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Abstract
There is a growing interest in using machine learning (ML) models to perform automatic
diagnosis of psychiatric conditions; however, generalising the prediction of ML models to
completely independent data can lead to sharp decrease in performance. Patients with different
psychiatric diagnoses have traditionally been studied independently, yet there is a growing
recognition of neuroimaging signatures shared across them as well as rare genetic copy
number variants (CNVs). In this work, we assess the potential of multi-task learning (MTL) to
improve accuracy by characterising multiple related conditions with a single model, making
use of information shared across diagnostic categories and exposing the model to a larger and
more diverse dataset. As a proof of concept, we first established the efficacy of MTL in a context
where there is clearly information shared across tasks: the same target (age or sex) is predicted
at different sites of data collection in a large fMRI dataset compiled frommultiple studies. MTL
generally led to substantial gains relative to independent prediction at each site. Performing
scaling experiments on the UK Biobank, we observed that performance was highly dependent
on sample size: for large sample sizes (N>6000) sex prediction was better using MTL across
three sites (N=K per site) than prediction at a single site (N=3K), but for small samples (N<500)
MTL was actually detrimental for age prediction. We then used established machine learning
methods to benchmark the diagnostic accuracy of each of the 7 CNVs (N=19-103) and 4
psychiatric conditions (N=44-472) independently, replicating the accuracy previously reported
in the literature on psychiatric conditions. We observed that MTL hurt performance when
applied across the full set of diagnoses, and complementary analyses failed to identify pairs of
conditions which would benefit fromMTL. Taken together, our results show that if a successful
multi-task diagnostic model of psychiatric conditions were to be developed with resting-state
fMRI, it would likely require datasets with thousands of patients across different diagnoses.

Keywords: Machine learning, multi-task learning, multi-site data, fMRI, CNVs, psychiatric
conditions



1 - Introduction
There is a growing interest in using machine learning (ML) models to perform automatic
diagnosis of psychiatric conditions. Unlike group-level mass-univariate analyses, ML models
identify multivariate patterns that characterise a condition by learning to distinguish patients
from control subjects at the individual level. While many studies have reported promising
results (Iyortsuun et al., 2023), generalising the prediction of ML models to completely
independent data can lead to sharp decrease in performance, as was recently evidenced for
clinical trial stratification (Chekroud et al., 2024). This is due in large part to the massive
biological heterogeneity that exists within the current diagnostic categories, which are based
on behavioural symptoms alone (Pacheco et al., 2022). High rates of comorbidities (Katzman et
al., 2017; McElroy, 2004; Simonoff et al., 2008; Tsai & Rosenheck, 2013) among psychiatric
disorders, as well as genetic and symptom overlap (Romero et al., 2022), and shared
neuroimaging signatures (Vanes & Dolan, 2021; Xie et al., 2023) supports the existence of latent
factors that ignore diagnostic boundaries. Multi-task learning (MTL) is an ML framework that
has the potential to improve prediction by characterising multiple related conditions with a
single model, making use of information shared across diagnostic categories and exposing the
model to a larger and more diverse dataset. Useful transdiagnostic information for MTL may
also be found in rare genetic mutations, called copy number variants (CNVs), some of which
confer a high risk for a range of psychiatric conditions (Marshall et al., 2017; Rees & Kirov, 2021;
Sanders et al., 2019; Satterstrom et al., 2020). CNVs have a large impact on brain structure and
function (Modenato et al., 2021; Moreau, Ching, et al., 2021; Moreau et al., 2020; Moreau,
Raznahan, et al., 2021; Sønderby et al., 2022), which converges with neuroimaging brain
signatures associated with psychiatric disorders (Moreau, Raznahan, et al., 2021). In this work,
we aimed to assess the potential of MTL to exploit the relationships between a range of
psychiatric and CNV conditions to improve the performance of automatic diagnosis. To this
end, we compiled a resting state functional magnetic resonance imaging (rs-fMRI) dataset of 7
CNVs, which have never previously been studied in the ML context, and 4 psychiatric disorders.

ML models aim to identify patterns and mechanisms across regions in the brain that
characterise a condition and provide scores for diagnosis at the individual level (Linn et al.,
2016). While genetic variants conferring risk for psychiatric conditions have yet to be studied in
the ML context, many studies have applied ML methods to automatically diagnose psychiatric
conditions using rs-fMRI biomarkers, including schizophrenia (SZ) (Bassett et al., 2012; Kim et
al., 2016; Venkataraman et al., 2012), autism spectrum disorder (ASD) (Abraham et al., 2017;
Heinsfeld et al., 2018; Khosla et al., 2018; Nielsen et al., 2013; Traut et al., 2022),
attention-deficit/hyperactivity disorder (ADHD) (Eloyan et al., 2012; J. Li et al., 2020; Z. Wang et
al., 2023), and bipolar disorder (BIP) (Rashid et al., 2016; H. Wang et al., 2022). However,
accuracy of automatic diagnosis reported in the literature should be interpreted with caution,
as the majority of studies to date have been performed on data collected from a single site with
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a small sample size (Orban et al., 2018). Sample size is a crucial factor in training ML models.
Accuracy of prediction generally increases with the number of subjects in studies that examine
the impact of sample size (Schulz et al., 2020; Traut et al., 2022). While more subjects allow the
model to learn a better signature for a given condition, using small samples can yield
deceptively high prediction accuracy due to overfitting (where a model memorises aspects of
the dataset used to train it, but fails to generalise to new data). In a meta-analysis (including
studies on ASD and SZ among other psychiatric diagnoses), Varoquaux found that studies with
fewer subjects tended to report higher prediction accuracies (Varoquaux, 2018). Larger and
more diverse samples are crucial to train properly evaluated models that can detect subtle
patterns and generalise to the heterogeneity encountered in the clinical setting (Q. Ma et al.,
2018; Traut et al., 2022). Given the evidence of latent factors shared across psychiatric
conditions and CNVs, a logical next step is to develop ML models that can better exploit the
available data by combining information across related categories.

MTL is an ML framework in which, rather than training a model on a single learning task (e.g.
predicting ASD from rs-fMRI data), a model is trained on multiple related tasks concurrently.
For example, predicting a diagnosis of ADHD as well as a diagnosis of ASD from resting-fMRI
data (Huang et al., 2020). When the tasks are well grouped together, MTL can make better use
of data by implicitly augmenting the data from each task with the data from the others, and the
shared latent representation acts as a form of regularisation across tasks. Although there are
still few examples in neuroimaging, MTL has been applied across target clinical variables using
rs-fMRI data (Rahim et al., 2017) and combined imaging modalities (Zhang et al., 2012), across
timepoints to predict disease progression using cortical surface data (Zhou et al., 2013), across
individuals to perform brain decoding using fMRI data (Marquand et al., 2014; Rao et al., 2013),
across fMRI task conditions to predict intelligence quotient (IQ) (Xiao et al., 2020), and across
sites (Hu & Zeng, 2019; Q. Ma et al., 2018) (Hu & Zeng, 2019; Q. Ma et al., 2018; Watanabe et al.,
2014) and disease subtypes (X. Wang et al., 2015) to perform automatic diagnosis. Various deep
learning architectures have also been applied to neuroimaging data using MTL (Dong et al.,
2020; He et al., 2020; Liang et al., 2021; Ngo et al., 2020; Tabarestani et al., 2022; Yu et al., 2021).
There are only two previous studies applying MTL across psychiatric conditions (Huang et al.,
2022, 2020), the first examined ASD and ADHD and the second added SZ (prediction accuracy of
73.1, 72.7, and 84.9 respectively). In these studies, Huang and colleagues proposed the
Multicluster Multigate Mixture of Experts (M-MMOE). The M-MMOE is a variant of the
Multi-gate Mixture-of-Experts (MMOE) framework (J. Ma et al., 2018), in which MMOEs are
combined across clusters of brain ROIs (see Supplementary Materials 10.3 for a more in depth
description). While these results are in line with accuracies reported in the ML literature, they
still fall short of being useful in clinical practice. Another limitation of these prior works is that
they only combined a limited number of diagnostic categories in the MTL framework, in
particular leaving out valuable but rare data on genetic risk for psychiatric conditions (CNVs)
which might allow shared features that are subtle in psychiatric conditions to be learned more
easily in highly impacted populations.
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For this purpose, we used an rs-fMRI dataset consisting of subjects diagnosed with 7 CNVs and
4 psychiatric disorders, including a total of 2872 participants and 53 sites of data collection. We
included CNVs that were previously found to be associated with psychiatric disorders: DEL
1q21.1, DUP 1q21.1, DEL 16p11.2, DUP16p11.2, DEL 22q11.2, DUP 22q11.2, and DEL 15q11.2
(Collins et al., 2022; Davies et al., 2020; Jønch et al., 2019; Marshall et al., 2017; Moreau et al.,
2023; Sanders et al., 2015). In particular, DEL 22q11.2 and DEL 16p11.2 are rare examples of
heritable (non de-novo) CNVs with severe clinical manifestations. Both variants have been
found to have large clinical effect sizes (Crawford et al., 2019; Jonas et al., 2014; Moreau et al.,
2023; Rees & Kirov, 2021; Willsey et al., 2022). DEL 22q11.2 is the biggest known risk factor for
SZ: 30% of carriers will develop the condition in their lifetime (Marshall et al., 2017) and its
diagnosis also carries an elevated risk for ASD (32 times higher than the general population).
DEL 16p11.2 is associated with ASD, as well as with ADHD (Moreno-De-Luca et al., 2013;
Niarchou et al., 2019; Sanders et al., 2015). We included common psychiatric disorders, which
have also been found to be associated with CNVs: autism spectrum disorder (ASD) associated
with (16 different CNVs, schizophrenia (SZ) associated with 14 different CNVs (Satterstrom et al.
2020; Sanders et al. 2019; Marshall et al. 2017; Rees and Kirov 2021), and Bipolar (BIP) disorder
and Attention-Deficit/Hyperactivity Disorder (ADHD) which are less frequently associated (Rees
and Kirov 2021). The estimated prevalence of ASD is 1% of children worldwide (Zeidan et al.,
2022)), of ADHD is 2.5% of the general population (Simon et al., 2009), of BIP is 1% worldwide
(Merikangas et al., 2011), of SZ is 0.44% of the general population (Moreno-Küstner et al., 2018).
Comorbidities between these conditions are extensive (Katzman et al., 2017; McElroy, 2004;
Rösler et al., 2010; Sajatovic, 2005; Simonoff et al., 2008; Tsai & Rosenheck, 2013).

As a proof of concept, we first applied MTL in a context where there is clearly information
shared across tasks: the same target (age or sex) is predicted at different sites of data collection
where each site is treated as a task. Using the very large UK Biobank sample (30,185 subjects),
we examined the impact of sample size on MTL accuracy. Next, we evaluated the potential
benefits of MTL for prediction accuracy across the full set of psychiatric and genetic conditions
in our dataset by treating each condition as a task. Finally, we explored the relationships
between conditions by applying MTL to each pair using our standard model and several variant
model architectures.
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2 - Materials and Methods

2.1 - Ethics
The present secondary analysis project was approved by the research ethics review board at the
Centre Hospitalier Universitaire Sainte-Justine.

Condition Total
N
(F)

Age
Mean (SD)

FD
Mean (SD) Sites Dataset

A DEL 15q11.2 103 (55) 64.29 (7.44) 0.19 (0.06) 3 UKBB

Controls 103 (55) 62.65 (7.51) 0.19 (0.05) 3

DUP 16p11.2 35 (14) 34.15 (19.53) 0.21 (0.09) 6 MRG, SVIP, UKBB

Controls 35 (14) 32.04 (20.34) 0.18 (0.06) 6

DUP 22q11.2 22 (12) 39.43 (23.49) 0.19 (0.09) 5 DEFINE, MRG, UCLA,

Controls 22 (12) 38.61 (25.81) 0.17 (0.06) 5 UKBB

DEL 1q21.1 25 (12) 44.40 (18.87) 0.18 (0.07) 6 DEFINE, MRG, SVIP,

Controls 25 (12) 50.89 (14.69) 0.21 (0.08) 6 UKBB

DUP 1q21.1 19 (13) 50.86 (19.35) 0.21 (0.08) 7 DEFINE, MRG, SVIP,

Controls 19 (13) 51.40 (22.31) 0.17 (0.04) 7 UKBB

DEL 16p11.2 32 (13) 21.74 (20.14) 0.22 (0.09) 5 DEFINE, MRG, SVIP,

Controls 32 (13) 31.64 (20.15) 0.19 (0.07) 5 UKBB

DEL 22q11.2 43 (19) 16.86 (6.95) 0.18 (0.07) 1 UCLA

Controls 43 (22) 13.00 (4.61) 0.14 (0.04) 1

B ADHD 223 (66) 14.71 (9.47) 0.15 (0.04) 7 ADHD-200, CNP

Controls 353 183 17.68 (10.63) 0.14 (0.04) 7

ASD 472 (0) 14.71 (5.88) 0.17 (0.05) 28 ABIDE1, ABIDE2

Controls 471 (0) 15.32 (6.58) 0.16 (0.05) 28

SZ 283 (73) 33.90 (9.22) 0.17 (0.06) 12 Orban, CNP

Controls 355 (113) 31.85 (9.33) 0.14 (0.05) 12

BIP 44 (20) 35.02 (8.95) 0.17 (0.07) 2 CNP

Controls 113 (52) 30.88 (8.59) 0.14 (0.04) 2
Table 1 - Demographics by condition. A) Psychiatric CNVs, B) Psychiatric Conditions. The first two columns are the
number of total subjects, and of female subjects (in parentheses). The intermediate columns show the mean age and
framewise displacement (FD) (a measure of head motion, with standard deviation (in parentheses). The final column
shows the number of scanning sites contributing to the dataset. See section 2.2 for dataset abbreviation definitions.



2.2 - Cohorts
The nine rs-fMRI datasets included four clinical CNV cohorts, five idiopathic neuropsychiatric
datasets and one very large sample of unselected individuals. A majority of the datasets are
compiled from different sites of data collection and studies. In total, rs-fMRI data from 2872
individuals were included, who were either neurotypical control subjects, individuals
diagnosed with one of 7 CNVs associated with psychiatric disorders (Moreau et al., 2023), or one
of 4 psychiatric disorders (ASD, SZ, BIP, ADHD) (see Table 1). The research ethics review boards
of each relevant institution approved the study of the corresponding dataset.

2.2.1 - Clinical Genetic Datasets

Participants in the four clinical genetic rs-fMRI datasets were recruited for scanning based on
the presence of a CNV regardless of the presentation of symptoms, along with matched control
subjects. These four clinical CNV datasets included the Simons Variation in Individuals Project
(SVIP) (Simons Vip Consortium, 2012), the DEFINE Neuropsychiatric-CNVs Project (DEFINE)
(Cardiff, United Kingdom) (Drakesmith et al., 2019), the University of California, Los Angeles
22q11.2 CNV project (UCLA) (Jalbrzikowski et al., 2022; Lin et al., 2017; Schleifer et al., 2023),
and the unpublished Montreal rare genomic disorder family project (MRG) (MRG, Canada).

2.2.2 - Psychiatric Conditions Cohorts

We included 5 psychiatric rs-fMRI datasets: Autism Brain Imaging Data Exchange 1 (ABIDE1)
(Di Martino et al., 2014), Autism Brain Imaging Data Exchange 2 (ABIDE2) (Di Martino et al.,
2017), ADHD-200 (ADHD-200 Consortium, 2012), Consortium for Neuropsychiatric Phenomics
(CNP) (Poldrack et al., 2016), and an aggregate dataset of 10 SZ studies (Orban) (Moreau et al.,
2020; Orban et al., 2017). These studies provided data for individuals with ASD, ADHD, SZ, BIP
and matched control subjects.

2.2.3 - Unselected Population

CNV carriers with available rs-fMRI data were identified in the UK Biobank (UKBB) (Sudlow et
al., 2015) using PennCNV (K. Wang et al., 2007) and QuantiSNP (Colella et al., 2007) following
previously published methods (Huguet et al., 2021; {Martineau et al., n.d.). The DNA was
extracted from blood samples, the Affymetrix arrays were utilised, sharing common probes
between them, with a scale of 50k on the UK BiLEVE Array and 450k on the UK Biobank
Axiom Array (Wain et al., 2015).

2.3 - rs-fMRI Preprocessing
All datasets were preprocessed using the same parameters of NIAK (Bellec et al., 2012). The
three first volumes of each run were suppressed to allow the magnetisation to reach
equilibrium. Each fMRI dataset was corrected for inter-slice difference in acquisition time and
the parameters of rigid-body motion were estimated for each time frame. Rigid-body motion
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was estimated within as well as between runs. The median volume of one selected fMRI run for
each subject was coregistered with a T1 individual scan, which was itself non-linearly
transformed to the Montreal Neurological Institute (MNI) template (Fonov et al., 2011). The
rigid-body transform, fMRI-to-T1 transform and T1-to-stereotaxic transform were all
combined, and the functional volumes were resampled in the MNI space at a 3 mm isotropic
resolution. The “scrubbing” method (Power et al., 2012) was used to remove the volumes with
excessive motion (frame displacement greater than 0.5). The following nuisance parameters
were regressed out from the time series at each voxel: slow time drifts (basis of discrete cosines
with a 0.01 Hz high-pass cut-off), average signals in conservative masks of the white matter and
the lateral ventricles as well as the first principal components (95% energy) of the six rigid-body
motion parameters and their squares (Giove et al., 2009; Lund et al., 2006). The fMRI volumes
were finally spatially smoothed with a 6 mm isotropic Gaussian blurring kernel. A more
detailed description of the pipeline can be found on the NIAK website. Preprocessed data were
visually controlled for the quality of the co-registration, head motion, and related artefacts.

2.4 - Computing Connectomes
We used the Multiresolution Intrinsic Segmentation Template (MIST) brain parcellation (Urchs
2017) to segment the brain into 64 regions. This functional brain parcellation was found to have
excellent performance in several ML benchmarks on either functional or structural brain
imaging (Dadi et al., 2020; Hahn et al., 2022; Mellema et al., 2022). We chose the 64 parcel atlas
of the MIST parcellation because this range of network resolution was found to be sensitive to
changes in functional connectivity (FC) in psychiatric disorders, both using ML (see previous
references) as well as classical mass univariate regression (Bellec et al., 2015). FC between any
two regions was defined as the Fisher z-transformed Pearson’s correlation between the average
time series of each region, while within region connectivity is the Fisher z-transformed average
of Pearson’s correlation between any pair of distinct voxels within the region. Each connectome
consisted of 2080 values: (63*64)/2 = 2016 region-to-region connections plus 64 within region
connectivity values.

2.5 - Multi-Task Learning
We explored using MTL to predict age and sex across sites, and to perform automatic diagnosis
across conditions from connectomes using shared bottom neural network models. For age and
sex prediction each site is treated as a task, and for automatic diagnosis each condition is
treated as a task. In shared bottommodels (often called hard parameter sharing), the first layers
of the network are common to all tasks after which the model branches into a series of
task-specific heads (see Figure 1B). We chose to implement this form of MTL rather than
various soft-parameter sharing schemes, in which partially or entirely parallel networks have
parameters regularised jointly, first because it is a very commonly used approach and, second,
because the reduction in parameters and hence capacity is well suited to our high dimensional
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data. We used a simple Multi-Layer Perceptron (MLP) architecture throughout our experiments,
with either two outputs for binary classification tasks (MLPconn) or a single output for
regression (MLPconn_reg), and added variants (described below) to explore the relationships
between tasks. We also explored different parameters of the MLPconn and MLPconn_reg
architectures as a sensitivity analysis, see Supplementary Materials 10.9. All models were
implemented in Pytorch (Paszke et al., 2019) and the code for MTL was written using Snorkel
(Ratner et al., 2017) as a reference.

The MLPconn model is an MLP with the following configuration: 2080-256-64-2. The input to
the networks is a 1 × 2080 vector consisting of the upper triangular values of the symmetric
connectome matrix, which is passed through two shared hidden layers with 256 and 64 units
and finally to a task-specific output layer of 2 units for binary classification. Batch
normalisation (Ioffe & Szegedy, 2015) is applied after each layer. In the single task setting, all
the layers of the network are specific to the given task.

The MLPconn_reg model is the same as MLPconn, but with the output layer modified for
regression so that the configuration becomes: 2080-256-64-1.

The MLPconcat model is exactly the same as the MLPconn model, with the input layer adapted
to take as input a concatenation of the upper triangular 1 x 2080 connectome vector with the 1 x
58 confounds vector (age, head motion, global signal, scanning site, and sex with categorical
confounds one hot encoded). The result is an MLP model with configuration: 2183-256-64-2.

The MLPconn_deeper model is a version of the MLPconn model with two additional layers of
width 64, one in the shared part of the model and another in the task specific part. The
resulting configuration is 2080-256-64-64-64-2. The input to the model is the connectome vector.

The convolutional neural network (CNN) model is adapted from (Leming & Suckling, 2021). The
input to the network is the upper triangle of the symmetric connectome matrix (2080 values),
randomly permuted and formatted into a 40 x 52 matrix. The shared part of the model consists
of a first convolution layer with 256 filters of shape 1 x 40 x 1, followed by two dense layers of 64
hidden units. The task-specific output layer has 2 units for binary classification. Batch
normalisation (Ioffe & Szegedy, 2015) is applied after each layer. This implementation of a CNN
is not designed to take into account spatial or functional relationships between regions, see
Supplementary Materials 10.10 for a more in depth discussion and comparison with other
architectures.

The shared middle (SM) model is a variant of the shared bottom framework, in which each task
has its own specific input layer, followed by layers shared across tasks, and finally the
task-specific head (see Figure 1C). Specifically, it has the configuration 2080-256-256-64-2: the
input to the model is the upper triangular 1 x 2080 connectome vector, the first layer with 256
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units is task specific, followed by two shared layers with 256 and 64 units, then a task specific
head with two output units. Batch normalisation (Ioffe & Szegedy, 2015) is applied after each
layer.

Figure 1 - A) Single task learning, B) Shared bottommodel, C) Shared middle model.

2.6 - Training
We trained the MTL models as follows for each epoch: first, the batches of data are pooled
across tasks and shuffled (see Figure 2); next, each batch is passed through the path it is
associated with (through task-specific and shared layers), the loss is calculated and back
propagated through the same layers; finally, the gradients are clipped to have a maximum
magnitude of 1. In the single task setting, the training followed the same procedure except that
the batches of data were not pooled across tasks and were fed through a fully independent
network. We used a small batch size (8) since we included small datasets, and models were
trained for 100 epochs, roughly 50 epochs past observing plateaus in the single task setting. We
used the Adam optimizer (Kingma & Ba, 2014), Leaky ReLUs as an activation function, and
dropout regularisation (Srivastava et al., 2014) with the default parameters (Paszke et al., 2019).
The binary classification tasks were trained using the cross-entropy loss after applying the
softmax function, and the regression tasks with the mean squared error (MSE) (average of the
squared differences between the predicted and actual scores). Classification tasks were
additionally scored using prediction accuracy (number of correctly classified subjects divided
by the total number of subjects), as well as the Area Under the Receiver Operating
Characteristic (AUC) and F1-scores (see Supplementary Materials 10.5).
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Figure 2 - The training process for MTL using the shared bottommodel illustrated for three tasks. Connectomes from
each task (conditions or sites of data collection) are shuffled and then fed to the model. Batches are fed to the model
one at a time, and a batch from a given task is fed to its respective task specific head.

2.7 - Predicting Sex & Age
Before we delved into the complexity of MTL across CNVs and psychiatric conditions, we
evaluated the benefit of using multi-task learning where heterogeneity between tasks is only
due to sites. We treated each site of data collection as a task and predicted the same target
(either sex or age) across them, the prediction was performed from the connectomes alone and
evaluated using 5-fold cross validation. To predict sex, the MLPconn model was used first in the
single task setting to establish a baseline and then in the multi-task setting with all sites pooled
together. For predicting age, the MLPconn_reg model was used again in single task and then
multi-task across sites.

We first applied this approach using only the three sites from UKBB, since they have sample
sizes (4569, 7943 and 17673) that are large enough that we could systematically quantify both the
impact of sample size (similar to the experiments of (Schulz et al., 2020)) and the impact of
MTL. Here we looked at two scenarios, in the first we sampled K subjects from each site and
compared the prediction of single task models to a multi-task model across the three sites,
effectively tripling the number of subjects available to the multi-task model. In the second, we
compared a multi-task model across a sample of K subjects from each site to a single task model
(on the largest site) with 3xK subjects, effectively keeping the sample size the same between the
multi-task and single task model.

Next, we used the control subjects from each site of data collection in our sample that had at
least 30 such participants. We subsampled 50 subjects from each of the very large UKBB
datasets (sample sizes of 4569, 7943 and 17673) to place them within the range of the other sites.
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For the sex prediction task, we excluded sites that had an insufficient number of female
subjects (NYU, SZ1, SZ2, USM) (see Table 2 and figures in Supplementary Materials 10.7.1). For
both the sex and age prediction, we performed ablation studies in which each site was dropped
from the set of tasks as a sensitivity analysis, see Supplementary Materials 10.8.
Site N Female % Age Dataset

ADHD1 54 35 65 10.93 (1.63) ADHD-200

ADHD3 56 26 46 10.22 (1.27) ADHD-200

ADHD5 77 39 51 12.25 (3.12) ADHD-200

ADHD6 39 18 46 9.30 (1.25) ADHD-200

HSJ 39 25 64 34.03 (16.10) MRG

NYU 66 0 0 15.68 (6.22) ABIDE1

SZ1 42 3 7 34.05 (10.90) Orban

SZ2 41 2 5 31.54 (8.68) Orban

SZ3 31 15 48 31.00 (8.19) Orban

SZ6 35 12 34 29.03 (8.48) Orban

Svip1 48 18 38 28.25 (16.56) SVIP

Svip2 36 17 47 24.62 (12.44) SVIP

UCLA_CB 43 22 51 13.00 (4.62) UCLA

UCLA_DS1 94 43 46 31.10 (8.72) CNP

UKBB11025 17673 9342 53 63.43 (7.50) UKBB

UKBB11026 4569 2504 55 65.52 (7.54) UKBB

UKBB11027 7943 4414 56 64.80 (7.45) UKBB

USM 30 0 0 20.76 (7.21) ABIDE1
Table 2 - Demographics of control subjects by scanning site. Number of total and female subjects, percentage female
by site, and mean age in years with standard deviation in parentheses.

2.8 - Class Imbalances
The CNV datasets have major class imbalance, with far more controls than case subjects. Major
class imbalances are problematic for predictive modelling; therefore for this context we created
datasets using the General Class Balancer algorithm (Leming et al., 2020) which were balanced
exactly with respect to diagnostic classes and approximately with respect to the distribution of
confounding variables inside each diagnostic class (age, head motion, global signal, scanning
site, and sex). The General Class Balancer algorithm exactly matches categorical variables,
while continuous confounds are matched by recursively quantizing into smaller and smaller
bins until subjects can be matched across bins while the distributions of the confound between
classes are not found to be statistically different using a Mann Whitney U-test. For most of the
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CNVs, we applied General Class Balancer with no modifications. The General Class Balancer
algorithm repeatedly failed to find a match for a specific subject with DUP 16p11.2 when
launched with different random seeds, we hand-selected the closest matching control for this
subject. The DEL 22q11.2 dataset was collected entirely from a single site and participants were
recruited in a balanced design; in this case we used all the subjects available without applying
General Class Balancer. For the psychiatric conditions, the sample size was markedly larger
than with CNVs, and class imbalance was also less severe. We thus used all the available cases
and controls from each study, without application of General Class Balancer. The distribution of
confounding variables for each of the balanced datasets are presented in Supplementary
Materials 10.7.2

2.9 - Predicting CNVs & Psychiatric Conditions
In order to establish a baseline with which to compare our MTL results, we first performed
automatic diagnosis in the single task setting (see Figure 1A), in which each task is learned by
an independent model. In addition to the MLPconn model (described above), we evaluated
three well-performing (Dadi et al., 2019) ML algorithms implemented in scikit-learn (Pedregosa
et al., 2011): Support Vector Classifier (SVC) (linear kernel, C=100, and penalty), Logistic
Regression (LR) ( penalty), and Ridge Regression (Ridge). Next, we trained the MLPconn
model in the MTL setting across all 7 CNVs and 4 psychiatric conditions. The models were
evaluated using intra-site cross-validation (Orban 2018), in which the model is exposed to
identical sites of data collection during training and testing to account for site effects.
Specifically, five non-overlapping folds of training and test groups are built for each dataset
such that they have roughly the same proportion of cases and controls from each site. Both the
training and test groups feature every available site at each fold. The reported accuracy is the
average of the model's performance across all folds.

2.10 - Study of Task Relationships
We added a fine grained analysis to explore the task relationships between the 7 CNVs and 4
psychiatric conditions by training the conditions together pairwise using our primary model
(MLPconn) and four variations that explored different model capacity (MLPconn_deeper), input
data (MLPconcat), encoder type (CNN), and parameter sharing scheme (SM). This framework
allowed us to characterise whether relationships between tasks behaved differently depending
on the context. Each model was first evaluated in the single task setting to establish a baseline.
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3 - Results

3.1 - Multi-task learning of sex and age prediction across sites

3.1.1 - Multi-task learning across sites improves sex prediction in UK
Biobank

Figure 3. Prediction performance across sample sizes in the UKBB of single task (ST) vs. multi-task learning (MTL)
applied to a common target (age or sex) across sites. In the first setting (A & C) we kept the same subjects across the
ST & MTL model; i.e. for a sample of K subjects per site and ST model, the MTL model has access to 3 x K subjects in
total. In the second setting (B & D) we aligned the sample size across models by comparing a MTL model with K
subjects (across 3 sites) to a ST model with K subjects (using only the largest UKBB site where this was possible). A &
C) Mean accuracy of sex prediction (A) or Mean Squared Error (MSE) of age prediction (C) across sites for ST and
MTL models. B & D) Accuracy of sex prediction (B) or MSE of age prediction (D); mean performance across sites
using MTL model (red dashed line), performance of MTL model at each individual site (pale red dashed line), and of
ST model on UKBB site 11025 (blue solid line).

We first evaluated the benefit of using MTL in a simple binary classification setting where
heterogeneity between tasks is only due to sites. We treated each site of data collection as a task
and predicted sex across them. We applied this approach using only the three large sites (n =
4569, 7943 and 17673) from UKBB in order to compare single task learning and MTL at a range
of sample sizes. First, we sampled K subjects from each site and compared the prediction of
single task models to a multi-task model across the three sites (see Figure 3A). There was a clear



gain in performance for MTL in this setting, which could be observed for all sample sizes,
although becoming small for N>4000. However, in this set up the MTL model effectively has
access to triple the sample size which in and of itself improves prediction, therefore we also
compared a MTL model across a sample of K subjects from each site to a single task model
(only on the largest site which possessed sufficient subjects) with 3 x K subjects, effectively
keeping the sample size the same across settings (see Figure 3B). For large sample sizes
(N>7500) multi-task learning out-performed single task learning, meaning that combining
heterogeneous data intelligently can actually improve the quality of prediction. Overall,
multi-task learning across sites seems to be beneficial for sex prediction in the UK Biobank,
although the largest gains are due to increased sample size.

3.1.2 - Multi-task learning across sites improves age prediction in UK
Biobank for large sample sizes
We repeated the previous experiment using the three large UKBB sites, but this time using age
as a prediction target, which is continuous and more challenging. In the first setting in which
we sampled K subjects from each site for the single task models and used the same subjects (3 X
K) for the MTL model (see Figure 3C), there was an advantage for MTL, but only for a relatively
large sample size (N > 500 per site, 1500 total). For smaller sample sizes, single task and
multi-task models had very similar performance. In the second setting in which we kept sample
size fixed by comparing a MTL model across a sample of K subjects from each site to a single
task model with 3 x K subjects (see Figure 3D), it became apparent that MTL models
underperformed compared to the single task model, with the gap in performance decreasing
with sample size, and becoming very small for N > 10k. Overall, MTL across sites seemed
beneficial for age prediction across the UKBB sites, but only when MTL offered a boost in
sample size relative to single task learning.



3.1.3 - Multi-task learning across sites improves sex prediction across
cohorts

Figure 4 - Accuracy of sex prediction using single (ST) vs. multi-task learning (MTL) in a varied collection of sites.
The x axis represents different data collection sites included as prediction tasks. Sites are ranked by sample size,
with the largest to the right. The y axis shows the accuracy of prediction, chance level of prediction is indicated by a
black dashed line. For each task, the red point shows prediction using the MLPconn architecture in MTL, and the
blue point shows prediction on the task trained independently using the MLPconn architecture. Where the red point
appears missing, the accuracy values for the two models are so close that the points are overlapped. If the MTL
prediction outperformed the ST, points were filled and connected by a line, and otherwise they were not.

Next, we used the control subjects from each site of data collection in our sample that had at
least 30 participants and predicted sex across them using the MLPconn model, excluding sites
that had an insufficient number of female subjects (NYU, SZ1, SZ2, USM). We subsampled 50
subjects from each of the very large UKBB datasets (n = 4569, 7943 and 17673) to place them
within the range of the other sites. In this setting, MTL effectively pools subjects for a larger
sample size at the price of greater heterogeneity. Prediction accuracy improved for MTL in a
majority of sites (10 out of 14) (see Figure 4). The mean accuracy in the multi-task setting (62.4)
outperformed that of the single-task (60.0) although not significantly (Wilcoxon’s signed rank
test) and with larger standard deviation (13.6 vs. 12.8) (see Supplementary Materials 10.4 -
Figure 13 for the distribution across folds). Overall, MTL across heterogeneous sites of data
collection benefitted accuracy for sex prediction.



3.1.4 - Multi-task learning across sites improves age prediction in a varied
collection of samples

Figure 5 - Mean Squared Error (MSE) of age prediction using single (ST) vs. multi-task learning (MTL) in a varied
collection of samples. The x axis represents different sites of data collection included as prediction tasks, sites are
ranked by sample size, with the largest to the right. The y axis shows the prediction error. For each task, the red
point shows prediction using the MLPconn_reg architecture in multi-task learning and the blue point shows
prediction on the task trained independently using the MLPconn_reg architecture. Where the blue point appears
missing, the accuracy values for the two models are so close that the points are overlapped. If the MTL prediction
achieved lower loss than the ST, points were filled and connected by a line, and otherwise they were not.

Next, we predicted age across each site of data collection (control subjects only) in our sample
that had at least 30 participants using the MLPconn_reg model, again subsampling 50 subjects
from each of the very large UKBB datasets. Each site of data collection consisted of subjects
with markedly different age ranges (see Table 2), so we expected this objective to be more
difficult than sex prediction since MTL in this setting essentially works as a trade off between
effectively increasing sample size at the cost of increased heterogeneity. Prediction improved
for a large majority of sites (14 out of 18) (see Figure 5). The mean loss in the multi-task setting
(8.9 years2) significantly outperformed (Wilcoxons̓ signed rank test p<2e-16) that of the
single-task (12.2 years2), but with a larger standard deviation (6.0 vs 4.4) (see Supplementary
section 10.4 - Figure 14 for the distribution across folds). Overall, MTL benefited prediction,
even when the target of prediction was heterogeneously distributed across sites.



3.2 - Multi-task learning fails to improve automatic diagnosis
across psychiatric conditions and genetic variants

Figure 6 - Accuracy of automated diagnosis using single (ST) vs multi-task learning (MTL). For each task, the red
point shows prediction using the MLPconn architecture in MTL and the blue point shows prediction on the task
trained independently using the MLPconn architecture. Where either the blue point appears missing, the accuracy
values for the two models are so close that the points are overlapped. If the MTL prediction outperformed the ST,
points are filled and connected by a line, and otherwise they are not. The x axis represents different conditions
included as prediction tasks. The y axis shows the accuracy of prediction, chance level of prediction is indicated by a
black dashed line, and the best accuracy obtained in the single task learning benchmark (see Supplementary
Materials 10.1) is indicated by a grey dotted line.

In order to establish a baseline with which to compare our MTL results, we first performed
automatic diagnosis in the single task setting. In addition to the MLPconn model, we evaluated
three ML algorithms: Support Vector Classifier (SVC), Logistic Regression (LR), and Ridge
Regression (Ridge). DEL22q11.2 reached the highest accuracy, close to 90% with LR and Ridge,
while several other conditions reached over 70% accuracy (SZ, BIP, DEL 16p11.2,DUP 16p11.2,
DEL 1q21.1) (see Supplementary Materials 10.1 - Figure 8). The other conditions were very
challenging to predict, being near (or below) chance level. However, the prediction accuracy for
CNVs broadly follows the trend of clinical effect size (Moreau et al., 2023) with CNVs with near
chance level accuracy having small effect sizes. Overall, standard ML models seem capable of
automatically diagnosing most of the CNVs and psychiatric conditions. Next, we aimed to
improve the automatic diagnosis of the 7 CNVs and 4 psychiatric conditions by leveraging
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shared information in datasets with limited sample size using a lightweight MTL framework to
effectively increase the sample size available to the model. We trained the MLPconn model
across all conditions and compared the performance to the same model trained on each
condition independently. MTL outperformed single task learning in only 3 out of 11 conditions
(see Figure 6), in the remaining cases performance accuracy actually decreased (see
Supplementary section 10.4 Figure 15 for the distribution across folds).

3.3 - Task relationships are dominated by sample size and
accuracy of diagnosis in single task setting

Figure 7 - In each matrix, the i,jth entry in the matrix is accuracy of condition in row i trained with condition in
column j using the MLPconn model to perform automatic diagnosis. A: the matrix shows the raw accuracy achieved
for each pair, the second matrix B represents the difference in accuracy from the single-task baseline, and the third
C shows the overall gain relative to baseline for a pair (B + BT).

We aimed to disentangle the complexity of performing automatic diagnosis on the 7 CNVs and 4
psychiatric conditions in the MTL setting by training the conditions together pairwise to gain
insight on the relationships between tasks. Using the MLPconn model, we found that the
conditions with high accuracy in the single task setting but small sample size (DEL 22q11.2 and
DEL 16p11.2) suffered overall from being trained with a partner (see Figure 7B). In contrast,
regardless of accuracy in the single task setting the conditions with larger sample size (SZ,
ADHD, ASD) were not impacted by their partner (see Figure 7B). MTL appeared to benefit
smaller sample size conditions with mid-range accuracy, but the results were not systematic.
Certain pairs of conditions produced marked overall improvement in accuracy, notably DUP
22q11.2 + SZ and DUP 1q21.1 + DEL 1q21.1 (see Figure 7C). We repeated the study using four
different models (MLPconn_deeper, MLPconcat, CNN, and SM) (see Supplementary Materials
10.2 - Figure 9), and correlated the matrix of change in accuracy from the single task baseline
for each with that of the MLPconn model. We found a range of correlations (r = 0.52, 0.26, 0.18,
0.19 respectively), which showed that the relationships between tasks was not stable across
contexts. Overall, relationships between tasks appear to be dominated by the available sample



size as well as the performance in the single task setting, rather than reflecting potentially
meaningful biological relationships.

4 - Discussion
Using MTL to predict a common target (sex or age) across sites in the UK Biobank at a range of
sample sizes, we found that for large sample sizes MTL can improve prediction even when
compared to single task learning using the same number of subjects, but that MTL can be
detrimental for small sample sizes (N<500). When we applied MTL to predict a common target
(sex or age) across the full sample of sites in our dataset we found that it improved prediction.
However, applying MTL across our diagnostic tasks (7 CNVs and 4 psychiatric conditions) was
detrimental for performance overall. When we implemented MTL pairwise on the 7 CNVs and 4
psychiatric conditions in our dataset using our primary model and four variations, we found
that the relationships between tasks were not stable across model architectures.

Repeating prediction across a range of sample sizes in the UK Biobank, we found that using
MTL to predict a common target (sex or age) across data collection sites (3 x N subjects, N
subjects per site from 3 sites) is not as strong as prediction at a single site with the same amount
of data (3 x N subjects from 1 site), but is stronger in general than performing prediction at each
site independently (N subjects from 1 site). These results are in line with findings by Schulz and
colleagues (Schulz et al., 2020), who classified subjects into groups divided by sex and age using
fMRI data and simple linear models in the UK Biobank. They found that prediction accuracy
improved with increasing sample size, but did not investigate the effects of sites or MTL
models. When predicting age, we saw that MTL did not necessarily improve prediction when
sample sizes were small (N < 500). Standley and colleagues (Standley et al., 2019) also examined
the impact of sample size on MTL, comparing a shared bottommodel trained on a large dataset
to the same model trained on a subsample (5% of the original data). They found that while MTL
was overwhelmingly beneficial for prediction using the full sample, it hurt prediction overall
when less data were used to train the model. Essentially, MTL allows a shared model to access
more data than independent models could, but the combined data naturally introduces
heterogeneity. While there is a possibility to benefit from this as regularisation across tasks,
there exists a regime with modest amounts of data where MTL can be detrimental for
performance.

When we applied MTL to predict a common target (sex or age) across the full sample of sites in
our dataset we saw that performance was improved for a large majority of sites. While we
expected that MTL would be beneficial for sex prediction, it was especially encouraging that
prediction of age was improved since in light of the scaling experiment it was unclear if our
sample sizes (N = 881 for MTL vs. N 30-94 for single task) could benefit from MTL. The most
notable difference with the UK biobank experiment was that we had far more sites of data
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collection (18 sites vs. 3 sites), and the sites were also more varied (retrospectively pooled
across independent studies vs harmonised acquisitions from a single study). Our results
suggest that there might be some benefit not only from increasing sample size but also from
combining diverse information, in line with previous work on SZ diagnosis (Orban et al., 2018).
Several studies have also reported improved prediction when using MTL across sites as applied
to automatic diagnosis of SZ (Hu & Zeng, 2019; Q. Ma et al., 2018), and ADHD (Watanabe et al.,
2014). While these studies did not include scaling experiments, in each case MTL was an
improvement over pooling heterogeneous data. MTL learning thus appears as a viable
alternative to data harmonisation across sites (El-Gazzar et al., 2023; Roffet et al., 2022; Y.-W.
Wang et al., 2023), with the potential to improve prediction accuracy in the presence of
moderate heterogeneity.

Applying MTL across our diagnostic tasks (7 CNVs and 4 psychiatric conditions), we saw that it
was detrimental for performance overall. One possible conclusion is that the tasks are too
heterogeneous to benefit from being learned together, and that rather than using a combined
model across tasks we should pursue an approach that emphasises finding homogeneous
subtypes within conditions, as has been explored in the context of high precision modelling (S.
G. W. Urchs et al., 2020). It is however illuminating to look at our UK biobank scaling
experiment and note that the difference between the combined sample size using MTL (N =
2872) and the single task sample sizes (N = 44 - 943) is not far from the threshold for MTL to
consistently improve prediction of age (N > 500 single task, > 1500 MTL). As joint diagnosis is a
much more complex objective (see Supplementary Materials section 10.6 for a more detailed
analysis), it seems natural that it would require much more data to see a benefit from MTL.
Although a speculation, our results thus suggest that the application of MTL to automated
diagnosis across psychiatric conditions may be successful only if applied with over 500 patients
per condition i.e. several thousand subjects in total. This parallels the conclusions of Marek and
colleagues (Marek et al., 2022) who concluded that thousands of subjects are needed for reliable
mass univariate brain/behaviour associations.

In the only comparable studies in the literature, Huang and colleagues (Huang et al., 2022,
2020) proposed a variant of the MMOE model (J. Ma et al., 2018) to perform joint diagnosis
across psychiatric conditions. In their second study, their method showed marginal gains for
each condition (N = 72 SZ, 358 ADHD, 505 ASD) relative to single task learning, while a shared
bottom model reduced prediction accuracy for ADHD and SZ. We implemented additional
experiments (see Supplementary Materials 10.3) to test if our results could be attributed to
limitations of the shared bottom model, but found that it was not consistently outperformed by
the MMOE. While there are surely improvements that can be made to the MTL framework, we
emphasise that increasing the amount of data is a crucial aspect of future ML research in
neuroimaging.
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When we implemented MTL pairwise on the 7 CNVs and 4 psychiatric conditions in our dataset
using our primary model and four variations, we found that the relationships between tasks
were not stable across contexts. This is in line with findings by Standley and colleagues
(Standley et al., 2019), who examined the matrix of prediction performance for tasks trained
pairwise using a shared bottom model in different contexts (varying sample size and model
capacity) and found that the relationships between tasks were dependent on the setting. This is
contrary to our hypothesis that our MTL framework could uncover potentially meaningful
biological relationships across the 7 CNVs and 4 psychiatric conditions in our dataset, which we
would expect to be stable across different model architectures.

An important limitation of this study is that the datasets we had access to carry current biases
in psychiatric research. It is well known that certain conditions (particularly ASD, ADHD, and
SZ) are underrepresented among females, which reflects differences in understanding and
diagnosing as well as prevalence (Attoe & Climie, 2023; Bierer et al., 2022; X. Li et al., 2022;
Loomes et al., 2017; Pedersen et al., 2022).

We examined the important concept of using MTL to take advantage of information shared
across biologically related conditions, possibly allowing automated diagnosis of conditions for
which there is small amounts of available data and using traits that are easily learned in highly
impacted CNV populations that could also apply to related psychiatric conditions. Although
small sample size was a limitation of this study that was clear from the outset, the idea that the
ability of MTL to make more efficient use of data would make it applicable to small datasets was
not supported in our results. We found that applying MTL across conditions has potential, and
although clever approaches to modelling, such as self-supervised (Caro et al., 2023) or transfer
(Mahamud et al., 2023; Raghav et al., 2023) learning could potentially overcome the limitation
of sample size, our results clearly show that increasing the amount of data is a crucial factor for
improving prediction performance.

5 - Conclusion
In this paper, we examined the potential of MTL to combine multiple automatic diagnosis tasks
in a large fMRI dataset compiled from multiple studies. In an initial proof of concept, we
predicted a common target (sex or age) across sites of data collection, and showed that MTL can
be beneficial for prediction accuracy, with the important caveat that benefits for age prediction
only became apparent for large sample sizes (N>500 per site). We then benchmarked diagnostic
accuracy of 7 CNVs and 4 psychiatric conditions using common machine learning methods, for
each condition independently. None of the CNVs had previously been studied using machine
learning, and prediction accuracy aligned with results from the literature otherwise. We then
applied MTL to test if learning conditions with shared latent biological factors jointly could
benefit prediction. Contrary to our hypothesis, we observed that MTL harmed prediction
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accuracy overall. We further explored the behaviour of MTL by applying the framework on
each pair of tasks and found that the relationships between tasks were not stable across varied
contexts, which was evidence against the possibility of these relationships reflecting latent
factors with biological meaning. Our scaling experiment with UK biobank suggests that MTL
may become beneficial for automated diagnosis across neurodevelopmental conditions, but
this would likely require larger sample sizes than what could be assembled in this study.



6 - Data and Code Availability
We thank all of the families at the participating Simons Variation in Individuals Project (SVIP)
sites, as well as the Simons VIP Consortium. We appreciate obtaining access to imaging and
phenotypic data on the SFARI Base. Approved researchers can obtain the Simons VIP
population dataset described in this study by applying at https://base.sfari.org. We are grateful
to all families who participated in the 16p11.2 European Consortium.
Data from UK Biobank were downloaded under the application 40980 and can be accessed via
their standard data access procedure (see http://www.ukbiobank.ac.uk/register-apply). UK
Biobank CNVs were called using the pipeline developed in Jacquemont Lab and described in
https://github. com/labjacquemont/MIND-GENESPARALLELCNV. The final CNV calls are
available from UK Biobank returned datasets (Return ID: 3104,
https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=3104). ABIDE1, ABIDE2, COBRE, ADHD-200,
CNP, and 16p11.2 SVIP data are publicly available at:
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html,
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html,
http://schizconnect.org/queries/new, http://fcon_1000.projects.nitrc.org/indi/adhd200/,
https://www. openfmri.org/dataset/ds000030/, and
https://www.sfari.org/funded-project/simons-variation-in-individuals-project-simons-vip/. The
22q11.2 UCLA raw data are currently available by request from the principal investigator (CEB).
Raw imaging data for the Montreal rare genomic disorder family dataset are currently available
by request from the principal investigator (SJ). The Cardiff raw data are not publicly available
yet; contact the principal investigator for further information (DEJL). All processed
connectomes are available through a request to the corresponding author (AH). Code for all
analyses are available online through the GitHub platform:
https://github.com/harveyaa/neuropsych_mtl.
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10 - Supplementary Materials

10.1 - Single Task Learning Benchmark - Conditions

Figure 8 - Accuracy of automated diagnosis using single task learning. For each task, accuracy is shown for each of
four models. LR: Logistic Regression, SVC: Support Vector Classifier, Ridge: Ridge Regression, and MLPconn. The x
axis represents different conditions included as prediction tasks. The y axis shows the accuracy of prediction, chance
level of prediction is indicated by a black dashed line.



10.2 - Study of Task Relationships using Variant Models

Figure 9 - In each matrix, the i,jth entry in the matrix is accuracy of condition in row i trained with condition in
column j using the MLPconn model to perform automatic diagnosis. A: the matrix shows the raw accuracy achieved



for each pair, the second matrix B represents the difference in accuracy from the single-task baseline, and the third
C shows the overall gain relative to baseline for a pair (B + BT). Each row shows the results using the labelled model
(MLPconcat, MLPconn_deeper, CNN, SMM), see the methods for details.

10.3 - Comparison with Huang and Colleagues
We implemented additional experiments to allow a closer comparison of our results to the only
studies in the literature to apply MTL across conditions (Huang et al., 2022, 2020). In these
studies, Huang and colleagues proposed the multicluster multigate mixture of experts model
(M-MMOE). In the mixture of experts (MoE) model (Masoudnia & Ebrahimpour, 2014), expert
submodels are shared across all tasks and combined by a single gate. In the multigate mixture
of experts (MMOE) (J. Ma et al., 2018) rather than a single gate across experts, a gating network
is added for each task (see Figure 10B). In the M-MMOE, brain ROIs are first clustered using a
novel algorithm, and then each cluster receives an MMOE which are themselves combined as
experts. We chose to use the MMOE model in our comparison since it is well established and
allowed us to explore if the simple addition of multiple experts and gates could improve the
results of MTL by allowing the model to learn task relationships, rather than the M-MMOE
structure which is unique to the Huang and colleagues studies and introduces much more
complexity.

Figure 10 - A) Shared bottommodel, B) MMOE.

We used the same encoder as in our MLPconn model as an expert, the same decoder as an
output stack for each task, and followed the ratio of experts to tasks (2:1) used by Huang and
colleagues. In detail, the input to the networks is a 1 × 2080 vector consisting of the upper
triangular values of the symmetric connectome matrix, which is passed through each expert
(two hidden layers with 256 and 64 units) as well as to the gating network (with N experts units),
then the output from each expert is reweighted by the gate and summed, and passes finally to a
task-specific output layer of 2 units for binary classification. Batch normalisation (Ioffe &
Szegedy, 2015) is applied after each layer. Training was implemented as described in the
methods. First, we applied the MMOE across the full sample of conditions (22 experts, 11 tasks),
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next to eliminate the complication of the small CNV datasets we applied the MLPconn and
MMOE (8 experts, 4 tasks) models across only the psychiatric conditions in the dataset. Finally,
we implemented the task relationship experiment with the MMOEmodel.

Figure 11 - A) Results reported in Huang et al. 2022 ST: Single Task, SBM: Shared BottomModel, M-MMOE: variant of
Multigate Mixture of Experts implemented by Huang and colleagues. Chance level indicated by a dashed line. B)
Results of MMOE (8 experts) vs MLPconn across the psychiatric conditions C) Results of MMOE (22 experts) vs single
task over the full set of conditions.

Using only the psychiatric conditions in the dataset, the MLPconn model improved prediction
for all 4 conditions, whereas the MMOE helped accuracy for only 2 out of the 4 (see Figure 11B).
This is contrary to the findings of Huang and colleagues, who reported marginal gains using
their M-MMOE while the shared bottom model decreased accuracy (see Figure 11A). When we
applied the MMOE across the full sample of conditions, we found that it performed slightly
better than the MLPconn model on the full sample (accuracy improved for 6 out of 11 tasks vs. 4
out of 11) (see Figure 6). However, when examining task relationships using the MMOE (see



Figure 12) we saw a similar overall behaviour to the MLPconn model. Many pairs suffered a
decrease in prediction accuracy when trained together, and the correlation with the results of
the MLPconn model was high (r = 0.52).

Figure 12 - In each matrix, the i,jth entry in the matrix is accuracy of condition in row i trained with condition in
column j using the MLPconn model to perform automatic diagnosis. A: the matrix shows the raw accuracy achieved
for each pair, the second matrix B represents the difference in accuracy from the single-task baseline, and the third
C shows the overall gain relative to baseline for a pair (B + BT).



10.4 - Distribution of Scores Across Folds of Cross-Validation
Here we present the distribution across the 5 folds of cross-validation of our results from
sections 3.1.3, 3.1.4 and 3.2, rather than the average score, in order to give a better sense of the
spread of MTL vs ST scores. We observed substantial variations in accuracy across folds, which
was expected given the small sample size in each fold (less than 20 individuals, and as low as 6).

Figure 13 - Distribution of accuracy of sex prediction across 5-folds of k-fold cross-validation using single (ST) vs.
multi-task learning (MTL) in a varied collection of sites. The x axis represents different data collection sites included
as prediction tasks. Sites are ranked by sample size, with the largest to the right. The y axis shows the accuracy of
prediction. For each task, the red points show prediction using the MLPconn architecture in MTL, and the blue
points show prediction using the MLPconn architecture in ST.



Figure 14 - Distribution of Mean Squared Error (MSE) of age prediction across 5-folds of k-fold cross-validation using
single (ST) vs. multi-task learning (MTL) in a varied collection of sites. The x axis represents different data collection
sites included as prediction tasks. Sites are ranked by sample size, with the largest to the right. The y axis shows the
prediction error. For each task, the red points show prediction using the MLPconn_reg architecture in MTL, and the
blue points show prediction using the MLPconn_reg architecture in ST.

Figure 15 - Distribution of accuracy of automated diagnosis across 5-folds of k-fold cross-validation using single (ST)
vs multi-task learning (MTL). The x axis represents different conditions included as prediction tasks. The y axis



shows the accuracy of prediction. For each task, the red points show prediction using the MLPconn architecture in
MTL and the blue points show prediction using the MLPconn architecture in ST.



10.5 - AUC & F1 Score
Here we present the results of our classification prediction experiments, scored in sections
3.1.3 and 3.2 using prediction accuracy, using the Area Under the Receiver Operating
Characteristic (AUC) (Nahm, 2022) and F1-scores (Taha & Hanbury, 2015) to provide a more
comprehensive view of the model's performance. This is particularly relevant for the sex
prediction study (section 3.1.3) in which the datasets have class imbalances (see Table 2).

These scores are derived from precision, recall (also called sensitivity), and specificity.
Precision is defined as the number of true positives (subjects predicted as class 1 that are class
1) divided by the number of true positives plus false positives (subjects predicted as class 1 that
are class 0). Recall is the number of true positives divided by the number of true positives plus
false negatives (subjects predicted as class 0 that are class 1). Specificity is defined as the
number of true negatives (subjects predicted as class 0 that are class 0) divided by the number
of true negatives plus false positives. The F1-score is defined as the harmonic mean of precision
and recall. In general classifiers output a continuous value which is turned into a binary
prediction by comparing it to a threshold. The Receiver Operating Characteristic (ROC) curve
plots recall vs. 1 - specificity at different thresholds. The AUC measures the overall performance
of classification models using the area under the ROC curve. An AUC of 1 implies a perfect
classifier and an AUC of 0.5 implies a random classifier. The qualitative conclusions of our
experiments matched between AUC and accuracy scores, while F1 scores were more difficult to
interpret.
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Figure 16 - Area Under the Receiver Operating Characteristic curve (AUC) of sex prediction using single (ST) vs.
multi-task learning (MTL) in a varied collection of sites. The x axis represents different data collection sites included
as prediction tasks. Sites are ranked by sample size, with the largest to the right. The y axis shows the AUC, chance
level of prediction is indicated by a black dashed line. For each task, the red point shows prediction using the
MLPconn architecture in MTL, and the blue point shows prediction on the task trained independently using the
MLPconn architecture. Where the red point appears missing, the accuracy values for the two models are so close
that the points are overlapped. If the MTL prediction outperformed the ST, points were filled and connected by a
line, and otherwise they were not.

Figure 17 - F1 score of sex prediction using single (ST) vs. multi-task learning (MTL) in a varied collection of sites.
The x axis represents different data collection sites included as prediction tasks. Sites are ranked by sample size,
with the largest to the right. The y axis shows the F1 score of prediction, chance level of prediction is indicated by a
black dashed line. For each task, the red point shows prediction using the MLPconn architecture in MTL, and the
blue point shows prediction on the task trained independently using the MLPconn architecture. Where the red point
appears missing, the accuracy values for the two models are so close that the points are overlapped. If the MTL



prediction outperformed the ST, points were filled and connected by a line, and otherwise they were not.

Figure 18 - Area Under the Receiver Operating Characteristic curve (AUC) of automated diagnosis using single (ST) vs
multi-task learning (MTL). For each task, the red point shows prediction using the MLPconn architecture in MTL and
the blue point shows prediction on the task trained independently using the MLPconn architecture. Where either the
blue point appears missing, the accuracy values for the two models are so close that the points are overlapped. If the
MTL prediction outperformed the ST, points are filled and connected by a line, and otherwise they are not. The x
axis represents different conditions included as prediction tasks. The y axis shows the AUC of prediction, chance
level of prediction is indicated by a black dashed line.



Figure 19 - F1 score of automated diagnosis using single (ST) vs multi-task learning (MTL). For each task, the red
point shows prediction using the MLPconn architecture in MTL and the blue point shows prediction on the task
trained independently using the MLPconn architecture. Where either the blue point appears missing, the accuracy
values for the two models are so close that the points are overlapped. If the MTL prediction outperformed the ST,
points are filled and connected by a line, and otherwise they are not. The x axis represents different conditions
included as prediction tasks. The y axis shows the F1 score of prediction, chance level of prediction is indicated by a
black dashed line.



10.6 - Effect Sizes as a Measure of Task Difficulty
Here we aimed to measure how difficult each prediction task is in order to contextualise the
performance of MTL in different settings: predicting age or sex across sites of data collection,
and performing automatic diagnosis across CNVs and psychiatric conditions.

Traditional fMRI research often approaches group comparisons using traditional regression
models applied independently on each feature (brain connection), a technique called
connectome-wide association study (CWAS). In this context, the most classic measure of “task
difficulty” is so-called Cohen’s d estimate, which is the difference in average between two
groups, relative to the standard deviation of the feature within-group. We would like to
emphasise that there is no theoretical reason for CWAS effect sizes to match accuracy with ML
tools, as ML tools are a multivariate measure of effect size (akin to a statistical omnibus tests)
rather than mass univariate like CWAS. In practice these two types of effect sizes do not
necessarily align (Bzdok & Ioannidis, 2019; Lo et al., 2015; Shmueli, 2010). However, CWAS
effect sizes are a common metric and provide intuitive guidance for interpretations.

Specifically, we implemented 13 CWAS using sex as a contrast for each site included in the sex
prediction study, 18 CWAS using age groups as a contrast (younger half of subjects vs. older
half) for each site included in age prediction study, and 11 CWAS for the following conditions: 7
CNVs and 4 psychiatric conditions. For the CWAS on conditions, control subjects refers to
individuals without a CNV for analysis investigating the effect of CNVs, and individuals without
a diagnosis in analyses investigating effects of psychiatric conditions. In order to have the best
possible statistical power, we pooled all the control subjects we had access to (n = 31425, 16590
female subjects, age mean 62.31 and standard deviation 11.47, framewise displacement mean
0.18 and standard deviation 0.05, from a total of 53 sites of data collection). The results on CNVs
and psychiatric conditions presented here were published in two studies: (Moreau et al., 2023)
and (Moreau et al., 2022).

For each CWAS, we applied linear regression independently for each of the 2080 values of the
connectome: the FC values were first z-scored based on the variance of the relevant control
subjects, so the regression estimates can also be interpreted as z-scores, and then used as the
dependent variable with the genetic or diagnostic status as the explanatory variable. For the
CWAS on sex at each site, models were head motion, age and global signal. For the CWAS on age
at each site, models were head motion, sex and global signal. For the CWAS on conditions,
models were adjusted for sex, scanning site, head motion, age and global signal. Global signal
was defined as the mean of the connectome, and was included in the analysis as it has been
shown that global signal-adjusted FC profiles show stronger correlations with cognition (J. Li et
al., 2019) and reduce confounding effects in multisite studies (Yan et al., 2013). FC profiles were
defined as the 2080 beta values of 2080 connections from each CWAS. The significance of beta
values corrected for multiple tests using the Benjamini-Hochberg false discovery rate (FDR)

https://paperpile.com/c/s7Rf6b/LEh12+eeuW8+Yc8Gw
https://paperpile.com/c/s7Rf6b/vXnZq
https://paperpile.com/c/s7Rf6b/wWO5J
https://paperpile.com/c/s7Rf6b/4aJ7k
https://paperpile.com/c/s7Rf6b/4aJ7k
https://paperpile.com/c/s7Rf6b/aCDRQ


correction (Benjamini & Hochberg, 1995) at a threshold of q < 0.05. We defined effect size on
connectivity as the mean of the top decile of the absolute value of the 2080 beta values in the FC
profile (Moreau et al., 2023).

Figure 20 - Effect sizes on connectivity, defined as the mean of the top decile of the FC profile, for sex and age at each
site of data collection and conditions (7 CNVs and 4 psychiatric conditions).

Effect sizes on connectivity for sex and age (at 14 and 18 scanning sites respectively) are much
higher than for the 7 CNVs and 4 psychiatric conditions included in our dataset. This matches
the observed behaviour of ML techniques in the case of predicting sex vs predicting conditions,
as the accuracy of sex classification is higher in the full UK biobank sample (see section 3.1.1)
than any of the automated diagnostic classifiers (see section 10.1). Predicting age is more
difficult to directly compare with automatic diagnosis since it is a regression rather than a
classification task. Overall, the higher effect sizes for sex and age relative to conditions makes
them easier as prediction tasks in the ST setting and therefore more likely to benefit multi-task
learning. Additionally, predicting sex or age across different scanning sites is intuitively better
suited for MTL since the tasks have a common target and therefore clearly have shared
information that can be exploited by a combined model. In the case of automatic diagnosis,
while the conditions are related and have substantial shared information, they are all distinct
conditions and therefore less easily combined by a single MTL model.
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10.7 - Confound distributions by Site & Condition
Here we present plots of the distribution of the confounding variables for each dataset, first the
single scanning site datasets (control subjects only) used for the age & sex prediction tasks
(sections 3.1.3 and 3.1.4) followed by the multi-site datasets used to predict conditions in
section 3.2 (matched number of cases & controls). These demonstrate the large dataset
variability regarding confound distribution, which provides important context on the results
from the previous studies, and is also important to interpret the ablation study (section 10.8) in
which MTL prediction is repeated using all but one dataset in order to analyse the effect of each
dataset on performance.

10.7.1 - Single Site Datasets

Figure 21 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the ADHD1 scanning site.

Figure 22 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the ADHD3 scanning site.



Figure 23 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the ADHD5 scanning site.

Figure 24 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the ADHD6 scanning site.

Figure 25 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the HSJ scanning site.



Figure 26 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the NYU scanning site.

Figure 27 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the Svip1 scanning site.

Figure 28 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the Svip2 scanning site.



Figure 29 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the SZ1 scanning site.

Figure 30 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the SZ2 scanning site.

Figure 31 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the SZ3 scanning site.



Figure 32 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the SZ6 scanning site.

Figure 33 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the UCLA_CB scanning site.

Figure 34 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the UCLA_DS1 scanning site.



Figure 35 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among 50 subsampled control subjects at the UKBB11025 scanning site.

Figure 36 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among 50 subsampled control subjects at the UKBB11026 scanning site.

Figure 37 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among 50 subsampled control subjects at the UKBB11027 scanning site.



Figure 38 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) among control subjects at the USM scanning site.

10.7.2 - CNV & Psychiatric Condition Datasets

Figure 39 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the ADHD dataset.

Figure 40 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the ASD dataset.



Figure 41 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the BIP dataset.

Figure 42 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the SZ dataset.

Figure 43 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the DEL 1q21.1 dataset.



Figure 44 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the DEL 15q11.2 dataset.

Figure 45 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the DEL 16p11.2 dataset.

Figure 46 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the DEL 22q11.2 dataset.



Figure 47 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the DUP 1q21.1 dataset.

Figure 48 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the DUP 16p11.2 dataset.

Figure 49 - Distribution of confounding variables (age, global signal (mean_conn), head motion (FD_scrubbed), and
sex) by scanning site for the DUP 22q11.2 dataset.



10.8 - Ablation Study
In order to evaluate the impact of each dataset on the prediction performance, we performed
an ablation study in which we iteratively dropped a single dataset from the set of tasks and
repeated the MTL prediction experiments from sections 3.1.3, 3.1.4 and 3.2. Specifically, we
conducted 14 experiments for sex prediction and 18 for age prediction (one for each site of data
collection dropped). For automatic diagnosis we conducted 11 experiments (one for each
condition dataset dropped). Training was performed as described in the methods (section 2.6).
This analysis did not identify any dramatic effect of a single site, however excluding some sites
did improve on the MTL accuracy, compared to ST (for example Svip2 for sex prediction),
although we did not test the statistical significance of such improvements which would need to
be adjusted for the very large number of ablation experiments performed here.

Figure 50 - Distribution of accuracy of sex prediction across tasks using single (ST) vs. multi-task learning (MTL) in a
varied collection of sites. The x axis represents the data collection site which is dropped from the set of prediction
tasks, except for the first column which shows results using the full dataset. The y axis shows the accuracy of
prediction. For each removed dataset, the red points show prediction accuracy distribution for the tasks using the
MLPconn architecture in MTL, and the blue points show prediction accuracy distribution on the tasks trained using
the MLPconn architecture in ST.



Figure 51 - Distribution of Mean Squared Error (MSE) of age prediction across tasks using single (ST) vs. multi-task
learning (MTL) in a varied collection of sites. The x axis represents the data collection site which is dropped from the
set of prediction tasks, except for the first column which shows results using the full dataset. The y axis shows the
MSE of prediction. For each removed dataset, the red points show prediction error distribution for the tasks using
the MLPconn_reg architecture in MTL, and the blue points show prediction error distribution on the tasks trained
using the MLPconn_reg architecture in ST.

Figure 52 - Distribution of accuracy of automated diagnosis across tasks using single (ST) vs. multi-task learning
(MTL) in a varied collection of sites. The x axis represents the condition which is dropped from the set of prediction



tasks, except for the first column which shows results using the full dataset. The y axis shows the accuracy of
prediction. For each removed dataset, the red points show prediction accuracy distribution for the tasks using the
MLPconn architecture in MTL, and the blue points show prediction accuracy distribution on the tasks trained using
the MLPconn architecture in ST.



10.9 - Model Parameter Variations
Here we present the results of a sensitivity analysis in which we varied the parameters of our
primary models (MLPconn for classification and MLPconn_reg for regression) in order to
evaluate the impact on the performance of MTL in each setting (predicting age, sex and
conditions). Training was performed as described in the methods (section 2.6).

The MLPconn_deeper model is a version of the MLPconn model with two additional layers of
width 64, one in the shared part of the model and another in the task specific part. The
resulting configuration is 2080-256-64-64-64-2. For regression, the output layer is modified to
have a single output so that the configuration becomes: 2080-256-64-64-64-1. The input to the
model is the connectome vector.

The MLPconn_shorter model is a version of the MLPconn model with the two layers in the
shared portion of the model replaced by a single layer with an intermediate width. The
resulting configuration is 2080-128-2. For regression, the output layer is modified to have a
single output so that the configuration becomes: 2080-128-1. The input to the model is the
connectome vector.

The MLPconn_wider model is a version of the MLPconn model with layers that are double the
width. The configuration is 2080-512-128-2. For regression, the output layer is modified to have
a single output so that the configuration becomes: 2080-512-128-1. The input to the model is the
connectome vector.

The MLPconn_thinner model is a version of the MLPconn model with layers that are half the
width. The configuration is 2080-128-32-2. For regression, the output layer is modified to have a
single output so that the configuration becomes: 2080-128-32-1. The input to the model is the
connectome vector.

Regarding sex prediction across cohorts (Figure 53), we observed improved accuracy using
MTL over ST, consistently across all variants of architecture. Regarding age prediction across
cohorts (Figure 54), we observed improved accuracy (lower error) using MTL over ST for all but
one architecture variant: MLPconn_deeper. This suggests that this highly parameterized model
may be overfitting in the data regime where it is being trained. Finally, regarding diagnosis
across psychiatric conditions and genetic variants (Figure 55), we observed decreased accuracy
using MTL over ST for all but one variant: MLPconn_shorter, although the gains in this case are
very marginal. This result suggests we may have over-parameterized our primary model
MLPconn for this task, but still fails to demonstrate an advantage to MTL on this application.
Overall, we found that the conclusions of our study are quite robust to the specific architectural
choices we made for MLPconn.



Figure 53 - Distribution of accuracy of sex prediction across model variations using single (ST) vs. multi-task
learning (MTL). The x axis represents the model variations. The y axis shows the accuracy of prediction. For each
model, the red points show prediction accuracy distribution for the tasks in MTL, and the blue points show
prediction accuracy distribution on the tasks trained in ST.

Figure 54 - Distribution of Mean Squared Error (MSE) of age prediction across model variations using single (ST) vs.
multi-task learning (MTL). The x axis represents the model variations. The y axis shows the error of prediction. For
each model, the red points show prediction accuracy distribution for the tasks in MTL, and the blue points show
prediction accuracy distribution on the tasks trained in ST.



Figure 55 - Distribution of accuracy of automated diagnosis across model variations using single (ST) vs. multi-task
learning (MTL). The x axis represents the model variations. The y axis shows the accuracy of prediction. For each
model, the red points show prediction accuracy distribution for the tasks in MTL, and the blue points show
prediction accuracy distribution on the tasks trained in ST.



10.10 - CNN Variations
Here we present the results of a sensitivity analysis in which we varied the parameters of our
convolutional neural network model (CNN) in order to vary the format of the input to the model
and evaluate the impact on the performance of MTL for automatic diagnosis. Our primary
model uses a random permutation of the connectome as input, and therefore does not consider
spatial information. The variations we present here (CNN_64 and CNN_clust, defined below)
take as input the full connectome and a reordering of the full connectome determined by a
functional clustering respectively. We chose the variants to test the impact of using formats that
preserve more information about the spatial layout and functional similarity of the
connectome. Training was performed as described in the methods (section 2.6).

The CNN_64 model is a convolutional neural network with a very similar architecture to the
main CNN model (see methods section 2.5). Rather than taking the upper triangle of the
symmetric connectome matrix (2080 values) randomly permuted and formatted into a 40 x 52
matrix as input, it takes as input the full 64x64 connectome matrix with regions as ordered in
the original parcellation, which respects spatial groupings of the regions (S. Urchs et al., 2017).
The model consists of a first convolution layer with 256 filters of shape 8 x 8, followed by two
dense layers of 64 hidden units. The output layer has 2 units for binary classification. Batch
normalisation (Ioffe & Szegedy, 2015) is applied after each layer.

The CNN_clust model has the same architecture as the CNN_64 model, but it takes as input the
64x64 connectome with regions grouped according to a hierarchical clustering performed using
ward’s criterion (Ward, 1963) over the mean connectome taken over all the subjects in our
dataset.

We observed that MTL reached lower accuracy than ST for all choices, when applied to
diagnosis across psychiatric conditions and genetic variants (Figure 56), consistent with the
main results of our paper. We also observed that the model variants working directly on the
64x64 connectomes achieved similar performance to our main CNN architecture for STL, but
performed much worse for MTL. We were not able to interpret that result. A possible culprit for
the bad performance could be the inability to mix information from multiple networks in the
convolutional layers, as neighbouring connections are by construction in similar networks.
Ther fully connected layers also feature a much higher number of parameters in CNN_64 and
CNN_clust, which may lead to overfitting as suggested by our experience of architecture
variants (Figure 55).

https://paperpile.com/c/s7Rf6b/7tIg
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Figure 56 - Distribution of accuracy of automatic diagnosis across model variations using single (ST) vs. multi-task
learning (MTL). The x axis represents the model variations. The y axis shows the accuracy of prediction. For each
model, the red points show prediction accuracy distribution for the tasks in MTL, and the blue points show
prediction accuracy distribution on the tasks trained in ST.
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