By using Spark 

SQL, data analysis could be performed on large scale. Spark 

MLlib has supported several algorithms that could be used 

for classification, clustering, or regression. As proposed by 

(Modaresi and Araghinejad, 2014), (Ladjal et al., 2016), 

(Jaloree et al., 2014), (Saghebian et al., 2014), we use two 

classification algorithms, where the results would be 

compared to choose the best one. Classification algorithms 

which would be used were Support Vector Machine and 

Decision Tree. 
Support Vector Network (Cortes and Vapnik, 1995) or 

Support Vector Machine (SVM) is has been extensively used 

for classification and regression (Suykens and Vandewalle, 

1999). On the binary SVM, the classification is performed by 

the optimal linear separating hyperplane between two classes. 

If (𝑥𝑖 , 𝑦𝑖) is dataset with 𝑖 = 1, … , 𝑛, where 𝑥𝑖 is the vector 

containing 𝑚  features, and 𝑦𝑖 ∈ {−1,1}  is the class label 

related to 𝑥𝑖 . SVM solves the following primal problem 

(Modaresi and Araghinejad, 2014), (Ladjal et al., 2016), 

(Suykens and Vandewalle, 1999).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒
1

2
|𝑤|2 + 𝑐 ∑ 𝜉𝑖

𝑛

𝐼=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜: 𝑦𝑖(𝑤𝑥 + 𝑏)  ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0,
∀𝑖 ∈ {1, … , 𝑛} 

The problem is changed to the following dual problems 

by using the Lagrange multipliers (Modaresi and 

Araghinejad, 2014), (Suykens and Vandewalle, 1999). 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑ 𝑎𝑖

𝑛

𝑖=1

−  
1

2
 ∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑛

𝑖=1.𝑗=1

 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜: ∑ 𝑎𝑖𝑦𝑖

𝑛

𝑖=1

= 0, 0 ≤ 𝑎𝑖 ≤ 𝐶, ∀𝑖 ∈ {1, … , 𝑛} 

The level of error in classification is adjusted by C parameter. 

The nonlinear transformation ∅  is done through the 

kernel function 𝐾(𝑥𝑖 , 𝑥𝑗). It describes nonlinearity mapping 

from the input space to the higher dimensional space features. 

The dual problem of SVM Lagrange turns into (Modaresi and 

Araghinejad, 2014), (Ladjal et al., 2016), (Jaloree et al., 

2014), (Ito and Kunisch, 2008). 

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑ 𝑎𝑖

𝑛

𝑖=1

−  
1

2
 ∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖𝑥𝑗)

𝑛

𝑖=1.𝑗=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡_𝑡𝑜: ∑ 𝑎𝑖𝑦𝑖

𝑛

𝑖=1

= 0, 0 ≤ 𝑎𝑖 ≤ 𝐶, ∀𝑖 ∈ {1, … , 𝑛} 

After obtaining an optimal parameter 𝑎 , the decision 

function of the classification becomes (Modaresi and 

Araghinejad, 2014), (Ladjal et al., 2016). 

𝑓(𝑥𝑗) =  𝑠𝑖𝑔𝑛 (∑ 𝑎𝑖𝑦𝑖𝐾(𝑥𝑖𝑥𝑗) + 𝑏

𝑛

𝑖=1

) 

SVM with the linear kernel is implemented in this 

research. The formula of Linear Kernel of SVM (Modaresi 

and Araghinejad, 2014), (Fan et al., 2008) is formulated as 

follows: 

𝑘(𝑥𝑖𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗. 

The original SVM can be classified into two classes. If it 

deals with more than two classes classification problems, an 

appropriate multiclass method is needed. In this case, 

combining several binary classifiers with two methods 

(Modaresi and Araghinejad, 2014), (Hsu and Lin, 2002); 

a. ‘One against one’ means implementing inter-class pair 

comparisons. 

b. ‘One against the others’ means comparing one class with 

all the other classes. 

One against one method is selected to be used in this study. 

(1) 

(2) 

(3) 

(4) 

(5) 
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The decision tree is a decision support system which uses 

a tree-like graph decision and its after-effect possibility, 

involving chance event results, resource costs, and utility. 

The decision tree or classification tree is used in learning the 

classification function which infers the dependent attribute 

(variable) value given by the independent attribute (input) 

(variable) value.  

Some of the well-known decision tree algorithms are ID3, 

C4.5, SPRINT, SLIQ, C5.0 and CART (Anyanwu and Shiva, 

2009). This research uses CART, which is known as the 

classification and regression trees (Breiman et al., 1984) 

algorithm, to classify water quality. Both numerical and 

categorical variables can be handled by CART. It can 

measure the impurity level of accepted data and construct a 

binary tree where each internal node produces two classes for 

the accepted attribute. The Gini index is calculated for each 

attribute, the attribute with the lowest Gini index is selected 

as a breaker attribute (Bramer, 2007). Selecting the attribute 

recursively with the lowest Gini Index is the way of how the 

tree is constructed. Gini Index is calculated based on the 

formula below, where the probability of the 𝑖𝑡ℎ  class for 𝑐 

target classes of a given attribute is 𝑃𝑖, meanwhile, 𝑃𝑖 is the 

probability of class 𝑖 (Bashir et al., 2014). 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 −  ∑ 𝑃𝑖
2

𝑐

𝑖=1

 

The hold-out method is used for evaluating the classifier 

accuracy. This method divides the entire dataset into two 

parts, namely; training set and test set. The training set is a 

subset of the dataset used to construct the classification 

model, and the test set is a subset used to measure the 

performance of the built classification model. Actually, 70% 

of the dataset is used for the training set and 30% is used for 

the test set. The learning procedure is shown in algorithm 2.  

Algorithm 2  Learning Procedure. 

1: method  Linear SVM, Decision Tree 

2: Begin 

3: Retrieve Dataset 

4: Split Dataset (70,30) 

5: Machine Learning Training (method) 

6: Machine Learning Testing (method) 

7: Calculate MSE, Mislabel, Accuracy 

8: Save Model 

9: End 

4.2 Real-time Classification 

The real-time classification uses big data analytic 

technology. Therefore, the number of nodes can be increased 

up to hundreds or even thousands and can perform data 

analysis on large scale. This process requires the high speed 

in order to be a stand-alone application with the purpose to 

cut the delay between the data is being received until it is 

visualised.  

Real-time classification process uses Spark MLlib as well 

as in the learning process. The generated classification model 

on 4.1 is loaded before the classification of new data. The 

water data is read by Spark from Kafka Broker by topic 

‘watermonitoring’ in streaming way, then conducting a 

classification which produces the prediction of Pollution 

Index category. The classification result is saved in a variable 

called ‘label’. This label has a numerical type and it is 

retranslated into the categorical data (Fulfil Standard, Lightly 

Polluted, Polluted, or Heavy Polluted) stored in the new 

variable, called ‘criteria’. The result of this classification is 

loaded into Kafka Broker using Kafka Producer on the port 

9092 with the topic 'wateranalytic'. The ‘wateranalytic’ topic 

is used for real-time visualisation data. The sent data uses 

JSON format with the arrangement of Sensor ID, Latitude, 

Longitude, Date, Time, ORP, pH, EC, TDS, Sal, SG, DO, 

Temperature, Label, Criteria. The algorithm of the real-time 

classification can be seen on algorithm 3. 

Algorithm 3  Real-time Classification. 

1: function parsing(data) 

2: parse  param1, param2, …, param n 

3: return parse 

4: end function 

5: function realtimeClassification(parse) 

6: classify  Model.predict  

7: return classify 

8: end function 

9: function sendToKafka(data,classify) 

10: Send data, classify to Kafka Broker 

11: end function 

12: Begin 

13: Spark initialization 

14: Load Model 

15: data  pH,DO,EC,ORP,Temp,TDS,Sal,Sg from 

Kafka Broker 

16: parsing (data) 

17: realtimeClassification (parse) 

18: SendToKafka(data,classify) 

19: End 

4.3  Visualisation 

 Further, Node JS (Node, 2017) takes data from the real-

time classification result of Kafka Broker using Kafka 

Consumer with the topic ‘wateranalytic’. By using Node JS, 

the flow of real-time data can be managed to the front end. 

The Web socket is used in Node JS to send the data from the 

backend to the front end. In the front end, the standard 

technology combination is used to create the attractive 

appearance, like Apache, PHPCI, JavaScript, CSS and 

HTML. Specifically, Google Map (Map, 2017) API is used 

to visualise the location of the sensor node and Highcharts 

(Highsoft, 2015) is used to visualise water data charts. 

Highcharts supports real-time visualisation for real-time data. 

In the visualisation, it also displays information about 

Pollution Index of the water data. The data flow of 

visualisation can be seen in Figure 3. Figure 4 shows the 

visualisation of the node location which exists along the river 

in Surabaya. The central point of the map is (-7.348195, 

112.681339). Figure 5 shows the chart of the water data 

sensor and information of Pollution Index of real-time 

classification process result. 

 

 

 

(6) 
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Figure 3  Data Flow in Visualisation. 

 

Figure 4  Visualisation of Node Location. 

 

Figure 5  Visualisation of Water Data Sensor and 

Information of Pollution Index. 

 

5 Experiments and Results 

The experiments were conducted by testing the 

performance of Linear SVM and the Decision Tree algorithm 

using their default parameters. We used the dataset from 

PDAM Surya Sembada Surabaya (The laboratory test dataset 

and the live sensor dataset). 

5.1 Confusion Matrix Results 

Tables 2 and 3 show the confusion matrix for the 

laboratory test dataset by Linear SVM and by the Decision 

Tree algorithm respectively. Tables 4 and 5 show the 

confusion matrix of the live sensor dataset by Linear SVM 

and Decision Tree algorithm respectively. The laboratory test 

data and live sensor data do not meet the fulfil standard (class 

0) and the heavy polluted standard (class 4). 

 

 

Table 2  Confusion Matrix of laboratory test dataset uses 

Linear Support Vector Machine. 

 Predicted Class 

0 1 2 3 

Actual 

Class 

0 0 0 0 0 

1 0 206 6 0 

2 0 19  159 0 

3 0 0 0 0 

Table 3  Confusion Matrix on laboratory test dataset uses 

Decision Tree. 

 Predicted Class 

0 1 2 3 

Actual 

Class 

0 0 0 0 0 

1 0 212 0 0 

2 0 2 176 0 

3 0  0 0 0 

Table 4  Confusion Matrix of live sensor dataset uses 

Linear Support Vector Machine. 

 Predicted Class 

0 1 2 3 

Actual 

Class 

0 0 0 0 0 

1 0 19770 107 0 

2 0 182 25338 0 

3 0 0 0 0 

Table 5  Confusion Matrix of live sensor dataset uses 

Decision Tree. 

 Predicted Class 

0 1 2 3 

Actual 

Class 

0 0 0 0 0 

1 0 19859 18 0 

2 0 16 25504 0 

3 0 0 0 0 

5.2 Classification Results 

In the two datasets, the labelling results only produced 

two water classes, lightly polluted (class 1) and polluted 

(class 2). This means that the river water in Surabaya is at 

either class 1 or class 2. 

Table 6 shows the number of mislabeled data, the 

accuracy rate, and the MSE (Mean Squared Error) by each 

algorithm on each dataset that were calculated from the 

confusion matrix. 

Both algorithms show the good performance with the 

accuracy rate of more than 90% and the MSE around 

0.019075. If the results are compared, the decision tree 

algorithm offers the better accuracy rate of 0.999251 for the 

live sensor dataset and 0.994872 for the laboratory test 

dataset. 
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The validation of classification model can also be done 

with ROC (Receiver Operating Curve). It is a comparison 

graph between TPR (True Positive Rate) on the vertical axis 

and FPR (False Positive Rate) on the horizontal axis of the 

ROC. The area under the ROC curve is known as the AUC 

(Area Under the ROC Curve). The AUC value ranges from 0 

to 1. The closer to 1 means the better test value in the 

classification model. Figure 6 shows the ROC for the 

laboratory test dataset by both algorithms. Figure 7 shows 

ROC for the live sensor dataset by them.  

By the decision tree algorithm, the ROC graph of live 

sensor dataset shows 1.00 for class 1 and class 2, and for the 

laboratory test dataset shows 0.99 for class 1 and class 2. It 

Features Dataset Algorithm Mislabel Accuracy MSE 

pH, TSS, DO, 

Temp, Turbidity 

Laboratory test 

Linear Support 

Vector Machine 
25 / 390 0.935897 0.0641 

Decision Tree 2 / 390 0.994872 0.0051 

Live Sensor 

Linear Support 

Vector Machine 
289 / 45397 0.993634 0.0064 

Decision Tree 34 / 45397 0.999251 0.0007 

Figure 7 ROC of live sensor dataset using Linear Support Vector Machine and Decision Tree. 

Figure 6  ROC of laboratory test dataset using Linear Support Vector Machine and Decision Tree. 

Table 6  Comparison of two algorithms on laboratory test and live sensor dataset. 
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means that the water quality classification system using the 

decision tree algorithm has the excellent performance with 

0.9 ≤ AUC ≤ 1.  

Spark is a big data machine learning toolkit that uses in-

memory processing schema to perform data analysis. The 

problem that sometimes happens is the memory allocation of 

Spark's job is less than the required for data analysis. This can 

lead to Out of Memory Error. It is necessary to increase the 

Java Heap Space. In this research, Spark is used in a yarn-

client mode. The Yarn is used to manage the job of spark, 

including the memory allocation. At Yarn, 4 GB memory is 

allocated for each job and we did not meet any problem in 

building the classification model. 

5.3 Processing Time 

The server only take approximately 508 milliseconds 

for all nodes for data processing at the visualisation stage 

because of the direct data flow to real-time processing. They 

come from the Spark's ability to process the data by in-

memory processing scheme, and the Node JS’s ability to 

support the real-time data flow for visualisation. The 

processing time did not include the transmission time from 

the node to the server, which is about 1 second. Thus, it is 

concluded that the system of the monitoring and real-time 

classification is effective. Figure 8 shows the average 

processing time on the server after the water sensor data is 

received by the server from the node until it ends at the time 

the data is visualised. 

Figure 8 Server Processing Time. 

 

6 Conclusions and Future Work 

In this paper, the classification extension based on IoT-

Big data analytic for smart environment monitoring and 

analytic in real-time system has been conducted by 

integrating IoT and big data. The evaluations confirmed that 

the data analytic function adopting the linear SVM and the 

decision tree algorithms achieves more than 90% for the 

estimation accuracy with 0.019075 for the MSE. In future, 

SEMAR is expected to be used in the air environment, and 

for real-time clustering in mapping the water conditions in 

the river. 
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Figure 1  IoT Reference Model 
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Figure 2  System Design. 
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Figure 3  Data Flow in Visualisation. 

 

Figure 4  Visualisation of Node Location. 

 

Figure 5  Visualisation of Water Data Sensor and Information of Pollution Index. 

 

 

 

Figure 6  ROC of laboratory test dataset using Linear Support Vector Machine and Decision Tree. 
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Figure 8  Server Processing Time 

 

 

Table 1  Pollution Index Category. 

 
 

 

 

 

Table 2  Confusion Matrix of laboratory test dataset uses Linear Support Vector Machine. 
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Figure 7  ROC of live sensor dataset using Linear Support Vector Machine and Decision Tree. 
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Table 3  Confusion Matrix on laboratory test dataset uses Decision Tree. 

 

 

 

 

 

 

 

 

Table 4 Confusion Matrix of live sensor dataset uses Linear Support Vector Machine. 

 

 Predicted Class 

0 1 2 3 

Actual 

Class 

0 0 0 0 0 

1 0 19770 107 0 

2 0 182 25338 0 

3 0 0 0 0 

 

Table 5  Confusion Matrix of live sensor dataset uses Decision Tree. 

 Predicted Class 

0 1 2 3 

Actual 

Class 

0 0 0 0 0 

1 0 19859 18 0 

2 0 16 25504 0 

3 0 0 0 0 

 

Table 6  Comparison of two algorithms on laboratory test and live sensor dataset. 

 

 Predicted Class 

0 1 2 3 

Actual 

Class 

0 0 0 0 0 

1 0 212 0 0 

2 0 2 176 0 

3 0  0 0 0 

Features Dataset Algorithm Mislabel Accuracy MSE 

pH, TSS, DO, 

Temp, Turbidity 

Laboratory test 

Linear Support 

Vector Machine 
25 / 390 0.935897 0.0641 

Decision Tree 2 / 390 0.994872 0.0051 

Live Sensor 

Linear Support 

Vector Machine 
289 / 45397 0.993634 0.0064 

Decision Tree 34 / 45397 0.999251 0.0007 


