
Harandi et al.

METHODOLOGY

How to make sense of 3D representations for

plant phenotyping: a compendium of processing

and analysis techniques
Negin Harandi1,2†, Breght Vandenberghe3†, Joris Vankerschaver1,2, Stephen Depuydt4ˆ and Arnout Van

Messem5*ˆ

Abstract

Computer vision technology is moving more and more towards a three-dimensional approach, and plant

phenotyping is following this trend. However, despite its potential, the complexity of the analysis of 3D

representations has been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this

review we provide an overview of typical steps for the processing and analysis of 3D representations of plants,

to offer potential users of 3D phenotyping a first gateway into its application, and to stimulate its further

development. We focus on plant phenotyping applications where the goal is to measure characteristics of single

plants or crop canopies on a small scale in research settings, as opposed to large scale crop monitoring in the

field.
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Full list of author information is

available at the end of the article

†Equal contributorˆEqual

contributor

1 Introduction

Plant phenotyping, the quantitative measurement and assessment of plant features,

is at the forefront of plant research, plant breeding, and crop management. In re-

cent years, the use of non-destructive, image-based plant phenotyping methods has

emerged as an active area of research, driven by improvements in hardware as well as

software. Indeed, the emergence in the consumer market of low-cost, powerful image

acquisition devices have made (raw) phenotyping data readily available and compu-

tational breakthroughs such as deep learning [1, 2] have in turn allowed researchers

and plant breeders to readily obtain quantitative insights from data. Combined to-

gether, these improvements in computational plant phenotyping have reduced the
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reliance on tedious, manual intervention in data acquisition and processing and have

enabled the use of automation in the laboratory and in the field.

One noteworthy development is the adoption of three-dimensional (3D) plant

phenotyping methods [3]. Advancements in 3D image acquisition and processing

methods are increasingly being applied and explored in the agricultural industry:

automation and robotics are entering agriculture. Examples are autonomous and

targeted harvesting, weeding, and spraying [4]. In agricultural biotechnology, there

is a continuing effort to efficiently modify or select for traits like increased yield,

drought tolerance, pest resistance and herbicide resistance, by linking the genotype

with the phenotype [4, 5]. In precision farming, crop management is being optimized

and made more flexible through monitoring and mapping of crop health indicators

and environmental conditions [6, 7]. All these advancements require powerful vi-

sion systems, and applications in the different domains of phenotyping, inspection,

process control, or robot guidance benefit from a 3D approach over 2D.

Compared to two-dimensional methods, 3D reconstruction models are more data-

intensive but give rise to more accurate results. They allow for the geometry of

the plant to be reconstructed [8], and hence find important applications in the

morphological classification of plants. Moreover, 3D methods are also better able to

track plant movement, growth, and yield over time [8–10], something that is hard

to do with 2D approaches alone. These 3D reconstructed plant models could be

used to, for example, describe leaf features, discriminate between weed and crop,

estimate the biomass of the plant, and classify fruits [11]. In some cases, 3D methods

that incorporate data from multiple viewing angles may provide insights that are

hard or impossible to get from a 2D model alone, such as resolving occlusions and

crossings of plant structures by reconstructing the plant distance, orientation, and

illumination [2, 12–14].

These 3D reconstruction models can be classified in several ways. One such classifi-

cation makes the distinction between rigid and non-rigid reconstruction. In rigid 3D

reconstruction, the objects in the scene are static, while in non-rigid 3D reconstruc-

tion, the objects are dynamic and the method allows for some level of movement.

Another possible classification, which is typical for agriculture (and thus also ap-

plicable in our case), will make the distinction between 3D reconstruction models
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for (controlled) indoor environments and outdoor environments that make use of

images from the field [15].

The set of problems that may arise during the processing and analysis of 3D

representations, in general, is very large. For the analysis of 3D representations of

plants in particular, a diverse set of tools is required because of the complexity

and the non-solid characteristics of plant architecture, and its diversity both across

and within species. It is our goal to point out typical processing and analysis steps,

and to review methods which have been applied before, or could typically be used,

in each of these steps. We will focus on applications for plant phenotyping where

the ultimate goal is to measure phenotypic characteristics of single plants, or crop

canopies on a small scale, as opposed to large scale yield and growth monitoring of

crops in the field. We will not discuss the construction of virtual plant models where

obtaining accurate or realistic 3D representations is a goal by itself. Nevertheless,

many of the techniques used in that area can be applied for phenotyping as well.

An outline of the topics covered in the present review is presented in Figure 1.

2 3D image acquisition

An overview of the topics covered in this section is presented in Figure 2.

2.1 3D imaging methods

3D imaging methods can be classified roughly into active and passive ap-

proaches [16–23]. The active group refers to the techniques that use a controlled

source of structured energy emissions, such as a scanning laser source or a pro-

jected pattern of light, and a detector like a camera. On the other hand, the passive

techniques rely on ambient light in order to form an image [24]. Compared to 2D

imaging, both passive and active 3D imaging approaches can significantly improve

the accuracy of plant growth measurements and even expand on the architectural

traits available. However, 3D imaging techniques still lack in several crucial areas

such as speed, availability, portability, spatial resolution, and cost [3].

Typically, active 3D imaging methods require specialized measuring devices such

as LiDAR, MRI or PET scanners, which are costly to acquire and maintain but

result in highly accurate data. Passive imaging methods, on the other hand, tend

to be more cost-effective as they typically use commodity or off-the-shelf hardware,

but may result in comparatively lower-quality data that often require significant
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computational processing to be useful. The specific trade-offs between active and

passive 3D imaging methods, in terms of cost and fitness for a specific purpose,

are discussed in this section. A comparison of active and passive methods, and

of imaging techniques covered in this paper is presented in Table 1 and Table 2,

respectively. A full list of papers and plants using these techniques can be found in

Table 3, under the header “3D Image Acquisition and Registration”. Four selected

techniques from these two categories are illustrated in Figure 3.

2.1.1 Active 3D imaging approaches

Active approaches use active sensors [25] and rely on radiometric interaction with

the object by, e.g., using structured light or laser [23] to directly capture a 3D

point cloud that represents the coordinates of each part of the subject in the 3D

space [25]. Triangulation, Time of Flight (ToF, discussed below), and phase-shift

are all examples of active measurement techniques [18]. Structured light [26] and

laser scanners [10, 27, 28] are active technologies that are based on triangulation

to determine the point locations in a 3D space [17]. Because active 3D imaging

approaches rely on emitted energy, they can overcome several problems related to

passive approaches such as correspondence problems (i.e., the problem of ascertain-

ing which parts of one image correspond to which parts of another image, where

differences are due to movement of the camera, the progress of time, and/or move-

ment of objects in the photos). Furthermore, active 3D acquisition techniques can

provide higher accuracy, but they require specialized and often expensive equip-

ment. Because of their reliance on a radiation source, the environment and the

illumination conditions in which active techniques can be used are often limited.

Other possible drawbacks are that approaches using structured light require very

accurate correspondence between images while laser scanners can be slow and can

potentially heat or even damage plants at high frequencies.

Laser triangulation These techniques involve shining a laser beam to illuminate

the object of interest and a sensor array to capture laser reflection [8]. Due to the

low-cost setup, they are widely used in laboratory experiments [29, 30]. Paulus et

al. [30] used this technique to produce a 3D point cloud of barley plants. Likewise,

Virlet et al. [31] used this technique for producing point clouds from wheat canopies

and Kjaer and Ottosen [32] for rapeseed.
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3D Laser Scanner (LiDAR) A 3D laser scanner is a high-precision point cloud

acquisition instrument. However, the scanning process is complex and requires cali-

bration objects or repeated scanning to accomplish the point cloud registration and

stitching [33]. Chebrolu et al. [34] used a laser scanner to record time-series data of

tomato and maize plants over a period of two weeks, while Paulus et al. [35] used

a 3D laser scanner to create point clouds of grapevine and wheat.

Low-cost laser scanning devices, such as the Microsoft Kinect sensor and the

HP 3D Scan system, are readily available on the consumer market and have been

widely used for plant characterization in agriculture [13]. Although these provide

lower resolutions, they may still be sufficient for less demanding applications [36],

and they are designed for use in a wide range of ambient light conditions.

Terrestrial laser scanners (TLS) allow for large volumes of plants to be measured

with relatively high accuracy, and are therefore mostly used for determining param-

eters of plant canopies and fields of plants. However, acquiring and processing TLS

data is time consuming and costly due to the large data volumes involved [8, 33, 37].

Time of Flight (ToF) ToF cameras use light emitted by a laser or LED source and

measure the roundtrip time between the emission of a light pulse and the reflection

from thousands of points to build up a 3D image [8]. Examples of this method can

be found in the works of Chaivivatrakul et al. [38] on maize plants, Baharav et

al. [39] on sorghum plants, and Kazmi et al. [40] on a number of different plants

including cyclamen, hydrangea, orchidaceae, and pelargonium.

Some ToF devices available on the consumer market, such as the Kinect [41]

(through the KinectFusion algorithm [42]), provide a convenient and cost-effective

way to perform 3D reconstruction in real time [43].

Using Kinect for acquiring a 3D point cloud data can be found in several studies

including Wang et al. [44] on lettuce, González et al. [45] on tomato seedling, Zhang

et al. [46] on pumpkin roots, and Zhang et al. [47] on maize plants.

All in all, using close range photogrammetry for a real-time follow-up produces

highly detailed models, but it results in a higher processing time compared to the

other methodologies. Increasing computational power would allow for rapid model

processing that is able to analyze growth dynamics at higher resolutions in the case

of photogrammetry [13].
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Structured light Structured light cameras project a pattern, for example a grid or a

specific pattern of horizontal bars, to capture 2D images and convert them into 3D

information by measuring the deformation of the patterns [8]. Li et al. [48] used an

acquisition system consisting of a standard structured light scanner to capture the

geometry of the dishlia plant by looking at it from different angles. To obtain this

result, they used a turntable to rotate the plant by 30 degrees at a time. A complete

review of using structured light methods for high-speed 3D shape measurement can

be found in [49].

Photometric stereo (PS) Pioneered by Woodham [50], PS is a low-cost active imag-

ing technique that can achieve high-resolution images and fast capture speeds. PS

estimates local surface orientation by using a sequence of images of the same sur-

face from the same viewpoint but under illumination from different directions. This

technique uses data from several images and is therefore able to circumvent some of

the problems that plague Shape-from-shading [51] approaches (not applied in plant

phenotyping as far as we know) [52–55]. Bernotas et al. [17] used this technique for

tracking the growth for the thale cress plant.

Tomographic methods These methods create a series of 2D slices to generate a 3D

volume and provide non-destructive, high-resolution data of external and internal

structures or even the movement of small molecules through a root system in the

case of plants. X-ray computed tomography (CT), magnetic resonance imaging

(MRI), and positron emission tomography fall into this category [56].

MRI and CT, which are usually applied in the medical imaging domain, can also

be used to visualize plant root systems within their natural soil environment [56–65].

Applications of CT during the last 30 years show considerable effectiveness for the

visualization of root structures. Fine root structures can be visualized using micro-

computed tomography (µCT) devices, which offer high resolving powers, down to

50 µm [66].

These methods produce voxels which contain intensity information, either repre-

senting the capacity of the material to absorb and emit radio frequency energy in

the presence of a magnetic field in case of MRI, or the capacity of the material to

absorb the X-ray beam in case of CT.
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Neutron tomography (NT) complements other techniques like CT or nuclear MRI,

due to the specific attenuation characteristics of thermal or cold neutrons [67, 68].

As neutrons are attenuated by the presence of water, while passing through volumes

of silicon-based material in a relatively unimpeded way, NT presents an attractive

method for the phenotyping of plant roots embedded in soil, modeling the rhizo-

sphere, and quantifying the spatial distribution of water in the soil–plant system

with high precision and good spatial resolution.

For example, Krzyzaniak et al. [66] used NT to provide a 3D reconstruction of

grapevine roots and sand in an aluminum sample holder, while Moradi et al. [69]

used NT to study root developments in soil of different texture and showed that

sandy soil was the best to obtain a good contrast of the root visualization. Com-

pared to X-ray imaging, NT has advantages and disadvantages. Due to its ability

to penetrate bulk volumes of soil and rubble, NT is able to visualize water dy-

namics [69–74]. However, NT is a more labor-intensive process that requires highly

specialized equipment, and produces images of comparatively lower resolution.

2.1.2 Passive 3D imaging approaches

Passive methods use passive sensors such as cameras and rely on analyzing mul-

tiple images from different perspectives to generate a 3D point cloud [21, 22, 25].

They capture plant architectures without introducing new energy (e.g., light) into

the environment. Multi-view stereo (MVS) [75, 76], of which the most common

application is binocular stereo [77, 78], Structure from Motion (SfM) [79], light-

field (plenoptic) cameras [80], and space-carving [81] approaches are examples of

methods and technologies using this approach [17]. Of these, SfM is widely in use,

especially in the 3D reconstruction of plants [11, 13, 14, 18, 79, 82–85]. In this ap-

proach, multiple photographs are taken from different unknown angles after which

the camera position and depth information are estimated simultaneously based on

matched features in the images.

Compared to active techniques, these methods are cheaper and can be applied

using standard imaging hardware, but they are prone to producing outliers and

noise [86]. Another disadvantage is that they are computationally complex, and

thus relatively slow. Because passive methods make use of ambient light reflections,

they do gain color information in addition to 3D shape information, which is not
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readily available from active techniques unless when combined with another imaging

system.

Multi-View Stereo techniques These methods use two or more cameras to generate

parallax from different perspectives and obtain distance information of the object

through comparing these perspectives [87]. Although the structure of the binocular

camera is simple, and the calculation speed is fast, the results are greatly affected

by the environment and in particular the method struggles with scenes lacking

texture information [88]. Xiong et al. [89] used binocular stereo cameras and a

semi-automatic image analysis system to quantify the 3D structure of rape plants.

Chen et al. [90] assembled two binocular vision systems into a four-camera vision

system to construct a multi-view stereo system to perform multi-view 3D perception

of banana central stocks in complex orchard environments. Rose et al. [85] utilized

a multi-view stereo method to reconstruct tomato plants.

Structure from Motion (SfM) This technique can estimate 3D models from se-

quences of overlapping 2D images and can automatically recover the camera param-

eters like focal length, distortion, position and orientation [91–94]. It has low-cost,

high point cloud accuracy, and high color reproduction. However, it is cumbersome

and time-consuming to shoot sequence images [33]. Using equipment available in

most biology labs, such as cameras and turntables, Lou et al. [9] built an accurate

multi-view image-based 3D reconstruction system that yields promising results on

plants of different forms and sizes and applied it to different plants, including thale

cress, Brassica sp., maize, Physalis sp., and wheat.

Structure from Motion is not limited to analyzing the plant stem and leaves. Liu

et al. [95] developed an automatic 3D root phenotyping system consisting of a 3D

root scanner and root analysis software for excavated root crowns of maize. Their

system generates a model of the root system from a 3D point cloud and calculates

18 root-specific phenotypical traits from this model.

Space Carving There exist different shape estimation methods [96], including voxel

coloring [97] and space carving [98, 99]. Unfortunately, voxel coloring is guaranteed

to work only if all of the cameras lie on the same side of the viewing plane, which

precludes the use of more general configurations of cameras. To remedy this, Kutu-
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lakos and Seitz [98] generalized voxel coloring to space carving, an approach whereby

a 3D scene is iteratively reconstructed by selecting subsets of photographs taken

from the same side and removing voxels that are not consistent with the selected

photographs [100]. The process ends when there are no more voxels to remove.

Some recent contributions focus on the phenotyping of seedlings [101–103] as they

are easier to reconstruct, while others focus on accelerating voxel carving through

the use of octrees [104]. Scharr et al. [104] then apply this accelerated method to

maize and banana seedlings. Gaillard et al. [105] developed a high throughput voxel

carving strategy to reconstruct 3D representations of sorghum from a small number

of images.

In comparison to SfM, space carving requires fewer images and lower processing

time. However, this method needs an exact calibration and segmentation of the

object to reconstruct, whereas SfM can estimate calibration automatically. This

method is therefore appropriate in a controlled environment, where an accurate

calibration is attainable [105].

Light field measuring Compared to a standard camera, consisting of a main lens

that focuses a scene directly onto an image plane, a lightfield camera generates an

intermediate image which is focused on the image plane by a micro lens array. Light

field cameras allow for images to be modified after recording, and therefore offer

more flexibility in how an image is perceived. Polder et al. [106] used a lightfield

camera to capture the depth map of tomato plants in a greenhouse. Apelt and

Kragler [80] used a light field camera which provides two high-resolution grey-scale

images (a focus image and a depth image containing metric distance information)

to build a system in order to monitor spatio-temporal plant growth for thale cress.

2.2 Scene representations

By choice, or depending on the acquisition method, 3D scenes and objects can be

represented as a depth map, as a point cloud, or as a voxel grid.

2.2.1 Depth map

A depth map is a 2D image where the value of each pixel represents the distance from

the camera or scanner (sometimes referred to as “2.5D”). In such representations,

objects occluded by the projected surface are not measured. 3D image acquisition
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methods which may output depth maps are mostly active techniques, as well as

stereo vision which measures depth from a single viewing position by comparing

two images taken from slightly displaced positions.

Depth maps have been applied on canopies, where inferring a complete or detailed

3D structure is not necessary, such as employed by Ivanov et al. [107] and Müller-

Linow et al. [108] who estimated the structural parameters of canopies based on

top-view stereo imaging set-ups in maize and sugar beet, respectively, and as utilized

by Baharav et al. [39] who measured the plant heights and stem widths in a sorghum

canopy based on side-view depth maps.

Depth maps have also been applied on individual plants of which the leaves are

planar and have an orientation more or less perpendicular to the viewing direction.

Xia et al. [109] introduced the use of depth maps merely to provide a more robust

segmentation of individual leaves of bell pepper plants where 2D RGB imaging

would have had difficulty separating overlapping leaves. Chéné et al. [110] explored

the use of depth imaging systems for leaf segmentation, as well as for the estimation

of some 3D traits, such as leaf curvatures and leaf angles. Dornbusch et al. [10] used

depth maps to monitor and analyze the diurnal patterns of leaf hyponasty, the

upward movement of leaves in response to environmental changes, in thale cress.

Depth map techniques can also be combined with other techniques: Li et al. [111]

combined depth image data with 3D point cloud information to carry out in situ

leaf segmentation for different kinds of plant species such as Hedera nepalensis,

Epipremnum aureum, Monstera deliciosa and Calathea makoyana.

Depth maps are particularly suitable for segmentation as illustrated in Figure 4,

but note that the segmentation and subsequent analysis of the segmented images

will often suffer from occlusions, lacking the advantages of full 3D imaging. By

covering the 3D scene from multiple angles and with overlapping images, 2.5D can

be augmented to a real 3D point cloud with xyz-coordinates. Here, the Iterative

Closest Point (ICP) algorithm [112] and variants thereof allow to match point clouds

sampled from the overlapping depth maps.

2.2.2 Point cloud

A 3D point cloud is a set of points representing an object or surface. One of the

advantages of the point cloud representation is that it includes depth information,
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thus working around the issue of occlusion among plant leaves [111]. Point clouds can

be obtained in two ways: from active 3D image acquisition techniques, like image-

derived methods, LiDAR, RGB-D cameras or synthetic aperture radar systems, or

through (passive) 3D reconstruction from a set of different views from the scene [86,

113, 114]. Among the active methods, LiDAR point clouds are commonly used for

point cloud segmentation applications and for trees (forests) [115].

Active image acquisition methods typically give rise to point clouds of relatively

uniformly sampled points on the surface of the represented objects. The density of

point clouds acquired through passive photogrammetric techniques, however, will

often depend on the presence of detectable features on the surface of objects, because

such techniques usually rely on finding corresponding sets of said points on multiple

overlapping 2D images. This can result in point clouds where featureless parts of

objects are less well represented, or in false points due to mismatches between

features, especially when the scene contains repeated structures.

Point clouds do not directly provide information about the surface topology [20,

116], implying that it will be more challenging to accurately estimate an underlying

surface or curve representation and to estimate traits related to the surface area,

especially in the presence of noise, outliers or other imperfections. This will be

even more difficult when dealing with the complex architecture of plants. Thus, the

quality of the point cloud in conjunction with the nature of the plant architecture,

will largely determine the available processing and analysis techniques.

Almost all of the techniques (both active and passive) result in a point cloud [18].

Cao et al. [14] generated a 3D point cloud by developing a low-cost 3D imaging

system to quantify the variation in the growth and biomass of soybean due to flood

at its early growth stages. Martinez et al. [13] created two dense point clouds using

a low-cost SfM and an acquisition and reconstruction using an RGB-Depth Kinect

sensor to examine the suitability of two low-cost systems for plant reconstruction,

which was later used for the solid model creation. The model using SfM showed

better results for the reconstruction of end-details and accuracy of the height esti-

mation. However, use of RGB-D information was faster during the creation of the

3D models.

Ma et al. [43] produced a 3D point cloud by developing a 3D imaging approach to

quantitatively analyze soybean canopy under natural light conditions. Most current
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systems provide information on the whole-plant level and there are only a few

cases where information on the level of specific plant parts, such as leaves, nodes

and stems, is given [2]. One such example can be found in Thapa et al. [117],

who generated a 3D point cloud acquired with a LiDAR scanner to measure plant

morphological traits, including the individual and total leaf area, the leaf inclination

angle, and the leaf regular distribution of maize and sorghum.

2.2.3 Voxels

A 3D object may also be represented by a 3D array of cells, in which each cell (voxel)

contains two possible values, indicating whether a voxel is occupied by the object

or not. The most commonly used methods which result in such a representation

are shape estimation methods [96] like Shape-from-silhouette (SFS) [118], space

carving [98, 99], voxel coloring [97], and generalised voxel coloring [119, 120]. These

passive methods rely on determining the visual hull, which is the largest possible

shape that is consistent with the intersection of 2D silhouettes of an object projected

into a 3D space.

If the plant structure is relatively simple, then these standard volumetric methods

are relatively easy to implement, are fast, and produce good approximations. For

example, Golbach et al. [101] used SFS to reconstruct tomato seedlings, and Kumar

et al. [121] did the same for young maize and barley plants. Phattaralerphong et

al. [122] also applied SFS to obtain voxel representations of tree canopies. Their

goal was to measure traits such as tree height, tree crown diameter and canopy

volume which don’t require very accurate 3D representations. Likewise, Kumar et

al. [123] estimated maize root volume based on a voxel representation obtained by

SFS.

However, if the scene is relatively complex, such as when multiple plant parts

are overlapping, or the plant parts are very intricate, one may have to rely on

less standard volumetric methods. For example, Klodt et al. [103] developed an

optimization method which finds a segmentation of the volume enclosed by the

visual hull by minimizing the surface area of the object subject to the constraint that

the volume of the segmented object should be at least 90% of the volume enclosed by

the visual hull. They applied their method for the volumetric 3D reconstruction of
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barley plants, and achieved an accurate 3D reconstruction of fine-scaled structures

of the plant.

3 3D image processing

This section describes common techniques for the visualization, processing, and

analysis of phenotyping data (in 3D point set form, as a 3D image, or in any other

form), through transformations, filtering, image segmentation, and morphological

operations. A full list of papers and plants using these techniques can be found in

Table 3, under the header “3D Image Processing”. Moreover, an overview of the

topics covered in this section is presented in Figure 5.

3.1 3D Point set filtering

Point sets contain noise stemming from different sources regardless of whether the

point cloud was generated actively or passively (but passively generated point clouds

are typically more noisy [86, 124]). Removing noise is an essential first step in the

processing pipeline.

Actively generated point clouds typically suffer from limited sensor accuracy and

measurement error due to environmental issues (illumination, material references

and imperfect optics). For point clouds that are generated through computational

reconstruction, imprecise depth triangulation and inaccurate camera parameters

can give rise to significant geometry errors which can be classified in two types:

outlier errors or positioning errors [86, 113, 114].

Moreover, the point cloud will often contain parts of the surrounding scene as well

as wrongly assigned points, which need to be selectively removed, and “double wall”

artefacts may result from small errors in the alignment of multiple scans, or from

small movements during image acquisition. Finally, the initial size of the point cloud

is often too large for further processing within a manageable time frame, requiring

downsampling.

In plant phenotyping it is common to divide point set filtering into three different

steps: background removal, outlier removal and denoising [33, 125–127].

3.1.1 Background removal

When a point cloud is obtained through an active 3D acquisition method and

doesn’t contain color information, usually efforts are made to capture as little of
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the surrounding scene as possible. If the point cloud still contains part of the sur-

rounding scene, background removal can rely on the detection of geometric shapes

such as planes, cylinders, or cones which may correspond to a surface, the main

stem, or a pot, respectively. Points can then be discarded depending on the relative

position to these features. Detection of geometric shapes is often done using the

RANSAC algorithm [128]. For example, Garrido et al. [129] imaged maize plants

in a field using LiDARs mounted on an autonomous vehicle, and used RANSAC to

segment their point clouds into ground and plants. Liu et al. [130] used a variant of

the RANSAC algorithm named MSAC to separate the soil from the original point

cloud of maize.

When active 3D acquisition is combined with an RGB-camera or when a passive

3D acquisition method is applied, color information can be used for the removal of

background points. The efforts employed in controlling lighting conditions during

the 3D acquisition will determine whether one can rely on simple color threshold-

ing or more complex clustering or classification methods to discriminate between

plant and background, based on color. For example, Jay et al. [79] used clustering

based on both height above ground and color to discriminate between plant and

background points in point clouds of in-field crop rows of various vegetable species

which were obtained by SfM. Ma et al. [43] extracted soybean canopies from back-

ground objects: point clouds were rasterized to depth images, after which the pixels

of the soybean canopies were differentiated from those of the background by using

spatial information in the depth images. Although color information can be useful

for removing background points, plants often present ranges of similar colors and

shapes, making it difficult to perform segmentation. To remedy this, Sampio et

al. [15] developed a new technique using only (logarithmically transformed) depth

information, and they show that accurate reconstruction results can be obtained

for maize plants.

In the case of true background noise, this can be removed using a pass-through

filter which limits the range of axes and removes the points outside the range.

This approach can easily be combined with other filtering algorithms such as the

minimum oriented bounding box (MOBB) algorithm [125].
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3.1.2 Outlier removal

Two methods for outlier removal are regularly applied on point clouds: radius and

statistical outlier removal. The radius outlier removal method counts the number of

neighboring points within a certain specified radius and removes the points for which

this number is lower than a specified minimum number of neighbors. In statistical

outlier removal (SOR) the mean distance to the k nearest neighbors is calculated for

each point. Points are removed if the mean distance surpasses a certain threshold

which is based on the global mean distance to the k nearest neighbors and the

standard deviation of the mean distances.

Li et al. [111] developed a novel 3D joint filtering operator by integrating a radius-

based outlier filter that can separate leaves by removing sparse points for different

kinds of plant species such as Hedera nepalensis, Epipremnum aureum, Monstera

deliciosa and Calathea makoyana. Liu et al. [130] applied a MATLAB function

(pcdenoise) to remove outliers from the point cloud of maize which are at least

0.3 SD away from the mean distance and then applied another MATLAB function

(pcsegdist) to remove the larger outliers according to a Euclidean distance thresh-

old of 5mm. Sampaio et al. [15] and Chaivivatrakul et al. [38] used the same method

to remove the outliers from the point clouds of maize plants.

3.1.3 Denoising (Noise filtering)

Before applying further analysis steps it may be necessary to correct certain irreg-

ularities in the data, such as noise and “double walls” artefacts.

Moving Least Squares (MLS) This technique iteratively projects points on

weighted least squares fits of their neighborhoods, thus causing the newly sam-

pled points to lie closer to an underlying surface [131].

Density-based spatial clustering of applications with noise (DBSCAN) This algo-

rithm was proposed by Ester et al. [132] and is a density-based clustering algorithm

designed to discover clusters of arbitrary shape. Zermas et al. [82] used an algorithm

based on DBSCAN to remove clusters that are smaller than a certain threshold and

located further away than a fixed distance from other clusters, and applied this

algorithm to maize plants.
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Spatial Region Filter This filter works by means of region specifications which

consists of one or more region expressions (geometric shapes) combined according

to the rules of Boolean algebra. It is used for plants such as Epipremnum aureum,

Monstera deliciosa, Alathea makoyana, Hedera nepalensis and maize in the works

of Wu et al. [133] and Li et al. [111].

Color filtering Lou et al. [9] used a color filter to remove noisy points from a

3D point cloud. They acquired images from the plant against a dark background,

and found that background noisy points were mostly colored dark, whereas points

belonging to the plant were shades of green.

3.2 Downsampling

Reducing the number of points needs to happen in a way which minimizes loss of

information about surface and topology of the sampled object. The most regularly

used method for point cloud downsampling is the voxel-grid filter. Here the point

cloud is divided into a 3D voxel grid and points within each voxel are replaced by

the centroid of all points within that voxel [9, 111, 130, 134, 135].

An alternative method, which makes use of random sampling and which is also

designed to retain key structures in the point cloud, is the dart throwing filter [136],

where points from the original point cloud are sequentially added to the downsam-

pled point cloud if they don’t have a neighbor in the output point cloud within a

specified radius.

3.3 3D point cloud standardization

Point cloud standardization [15] refers to the process of adjusting the resolution of

the point cloud according to the object in the scene, where, for example, objects with

larger proportions can be described using a lower density of points while smaller

objects are described using higher point densities. The result is a point cloud from

which extraneous detail has been removed, resulting in a lower amount of data while

keeping essential object features.

Sampio et al. [15] presented a point cloud standardization procedure in which

an octree data structure was used to hierarchically group cloud points into voxels

according to a predefined resolution, with each voxel described by a single point in

the group (e.g., the centroid).
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3.4 3D point set smoothing

The raw imaging data acquired from optical devices such as laser scanners always

contains noise [137], which must be taken into account during subsequent post-

processing.

One pervasive source of error for ToF cameras is the so-called wiggling error [138–

141], which alters the measured distance by shifting the distance information sig-

nificantly towards or away from the camera depending on the surface’s true dis-

tance [138]. The wiggling error can be addressed by using bilateral smoothing, a

non-linear filtering technique introduced by Tomasi and Manduchi [142] for edge-

preserving smoothing [137].

Sampaio et al. [15] used the bilateral smoothing technique for smoothing the cloud

points of maize plants in two steps: smoothing normals and points repositioning

based on the adjusted normals, while the estimation of the normal vector for each

point is performed using the Principal Component Analysis (PCA) technique Ma et

al. [125] used a bilateral filter to smooth the point cloud of rapeseed while preserving

the edge features of the point cloud. He and Chen [141] implemented an error

correction for ToF sensors based on a spatial error model and showed that this

approach performs better in comparison to the calibration method in [143] or the

distance overestimation error correction methods in [144].

3.5 3D point set registration

Many imaging methods give rise to more than one 3D point cloud, for instance when

observing a plant from different viewing angles, and these point clouds need to be

reconciled with one another into a single coordinate system, a process known as 3D

point cloud registration [125, 145]. In the case of two 3D point clouds this process

is known as pairwise registration, and is studied extensively in the computer vision

literature [145–149]. For pairwise registration, one set of points is typically kept

fixed and denoted as the “target”, while the other is designated as the “source”.

The goal is then to iteratively move the points of the source towards the target,

while keeping the total amount of motion or deformation limited.

Broadly speaking, there are two categories of registration algorithms: rigid and

non-rigid. Rigid point registration methods estimate a rigid body transformation

(translation and rotation) of the source onto the target, and are usually easier to



Harandi et al. Page 18 of 92

handle since they involve fewer parameters [150]. Chief among the rigid registration

algorithms is the Iterative Closest Point (ICP) algorithm [112, 151], which alternates

between associating nearby points in the source and the target, and estimating

an optimal rigid body transform [152]. Many variants and improvements of the

ICP algorithm exist [42, 153, 154], incorporating additional sources of geometric

information (e.g., depth), or optimizing for point cloud data from specific acquisition

devices such as the Kinect. Rigid point registration methods have been applied

extensively for plant phenotyping. Wang and Chen [155], for example, developed an

improved ICP algorithm that is more suitable for registering 3D point clouds from

different directions using a turntable. They used a rotation matrix and a translation

vector to process the relationship between adjacent point clouds and then applied

the ICP algorithm. They applied their method on pepper plants and showed that

the improved ICP has a better result in comparison to traditional ICP.

Rigid point registration algorithms perform well for rigid structures that are al-

ready somewhat aligned, but tend to yield poor results for the registration of de-

formable structures, such as non-rigid, thin plant structures [156]. Non-rigid regis-

tration techniques allow each point of the point cloud to move independently while

penalizing large deformations. Moreover, the presence of noise and outliers may

complicate the search for an optimal registration, rigid or otherwise. To accommo-

date noise, Jian and Vemuri [157] represent the input point sets as Gaussian Mixture

Models (GMM) and reformulate the problem of image registration as one in which

the distance between two GMMs is minimized, achieving good performance in terms

of both robustness and accuracy [158]. It is worth noting that this approach can

be applied to both rigid and non-rigid registration methods. The GMM approach

is developed further in the Coherent Point Drift (CPD) algorithm of Myronenko

et al. [159], where additionally the centroids of the Gaussians of one point set are

constrained to approximately move together, so that the topological structure of

the point cloud is preserved.

In the context of plant phenotyping, Chaudhury et al. [156] developed a two step

method that achieved a better fit than CPD in case of registering multiple scans.

This method starts with aligning the scans and then registers a single scan to the

average shape, constructed from all other scans, and updates the set to include

the newly registered result. They applied their method on thale cress and barley
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plants. Ma et al. [125] used the Fast Point Feature Histogram (FPFH), explained

in Section 4.2.5, for rough registration to register multiple neighboring point clouds

into a single point cloud and an ICP algorithm for fine alignment. Teng et al. [33]

developed an improved ICP and applied it on rapeseed plants and then compared it

with classic ICP. Apart from being computationally more effective, the new method

also succeeds in registering point clouds with large differences in angles, for which

registration fails using the classical ICP.

Lastly, one of the most challenging tasks is registering 3D point clouds of the

plants over time and space [34]. Performing analysis on the time-series plant point

cloud data, one needs to come up with techniques that associate the point cloud

data over time and register them against each other. The plants changing topology,

as well as non-rigid motion in between plant scans make plant registration over an

extended period of time very challenging [160]. Chebrolu et al. [34] and Magistri

et al. [161] tackled the complexity of registering plant data over time by exploiting

the skeleton structure (Section 4.1) of the plant to obtain correspondences between

the same plant parts for the scans on different days (Figure 6). To aid with the

development of new algorithms for point cloud registration among other things,

Schunk et al. [160] compiled Pheno4D, a large scale spatio-temporal dataset of

point clouds of maize and tomato plants.

3.6 Secondary 3D object representations

Depending on subsequent analysis methods it may be advantageous to convert the

3D representation into one of the below secondary representations.

3.6.1 Polygon mesh

A polygon mesh is a 3D representation composed of vertices, edges and faces which

define the shape of an object. The construction of a polygon mesh as an intermediate

step in the analysis of a 3D representation of a plant may, for example, facilitate

the calculation of leaf surface areas, or the segmentation into individual organs.

Polygon meshes are commonly constructed from voxels using the Marching Cubes

algorithm [162], or from point clouds using α-shape triangulation [163]. However,

mesh generation requires precise point clouds or voxel representations, and the intri-

cate and non-solid nature of the plant architecture makes that generating polygon

meshes on a whole plant is often not feasible. More often, surface fitting is per-
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formed on individual leaves, after segmentation, or different surface fitting methods

are applied to different plant organs.

Paproki et al. [164] constructed meshes of cotton plants from point clouds ob-

tained by multi-view stereo, and performed their phenotypic analysis based on this

representation. They could obtain measurements of individual leaves and track them

through time. McCormick et al. [165] also based their measurements of shoot height,

leaf widths, lengths, areas and angles in sorghum on the generation of a mesh from

point clouds obtained through laser scanning. Chaudhury et al. [156] generated a

mesh on complete thale cress point clouds by α-shape triangulation to determine

total surface area and volume.

3.6.2 Octree

An octree [166] is a tree-like data structure, in which a 3D space is recursively

subdivided into eight octants if the parent octant contains at least one point. In

this way, increasing tree depths represent the point cloud in increasing resolutions.

Such a representation can avoid memory limitations when points need to be searched

within a large point cloud.

There are various algorithms for clustering and skeletonization which exploit

the octree data structure, and which are suitable for plant phenotyping , such as

CAMPINO [167] and SkelTre [168].

Duan et al. [169] used octrees to divide point clouds of wheat seedlings into pri-

mary groups of points, after which these primary groups were merged manually

to make them correspond to individual plant organs. Scharr et al. [104] developed

an efficient algorithm for voxel carving on banana seedlings and maize, which di-

rectly outputs an octree representation. Zhu et al. [170] used an adapted octree to

reconstruct the surface of the 3D point cloud of soybean plants.

3.6.3 Undirected Graph

An undirected graph is a structure composed of vertices connected by edges. Edges

are assigned weights corresponding to the distance between the connected points.

Useful algorithms such as Dijkstra’s algorithm to calculate shortest paths [171],

Minimum Spanning Tree [172], and graph-based clustering methods such as spectral

clustering [173] use undirected graphs as input.
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An undirected graph can be constructed from a point cloud by connecting neigh-

boring points to the query point. Neighbors can be selected based on a certain

radius r around the query point, or the k closest neighbors can be selected. If r or

k are chosen too high, many redundant edges will be formed, whereas if they are

too low, crucial ones may be missed.

Hétroy-Wheeler et al. [174] converted the point clouds of various tree seedlings,

obtained through laser scanning, into an undirected graph and used this as the

basis for spectral clustering into plant organs. To avoid redundant edges and thus

speed up the computation of subsequent steps, while at the same time not miss any

relevant edges, they pruned the edges which have neighbors within a certain radius

r, based on the angles between edges.

4 3D image analysis

The above processing steps are merely a transformation of the original 3D repre-

sentation as preparation for subsequent analysis steps. During these analysis steps,

specific additional information is extracted from the 3D representation. A full list of

papers and plants using these techniques can be found in Table 3, under the header

“3D Image Analysis”. An overview of the topics covered in this section is presented

in Figure 7.

4.1 Skeletonization

Skeletonization is the process of calculating a thin version of a shape to simplify

and emphasize the geometrical and topological properties of that shape, such as

length, direction or branching, which are useful for the estimation of phenotypic

traits. A plethora of algorithms has been developed to generate curve skeletons.

These techniques make use of different theoretical frameworks such as topological

thinning or medial axes. For a review of methods in the context of plant images,

see Bucksch and Alexander [175], and for a more general overview of methods, see

Cornea et al. [176]. Skeletonization usually results in a set of voxels or points that

in a final step are connected into an undirected graph, and on which subsequent

analyzes can be performed.

A number of studies have proposed algorithms to model the 3D structure of

trees by skeletonization, either for the purpose of phenotyping or for computer

graphics. In Livny et al. [177] and Mei et al. [178] skeletonization of point clouds
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of trees obtained by terrestrial LiDAR scanning was performed, not to build an

accurate 3D representation of the trees for phenotyping, but to generate models of

trees with a credible visual appearance for computer graphics. Despite this different

perspective, both provide skeletonization methods which should also be suitable for

plant phenotyping, when excluding the processing steps which only serve to enhance

the visual appearance of the 3D models.

Bucksch et al. [168] developed a fast skeletonization algorithm, and obtained good

results comparing the distributions of skeleton branch lengths with and manually

measured branch lengths [179]. While the method is fast, it performs less well for

point clouds with varying point densities, and is likely to face difficulties with plants

other than the leafless trees which they studied.

Coté et al. [180] constructed 3D models of pine trees by skeletonization to obtain

realistic models in order to study reflected and transmitted light signatures of trees,

by ingestion into a 3D radiative transfer model. Here again the goal was not to obtain

direct phenotypic measurements of individual trees, but to study indirect radiative

properties which depend on the tree canopy structure. To this end, they generated

plausible tree canopy structures from a skeleton structural frame defining the trunk

and first-order branches only. The skeletonization method employed to create this

structural frame uses a method proposed by Verroust and Lazarus [181] based on

the use of Dijkstra’s algorithm applied on an undirected graph.

The aforementioned method assumed that cloud points are sampled uniformly

or nearly uniformly. To handle point clouds with inconsistent density and outliers,

Delagrange et al. [182] developed PypeTree, a software tool for the extraction of

skeletons of trees that allows the user to manually adjust a reconstructed plant

skeleton.

Ziamtsov and Navlakha [183] improved upon PypeTree [182] and the methods of

Verroust and Lazarus [181] and Bucksch and Alexander [175] by using information

about the curvature of the plant skeleton. They did so by adding two new features

to detect plant tips more accurately and independently of connected components

or level size, and to enhance root selection. They apply their method to extract a

skeleton graph of tomato and benth plants.

Lou et al. [9] adopted a method developed by Cao et al. [184] based on Laplacian

contraction and applied this method on thale cress (rosette and in flowering stage),
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Physalis sp., maize, Brassica sp., and wheat. They first segmented the leaves and

after removing them from the point cloud, they applied their method to the modified

version of the point cloud. This method proved to be robust to noise and produced

a well connected skeleton.

The extracted 3D reconstructions usually contain in the order of millions of points

which imposes significant computational demands on subsequent processing steps.

Therefore, another application for skeletonization is to provide a more parsimonious

representation of a plant structure so that further processing can be done more

efficiently. For example, Zermas et al. [82] developed a skeletonization algorithm

starting from 3D point cloud data, which is split into thin slices of equal height. A

per-slice clustering is then performed to find cluster centroids that best represent

the neigboring points, and these cluster centroids are retained in the thinned-out

skeleton. They applied this method on maize plants.

Chaudhury and Godin [185] proposed an algorithm based on stochastic optimiza-

tion to improve coarse initial skeletons that were obtained with different skeletoniza-

tion algorithms. They applied the proposed algorithm on real world and synthetic

datasets contains different varieties of plants including cherry, apple tree, and thale

cress plants. In contrast to other techniques, their method is more faithful to the

biological origin of the original point cloud data.

Wu et al. [133, 186], on the other hand, used an iterative shrinkage process to

contract the point cloud of a maize plant by using the classical restricted Laplace

operator.

The 3D analysis of the branching structure of root systems is another applica-

tion which has been approached by skeletonization. For example, Clark et al. [187]

present a software tool for the 3D imaging and analysis of roots. Here, a thinning

algorithm is applied on voxel representation obtained by SFS.

Despite its usefulness for the estimation of certain traits, skeletonization has rarely

been applied to the phenotyping of herbaceous plant shoots. This may be because

of difficulties when applying skeletonization on objects with more diverse topogra-

phies, such as in the presence of broad leaves, and when there are more occlusions.

Chaivivatrakul et al. [38] performed a medial axis-based skeletonization of the rela-

tively simple structure of young maize plants to obtain leaf angles, but they found
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that that particular skeletonization method didn’t perform well compared to plane

fitting through leaves.

4.2 Segmentation

Image segmentation is the process of dividing an image into parts based on the

problem needs [16]. In plant phenotyping, segmentation of the 3D representation

into individual plant organs is a difficult and critical step in the process of obtaining

plant organ measurements. There is no standard approach that will work in the

majority of situations. The application of any one approach will largely depend on

the plant morphology, as well as the quality of the 3D representations.

There are several existing techniques which are used for image segmentation and

all these techniques can be approached from two basic approaches of segmentation:

region-based and edge-based approaches [188, 189]. The most popular techniques

and their application in plant phenotyping are listed below [16, 188, 190]. A com-

parison of the different segmentation techniques is presented in Table 4.

4.2.1 Color-index based methods

A common method for segmenting the plant from the background is color index-

based segmentation [8]. In this approach, a 3D color value is converted into a scalar

(grayscale) value, so that there is a pronounced distinction between foreground and

background values.

Ge et al. [191] used color index-based segmentation on maize plants in which

the image was transformed to a single color-band image using a nonlinear trans-

formation emphasizing the green channel and suppressing the effects of different

illuminations. Choudhury et al. [192] used color-based segmentation in hue, satura-

tion, and value (HSV) color space for a holistic and components-based phenotyping

of maize plants.

4.2.2 Thresholding methods

Assuming strict conditions as to the composition of the scene, the majority of algo-

rithms in plant phenotyping usually employ thresholding-based approaches in one

or multiple channels [193–195]. Gray-level thresholding is the simplest segmentation

process and using a threshold can segment objects and background [16].
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Minervini et al. [196] used a binary segmentation of thale cress and tobacco plants

as the first step. Xia et al. [109] applied an RGB thresholding method to field images

of paprika plants to eliminate the background.

4.2.3 Edge-based methods

A large group of methods performs segmentation based on the information about

edges in the image. Edge detection algorithms usually work in two steps: first, points

belonging to an edge are detected based on quick changes of the intensity around the

point. Then, edge segments are generated by grouping points inside the boundaries

extracted by edge detection [16, 188, 197, 198]. This method is simple and fast,

but is more suitable for 2D images rather than 3D point clouds and often delivers

disconnected edges which cannot be used to identify closed segments [115, 189, 198].

Lomte and Janwale [199] provided a brief review on plant leaves segmentation

techniques including edge-based techniques on 2D images. Some works on edge-

based segmentation on 2D images can be found in [200] on thale cress, and [201] on

orange fruits, [202] on pigweed, purslane, soybean, and stinkweed.

4.2.4 Region-based methods

Segmentation results from edge-based methods and region-growing methods are not

usually the same. However, region-growing techniques are generally better in noisy

images, where it is difficult to detect borders between regions of the image with

similar characteristics, such as intensity or color [16].

Liu et al. [130] developed a three-phase segmentation procedure to segment maize

plant organs based on a skeleton and a region-growing algorithm. First, they pro-

cessed the denoised point clouds of each plant using a Laplacian-based method [184]

and generated plant skeleton points. They then applied a region-growing algorithm

proposed by Rabbani et al. [197] to classify point cloud clusters.

Miao et al. [203] applied a median-based region-growing algorithm [204] to seg-

ment the stem points of the maize plant. Their algorithm is a region-growth method

tailored specifically to maize and is able to segment stem and leaf instances in se-

quence, working upwards from the bottom of the plant.

Region-growing algorithms divide the point cloud into different clusters based on

local smoothness and curvature characteristics or on the presence of features at a

certain scale. Typically, these characteristics vary across a wide range of values for
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plant point clouds, and a threshold that works for one plant type or organ may not

be appropriate for another. To address this, Huang et al. [205] developed a multi-

level region-growing segmentation to find a suitable adaptive segmentation scale

for different input data. They applied the proposed method to perform individual

leaf segmentation of two leaf shape models with different levels of occlusion. They

compared their proposed method with two widely used segmentation methods (Eu-

clidean clustering and facet region-growing methods) and showed that the proposed

method has the highest measurement accuracy.

Golbach et al. [101] performed a segmentation of stem and leaves on a voxel

representation of tomato seedlings. They used a breadth-first flood-fill like algorithm

whereby the structure is iteratively traversed along neighboring voxels starting from

the lowest point in the voxel representation. As the algorithm traverses the main

stem all added points are located closely together, but at the point of the first side

branches newly added voxels are located further apart. If this distance exceeds a

certain threshold, the iteration can be treated as the end of the stem. Leaf tips were

detected as the last voxel additions after the flood-fill algorithm progressed past the

end-point of the main stem. This approach is illustrated in Figure 8.

Klodt and Cremers [103] segmented their volumetric 3D models of barley into two

regions based on the eigenvalues of the second moment tensors of the surface. These

provide information on the gradient directions of the shape, and allow to discrim-

inate between long, flat, or structures with no dominant direction. This approach

resulted in a discrimination between the distal parts of leaves and the rest of the

plant. The obtained segmentation then allowed for automated leaf quantification,

by counting the number of connected components corresponding to the distal parts

of the leaves.

The last two examples of segmentation algorithms [101, 103] are highly customized

towards particular plant morphologies. The former makes use of the opposite posi-

tion of the cotyledons of young dicot seedlings, while the latter depends on plants

with a rosette-like arrangement of narrow leaves. The advantage of such highly cus-

tomized algorithms is that they can be better tailored towards efficiency for use in

high-throughput applications.

Choudhury et al. [99] used a technique called voxel overlapping consistency check

with point cloud clustering techniques to divide the 3D plant voxel-grid of maize
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and cotton plants into three components based on the structure of the plants: stem,

leaves and top leaf cluster to compute component phenotypes.

On polygon meshes, there are two common approaches for segmentation: the

fitting of shape primitives such as planes, spheres and cylinders [206]; and region-

growing from seed points on the mesh surface, constrained by changes in curvature

which correspond to sharp edges [207, 208].

Paproki et al. [164] applied a hybrid segmentation pipeline based on both ap-

proaches. First they obtained a coarse segmentation of meshes of cotton plants into

different leaves and the main stem using constrained region-growing. After that,

more refined segmentation of the main stem region into internodes, and petioles

branching off from the main stem, was performed using cylinder fitting.

Nguyen et al. [209] were mainly interested in segmentation into individual leaves

and the stem, and applied region-growing constrained by curvature from seed points

which were determined to belong to large flat regions based on pre-computed cur-

vature values. They did this on a plastic model of a dicotyl plant, and their method

allowed them to measure length, width, perimeter, and surface area of all the leaves.

4.2.5 Clustering-based methods

Clustering-based techniques segment the image into clusters consisting of pixels

with similar characteristics [210, 211]. The most used techniques in this category in

the plant phenotyping domain are discussed below.

Topological and Morphological feature-based: Miao et al. [212] presented an auto-

matic stem-leaf segmentation method for maize plants, which was able to extract the

skeleton of a point cloud directly, and uses topological and morphological features to

identify the number and category of organs. They generated a coarse segmentation

based on the plant skeleton and used this result to classify the points into stem-leaf

clusters. They showed that their method achieved a high segmentation accuracy.

Mean Shift: Mean shift clustering was originally introduced by Fukunaga and

Hostetler [213] and revisited after 20 years by Cheng [214]. This algorithm has

been widely applied in image segmentation and object tracking [215, 216] and con-

sists of an iterative procedure that shifts each data point to the average of data

points in its neighborhood by using kernel density estimation [109]. Xia et al. [109]
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applied the mean shift algorithm to segment plant leaves and background objects in

a depth image. Since depth data represent the coordinates of objects in 3D space,

plant leaves and background objects could be separated in terms of discontinuity

in depth.

Spectral clustering (Graph-based): Spectral clustering goes back to Donath and

Hoffman [217] and is a set of clustering techniques that takes connectivity be-

tween points in an undirected graph into account. Its main advantage is that it

is straightforward to implement and can be solved efficiently by standard linear

algebra methods [218]. Points are projected into a lower-dimensional embedding

which maintains distances between connected points as much as possible. Next, a

standard clustering technique is usually applied on this lower-dimensional embed-

ding. When applying the spectral dimension reduction on a graph of a branching

structure, such as a plant, this same branching should be recognisable in the lower-

dimensional embedding, while other morphological features will be suppressed. A

exhaustive introduction to spectral clustering can be found in the tutorial of von

Luxburg [218].

Hétroy-Wheeler et al. [174] and Boltcheva et al. [219] made use of this property to

segment point clouds of poplar seedlings into individual leaves and their stems. They

identified segments in the branching structure of the lower dimensional embedding,

which correspond to the plant parts in the original point cloud of the tree seedling

(Figure 9).

Zermas et al. [82] applied an algorithm named Randomly Intercepted Nodes

(RAIN) to segment the maize plant. Based on this algorithm, a rain drop that

falls on any part of the plant has to glide on top of the plant’s surface before it

reaches the ground and can only take two possible routes: fall over the edge of a

leaf, or follow the stem closely until it reaches the plant base. By simulating and

analysing the trajectories of hundreds of randomly placed rain drops, they were able

to perform plant segmentation and extract other phenotypical characteristics. The

selection of each next point was based on a few simple rules affected by gravity.

Since most of the random drops encountered at a given moment an already visited

point, at which time their route was prematurely ended, the number of points that

were considered as potential path candidates was severely reduced. Like other algo-
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rithms, this algorithm has limitations as well. In dense canopies, for example, drops

that visit a tall plant overshadowing a smaller plant may miss the smaller plant

partially or completely.

Lou et al. [9, 220] proposed a spectral method for 3D mesh segmentation of

CAD models. They showed that their method is applicable to diverse plants with

varied structure, size and shape, and they applied their method on plants including

thale cress, Brassica sp., oat, maize, Physalis sp. and wheat. However, this method

cannot always generate meaningful and accurate segmentation results for plants

with curved leaves, or with tiny side-branches at the top of the plant, or at junction

points in the plant skeleton.

Saliency features (Surface-based clustering): The ordered eigenvalues resulting

from eigendecomposition (λ0 ≤ λ1 ≤ λ2) can be used directly as features for cluster-

ing or classification, because the relative size of the eigenvalues provides information

about the shape of the local distribution of points: if points are scattered with no

preferred direction, λ0 ' λ1 ' λ2; if points are distributed along one axis, as would

be the case for stems, λ2 � λ0, λ1; and in the case of a planar surface, as for leaves,

λ1, λ2 � λ0. Therefore linear combinations of the eigenvalues, called the saliency

features, could be used as features: scatter-ness (λ0), linear-ness (λ2 − λ1), and

surface-ness (λ1 − λ0).

These features can also be expressed as curvature and directionality, defined as

λ0/(λ0+λ1+λ2) and λ2/(λ0+λ1+λ2), respectively. Points belonging to flat regions

such as leaves will have a low curvature in their neighborhood, while linear features

have a high directionality.

Dey et al. [221] used saliency features and color to segment point clouds of

grapevines obtained through SfM [222] into branches, leaves and fruit. They calcu-

lated saliency features at 3 spatial scales and concatenated color in RGB to obtain a

12-dimensional feature vector for classification. Moriondo et al. [223] also used SfM

to obtain point clouds of the canopy of young olive trees. They used saliency at one

spatial scale and color features to segment the point clouds into stems and leaves

using a Random Forest classifier. Li et al. [48] used curvature to discriminate be-

tween flat leaves and linear stems. They achieved a spatially coherent unsupervised

binary classification via Markov Random Fields.
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Point Feature Histograms: Local features such as as surface normals or eigen-

values use only a few values in the neigborhood of a point. Point Feature His-

tograms (PFH) [224], and its more efficient variant Fast Point Feature Histograms

(FPFH) [225], can be used for a more complete description of the neighborhood of

a point. They are based on the angular relationships between pairs of points and

their normals, within a radius r around each query point. These values, usually 4

angular features, are then binned into a histogram, and the histogram bins can be

used as features in a clustering or classification algorithm. Figure 10 illustrates the

difference in the PFHs between point clouds with different surface properties, such

as of a laser scanned grapevine leaf and grapevine stem.

Because of their higher information richness, PFH depend on relatively precise and

accurate representations of the plant organ surfaces and shapes, which usually will

be obtained by active 3D acquisition techniques such as laser scanning. They have

been used as features of high-precision point cloud representations of grapevine,

wheat, and barley obtained by laser scanning [30, 35, 226]. Sodhi et al. [227], how-

ever, used less precise point clouds of sorghum plants obtained by multi-view stereo

imaging, and could still obtain robust segmentations of leaves and stems because

the shapes of plant organs in sorghum are relatively easily differentiated.

4.3 Segmentation post-processing

A common post-processing step to improve the spatial consistency of class labels is

to apply a fully connected pairwise Conditional Random Field (CRF) [228], which

takes the spatial context into account and which can greatly improve segmentation

results.

Dey et al. [221] and Sodhi et al. [227] applied such a CRF as post-processing

of segmentations based on saliency features and PFH for grapevine and sorghum

plants, respectively. The effect of such post-processing is illustrated in Figure 11.

4.4 Surface Reconstruction

In point clouds, surface reconstruction can be an aid for segmentation, or can serve

as a preliminary step before the final measurement of individual plant organs.

Once the point cloud has been segmented, reconstruction of the points on the plant

organ surface and the edges can be tackled in different ways, via surface fitting and

edge fitting, respectively. Surface fitting can be done by fitting geometric primitives
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such as cylinders and planes, or flexible surfaces such as non-uniform rational B-

splines (NURBS). Although surface fitting can generate a smooth surface, it can

also result in serrated lines for the edges. Constructing the edges needs the edge

points to be detected and then fitted separately by using, for example, 3D splines,

which offer a degree of smoothness. As surface edges are typically noisy, detecting

the constituent points of the edge directly can be difficult [229].

4.4.1 Local regression techniques

Least squares methods are a classic tool for surface fitting [230, 231]. However,

applying least squares directly can generate a overly smooth surface that loses

certain local details of the surface, like leaf structures. Hence, applying a method

that uses local information may be more suitable for reconstructing the surface

and capturing local details [229]. MLS (see also Section 3.1.3) is widely used for

generating a surface for data points [232], and constructs and evaluates a local

polynomial continuously over the entire domain instead of constructing a global

approximation. This method can thus be viewed as a local regression method.

Zhu et al. [229] used another local regression method called Locally Estimated

Scatterplot Smoothing (LOESS) which can reconstruct a continuous surface even

with the presence of the discontinuity of leaf points and is similar to MLS. They used

this method for maize plants and compared it with Poisson and B-spline methods,

showing that this method can generate smoother leaf surfaces with smaller normal

variances.

4.4.2 Triangulated mesh generation techniques

Triangulation for plant structures is challenging due to the presence of thin

branches. Delaunay triangulation is typically used for modeling a surface but does

not generate good results for plant structures [156].

Sampaio et al. used the Advancing Front algorithm [233, 234] based on Delaunay

triangulation but with higher performance in terms of accuracy and quality. They

applied this algorithm in the first phase of surface reconstruction for maize plants.

Chaudhury et al. [156] used the α-shape algorithm for triangulation on barley and

thale cress plants and showed that it worked well when its parameters were properly

tuned. Zhu et al. [229] applied the Delaunay triangulation algorithm [235] after

surface fitting on maize and rice plants to generate a triangular mesh in the xy-
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plane and then computed the corresponding z values through comparison with the

fitted surface. In this way, they were able to generate a 3D triangle mesh from the

fitted surface.

4.4.3 Non-uniform rational B-splines

NURBS [236] are mathematical models for generating and representing smooth

curves and surfaces in computer graphics. A NURBS surface is completely defined

by a list of 3D coordinates of surface control points and associated weights. Fitting

techniques of NURBS surfaces are described in Wang et al. [237]. NURBS surfaces

can then be triangulated and its surface area approximated by summing the areas

of each triangle.

NURBS have been applied for the estimation of the surface area of leaves in the

following works: Santos et al. [83, 238] first segmented their 3D point clouds of soy-

bean obtained by SfM using spectral clustering, and then fitted NURBS surfaces to

the segments corresponding to leaves (Figure 12); Gélard et al. [239, 240] performed

NURBS fitting on segmented leaves of sunflower point clouds obtained by SfM after

the stems had been detected and removed using cylinder fitting; and Chaivivatrakul

et al. [38] fitted NURBS surfaces to point sets corresponding to maize leaves after

these had been mapped onto an underlying surface by MLS.

4.4.4 Cylinder fitting

Often stems of plants can be locally represented as a cylinder. A cylinder fitting pro-

cedure for oak trees based on least-squares fitting is described in Pfeifer et al. [241].

Paulus et al. [30] applied a similar procedure on stems in 3D laser scanned point

clouds of barley. This was done after the segmentation of leaves and stems using

PFH. The fitted cylinders allowed them to accurately estimate stem length. Gélard

et al. [240] found that cylinder fitting didn’t provide satisfactory results when stems

are curved, so they developed an alternative procedure in which they propagated

a ring with neighborhood and normal constraints vertically along the stem of a

sunflower point cloud to model the stem as a curved tube.

4.5 Trait estimation

After the challenging steps of skeletonization, segmentation and/or surface recon-

struction, the measurement of traits on either whole plants, or individual plant
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organs is often relatively straightforward and many different approaches may yield

sufficiently good estimates. Measuring these features is important for a large number

of tasks [242], including quantifying plant biomass and yield [243], understanding

plant response to stressful conditions [196], mapping genotypes and building pre-

dictive structural and functional models of plant growth [244].

4.5.1 Whole plant measurements

Convex hull The convex hull is defined as the shape of an object which is created

by joining its outermost points. The volume of the convex hull of a whole plant

can be an indicator for the size of a plant. In root systems, it may be used as an

indicator of the extent of soil exploration [245]. Calculating the convex hull of a point

cloud requires minimal preprocessing, but provides only a very rough indicator. The

convex hull of tomato plant point clouds has been estimated by Rose et al. [85].

The convex hull was estimated on root systems of two Oryza sativa (rice) genotypes

(Azucena and IR64) by Clark et al. [187], of barley plants by Mairhover et al. [61],

and of Rice (Bala × Azucena) plants by Topp et al. [245].

Height Height in point clouds can be simply defined as the maximal distance

between points belonging to a plant or root system projected on the vertical axis,

such as in Paulus et al. [36] on sugar beet taproots and Nguyen et al. [26] for

cabbage and cucumber seedlings. Height can also be easily derived from top-view

depth images without much processing as the difference between the ground and

the closest pixel in the image, as done by Chéné et al. [110] on rosebushes and Cao

et al. [14] on soybean plants.

More robust measures for plant height may be calculated as, for example, by

Kjaer and Ottosen [32] where points were arranged in percentiles in relation to their

distance from the top-view scanner, and the average of the 80th to 90th percentile

points was treated as a more robust estimate of rapeseed plant height.

Area and volume In the case of point cloud representations, plant area and volume

are usually estimated based on 3D meshes. The surface area of a mesh can easily be

determined by adding up the area of triangular mesh faces determined by Heron’s

formula. The volume of a mesh can be determined by the method described in [246].
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Chaudhury et al. [156] calculated total plant surface and volume from an α-shape

triangulated surface of thale cress plants in this way.

When the plant is represented as a voxel grid or octree, and this representation

is precise enough, the volume can be estimated by summing the volumes of all

the voxels covering the plant, as was done by Scharr et al. [104] on maize and

banana seedlings. However, the authors found that voxel carving methods led to

overestimates of volumes due to missed concavities and occlusions.

The surface area of a voxel grid or octree could be estimated by first deriving a

meshed surface, which can be obtained with the Marching Cubes algorithm [162].

Number of leaves When a segmentation method was able to discriminate between

leaves and stems in point clouds or voxel representations, the number of leaves can

be derived by counting the number of connected components, after converting the

leaf points into a graph in the case of point clouds.

In monocot crops leaves are very elongated and not always easily distinguishable

from stems. However, an accurate segmentation between leaves and stems is not

necessary when the aim is leaf counting. For example, Klodt and Cremers [103]

discriminated between only the distal parts of leaves and the rest of barley plants

by analyzing gradient directions of the 3D shape (Figure 13), which was sufficient to

count leaves. Another strategy for plants with elongated leaves might be to count

leaf tips, which may be represented by the endpoints of a curve skeleton of the

plant.

Petiole length and angle Cao et al. [14] constructed 3D models of soybean plants

based on SfM and measured the petiole length as the length of the longest petiole

at the front view and the petiole angle as the angle between a petiole and the stem

using the CloudCompare software.

4.5.2 Plant organ measurements

Stem or root dimensions Stem and internode lengths can be based on curve skele-

tons or cylinder fits. Paulus et al. [35] derived cumulated stem height from cylinder

fits on the stems of barley plants. Golbach et al. [101] used the skeleton of the voxels

representing the stem of tomato seedlings.
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Using the graph of a skeleton, the lengths of internodes can be estimated by

measuring the geodesic distance between branch points using Dijkstra’s algorithm.

This was demonstrated by Balfer et al. [247] on a berryless grape cluster which was

skeletonized by the method of Livny et al. [177].

Stem or root widths are often estimated by cylinder fitting. For example, Sodhi

et al. [227, 248] fitted primitive cylinder shapes to the segmented stem point cloud

of maize plants to extract the stem diameter (Figure 14).

Leaf dimensions Two of the most important architectural traits are leaf angle and

leaf area index that have influence on light interception and canopy photosynthe-

sis [130, 249, 250].

The most natural representation for the estimation of leaf dimensions is a mesh

surface. Leaf area is then easily estimated as the sum of the area of triangular mesh

faces as was done by Sodhi et al. for sorghum [227], by Gélard et al. for sunflow-

ers [239, 240] and by Chaivivatrakul et al. for maize [38]. Leaf base point is defined

as the closest point to the stem point clouds [130]. Leaf length and width can be

calculated by determining the longest geodesic shortest path on the mesh expressed

as a graph, by applying Dijkstra’s algorithm [171]. Liu et al. [130] implemented a

three-step procedure to find the leaf tip point of maize plants and then defined the

leaf length as the distance of the shortest path between the leaf base and the leaf

tip. Sodhi et al. [227, 248] estimated leaf width of sorghum plants by determining an

oriented bounding box around a leaf point set, whose sides are directed towards the

principal axes of the point set. The leaf width is then the second longest dimension

of the bounding box (Figure 14).

Golbach et al. [101] instead derived the leaf dimensions of tomato plant seedlings

directly from a voxel representation to minimize computing time. After segmen-

tation they determined leaf length as the distance between the two points on the

surface of the leaf which are furthest away from each other. To correct for the curved

shape of the leaves, they added an additional point on the leaf surface halfway be-

tween these points. For the leaf width, they searched for the maximum leaf width

perpendicular to the three point leaf midrib which was used for the leaf length. For

leaf area they used an approximation based on the number of surface voxels. The
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authors choose rather crude measurements and may have sacrificed some precision

in favour of speed.

Duan et al. [169] based their measurements of leaf lengths and widths of wheat

seedlings on polynomial regression fits through segmented leaf point clouds. They

identified leaf edges according to the 90th percentile on either side of the leaf midrib

using quantile regression, to account for the presence of noise.

Ear or fruit volumes Plant yields may be approximated by the estimated volumes

of plant ears or fruits. For example, after segmentation based on PFH, Paulus et al.

[35] found that ear weight, kernel weight and number of kernels in wheat plants was

correlated with their estimates of ear volume, which they obtained by estimating

α-shape volumes on the point sets corresponding to the ears.

4.5.3 Canopy level measurements

When 3D acquisition methods don’t provide sufficient detail to allow for measure-

ment of individual plant organs, such as when applied on larger scales in the field,

useful information can still be extracted on the level of crop or tree canopies. Exam-

ples of such traits are canopy surface height, vertical plant area density distribution,

leaf area index, or leaf angle distribution.

Cao et al. [14] measured the canopy width of soybean plants as the maximum

plant canopy width from the projection on the front view of 3D points clouds.

Canopy profiling LiDAR has a certain capacity to penetrate canopies, so that in

LiDAR the frequency of laser interception by a canopy can be used as an index

of foliage area at each height. This canopy profiling by airborne LiDAR has been

deployed mostly in the context of ecological studies on forest stands [251, 252].

However, Hosoi and Omasa [253] used a high-resolution portable scanning LiDAR

together with a mirror for vertical plant area density profiling of a rice canopy at

different growth stages. Their method for the estimation of leaf area density is based

on a voxel model, and is described in [254]. The leaf area index can then be derived

from the vertical integration of leaf area density values.

Cabrera et al. [255] instead used 3D voxel grid representations of individual maize

plants to study light interception of maize plant communities, by creating virtual

canopies of maize. In the virtual canopy, the cumulative leaf area and the average
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leaf angles were determined based on the 3D representations of individual plants.

These measures were combined with a model of incident light in the greenhouse, so

that the local light interception by the canopy could be estimated.

Leaf angle distribution 3D image acquisition methods provide the opportunity to

study temporal patterns in the orientation of leaves, which is a highly dynamic

trait that changes in response to fluctuations in the environment. Biskup et al. [77]

presented a method based on top-view stereo imaging. Their depth images were

subjected to a graph-based segmentation algorithm [256] to obtain a rough seg-

mentation of individual leaves of soybean plants, after which planes were fitted to

each segment using RANSAC to determine leaf inclination angles. Müller-Linow et

al. [108] presented a software tool to analyze leaf angles in crop canopies based on

the same set of methods.

5 Machine learning techniques for plant phenotyping

Machine Learning (ML) is the scientific study of algorithms and statistical models

used by a computer system to perform a specific task without explicit instructions,

but relying only on patterns and inference. With sensors and acquisition systems for

plant phenotyping widely available and used to generate large amounts of imaging

data, the main challenge lies in translating the high-dimensional raw imaging data

into the quantification of relevant plant traits. In the past, this was done through

manually engineered image processing methods, as discussed in the previous sec-

tions, but to deal with the difficulties of complex plants, non-controlled, or cluttered

environments, ML is gaining in popularity. Classical approaches in computer vision

consist in general of two major steps, feature extraction using those manually en-

gineered image processing methods and decision making using ML methods, while

modern Deep Learning (DL) approaches take an integrated, end-to-end approach,

in which features are learned at the same time as the inference is performed. More-

over, DL models are often more complex than classical ML models, resulting in

much greater discriminative and predictive power [257], with spectacular results in

different application areas [258, 259].

Machine learning for plant phenotyping, and deep learning in particular, is an

actively developing field. To the best of our knowledge, most of the ML methods

have been used in plant segmentation, though ML is starting to find applications
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outside of plant segmentation as well, for example in denoising or registering the

plant point cloud [34, 186]. Indeed, we believe that ML is expected to impact all

aspects of plant phenotyping, leading to significant improvements in the current

state-of-the-art in the coming years. For example, new DL architectures could be

developed and adopted for 3D and multi-modal data processing like skeleton ex-

traction, branch-pattern classification and plant-development understanding [260].

Furthermore, ML algorithms can be used to analyse the data from high-throughput

phenotyping experiments, and may alleviate the problem of missing data, leading to

the identification of new correlations and plant traits that were previously difficult

to detect.

A full list of papers and plants using these techniques can be found in Table 3,

under the header “Machine Learning Techniques”. Moreover, an overview of the

topics covered in this section is presented in Figure 15.

5.1 Classical ML methods

In this section, we review some classical machine learning algorithms that are used

for plant segmentation. Compared to DL methods, these techniques can often be

used efficiently on relatively small datasets, and have a less complex structure, but

they are usually less accurate [261].

5.1.1 K-Nearest Neighbors

The KNN algorithm is an ML classifier which uses the concept of proximity to make

predictions about the grouping of individual data points, working off the assumption

that similar points can be found near one another. The KNN algorithm can also

be used for clustering, with applications for denoising and downsampling in plant

phenotyping.

Wu et al. [186] proposed a clustering algorithm based on an implementation of the

KNN algorithm by Connor and Kumar [262] to denoise point cloud data for maize

plants. Along similar lines, Chebrolu et al. [34] and Magistri et al. [161] used KNN

clustering to refine the initial segmentation of tomato and maize plants by discarding

small clusters and assigning each discarded point to one of the remaining clusters.

Gibbs et al. [81] implemented an efficient KNN algorithm for the downsampling of

plant shoot point clouds, and applied their method to different plants (bromeliad

species, aloe vera, cordyline species, Brassica sp., chili, and pumpkin).
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5.1.2 Random Forest Classifier

The random forest classifier (RFC), first proposed by Breiman [263], is an ensem-

ble learning method in which a multitude of decision trees are constructed during

training time, and predictions from the individual trees are pooled for inference.

Straub et al. [135] used two applications of the RFC algorithm to build a tree

model for meadow orchard trees. First, the point cloud is separated into two classes,

“ground” and “tree”, and secondly the “tree” class is further processed to filter out

noise caused by the fine structure of the tree branches, which were photographed

against the sky and differed strongly in their color values from the real branch

points.

Dutagaci et al. [264] used a volumetric approach, where an RFC was trained on

local features derived from the eigenvalues of the local covariance matrix (intuitively

speaking, these local features serve to discriminate leaf and stem points by distin-

guishing flat structures from elongated, thin structures). They applied their method

on rosebush plants, and showed that this voxel classification method through local

features gave the best overall performance for leaf and stem classification among

four baseline methods they had defined.

5.1.3 Support Vector Machines

Support vector machines (SVMs) are a commonly used choice for binary classifica-

tion problems and can perform nonlinear classification through the use of kernels.

Sodhi et al. [227] used an SVM classifier to classify each point of a 3D point cloud

of maize plants as either belonging to the stem or to a leaf. Chebrolu et al. [34] and

Magistri et al. [161] used a standard SVM classifier with FPFH features to perform

a segmentation step aiming at grouping together points belonging to the same plant

organ, a single leaf instance, or the stem.

Zhou et al. [84] evaluated the performance of two SVMs (with different polynomial

kernels) and two other machine learning methods (boosting and k-means clustering)

for the segmentation of soybean plants at early growth stages using 3D point cloud

data built from 2D images. They found that the SVM with a linear kernel (applied to

histogram of oriented gradients (HOG) features) outperformed the SVM with a 2nd-

order polynomial kernel in distinguishing between plant features and background. In

case of overlapping plants separation, they showed that the SVM with a linear kernel
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had the smallest error rate, while for background removal and non-overlapping

plants separation, k-means clustering performed best. They also showed that k-

means clustering outperformed two other methods (the SVM with linear kernel and

boosting) in the aspect of processing efficiency and segmentation accuracy.

5.1.4 Self-Organizing Maps

Self-organizing maps (SOMs) are unsupervised neural networks developed by Koho-

nen [265] using the concept of competitive learning instead of back-propagation [34].

SOMs map multi-dimensional data onto lower-dimensional subspaces where geomet-

ric relationships between points indicate their similarity.

Chebrolu et al. [34] and Magistri et al. [161] assigned each point in the point cloud

to a plant organ (stem or leaf) and then applied SOMs to learn the nodes of the

skeleton structure for each plant organ, after which these nodes were used to build

the plant skeleton structure of maize and tomato plants.

5.1.5 Hidden Markov Models

Hidden Markov models (HMMs) are probabilistic models in which an unobserv-

able (“hidden”) Markov process influences an observable process [266]. HMMs have

been used in plant phenotyping to determine correspondences between time-series

data of tomato and maize plants by Chebrolu et al. [34] (cf. Section 3.5). Because

of their probabilistic nature, HMMs are well suited for cases where the observed

measurements suffer from noise and other imperfections.

5.2 Deep learning methods

Image segmentation can be categorized into semantic segmentation and instance

segmentation. The goal of semantic image segmentation is to label each pixel of an

image with a corresponding class of what is being represented. Instance segmenta-

tion is considered the next step after semantic segmentation and its main purpose

is to represent objects of the same class split into different instances.

Many DL approaches have been developed for the segmentation of 2D images [267–

274]. However, most DL methods for segmentation are a priori only applicable to

images defined on a regular grid-like structure (so that, for example, convolutions

can be applied for feature extraction [160]) and are not well-suited for unstructured

data such as 3D point clouds or models [268, 275–277].
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Moreover, the problem of performing semantic segmentation directly on 3D data

is challenging due to the limited availability of 3D datasets with segmentation anno-

tations. Semantic segmentation techniques for 3D point clouds are further divided

into two groups: projection-based methods and point-based methods [277], which

are discussed below.

5.2.1 Projection-based methods

Projection-based techniques first project the 3D point cloud onto an intermediary

2D representation that can be segmented using 2D networks, and then construct

a segmentation for the full 3D point cloud out of these intermediary segmentation

results. The advantage is that established 2D segmentation networks can be used,

but due to the intermediate representation, some loss of spatial and geometrical

information is inevitable [277–280].

According to the type of intermediary representation, several categories of

projection-based methods can be distinguished; in this paper we discuss the multi-

view, volumetric, and lattice representation. Another representation, the spherical

representation (see, e.g., [281]) retains more geometrical and spatial information

than for example the multi-view representation, but as it currently has no applica-

tions in plant phenotyping as far as we know, it is not discussed in this paper.

Multi-view representation These methods project the 3D shape or point cloud onto

multiple 2D images or views, and then extract feature from the 2D data by using

existing models. Two of most popular networks in this category are MVCNN [282]

which analyses the data from multiple perspectives using convolutional neural net-

works (CNN), and SnapNet [283], which uses snapshots of the point cloud to gen-

erate RGB and depth images to work around the problem of information loss.

Determining the number of projections to use, the viewing angle for each projec-

tion, and the way to re-project the segmented models from 2D to 3D space, are the

main difficulties associated with this class of techniques [276, 284].

Shi et al. [2] applied a multi-view approach and used a slightly modified version

of VGG-16 [285], a fully convolutional network (FCN [286]), for semantic segmen-

tation, and a Mask Recurrent Convolutional Neural Network (R-CNN [287]) for

instance segmentation on 2D images of tomato seedling plants and then combined

the 2D segmentation results in a 3D point cloud. They applied this segmentation
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method on 2D data as well and showed that this multi-view 3D approach outper-

forms the 2D approach both for semantic and instance segmentation.

Volumetric representation These methods transform the unstructured 3D point

cloud into a regular spatial grid (voxelisation), and then train a neural network on

this grid to perform the segmentation. Some popular architectures in this group,

which are currently not yet used for plant phenotyping, are VoxNet [288], Oct-

Net [289], and SEGCloud [290]. Volumetric techniques produce reasonable results

on small point clouds, but are memory-intensive and hence may struggle on complex

datasets.

Dutagaci et al. [264] compared segmentation results for rosebush plants obtained

using the 3D U-Net [291] architecture with three other methods for segmentation,

namely Local Features on Volumetric Data (LFVD) and a supervised and unsuper-

vised version of Local Features on Point Clouds (LFPC). They found that the 3D

U-Net gave the lowest performance whereas the combination of the LFVD feature

extraction method with an RFC obtained the best performance for segmentation.

Lattice representation This representation converts a point cloud into sparse, dis-

crete elements (lattices). The sparsity of the extracted features is adjustable and

these methods typically have lower memory and computational requirements than

simple voxelisation. SPLATNet [292], LatticeNet [293], and MinkowskiNet [294] fall

in this category.

Schunck et al. [160] used three different DL architectures for the semantic segmen-

tation of the raw point cloud into leaf, stem and ground: PointNet, PointNet++,

and LatticeNet [293, 295]. LatticeNet applies convolutions on a permutohedral lat-

tice while the PointNet-based methods (See Section 5.2.2) rely on pooling point

features to obtain their internal representation. The authors trained these networks

for tomato and maize separately, using 5 plants for training and 2 plants for test-

ing. All three methods achieved high intersection over union (IoU) in the leaf and

ground class. The PointNet-based methods struggled with the stem class because it

contained relatively few points while LatticeNet achieved good results for all classes.
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5.2.2 Point-based methods

Point-based methods work directly on point clouds without introducing any inter-

mediate representation. Hence, they are able to use the full set of raw point cloud

data, with all of its geometrical and spatial features. These methods are widely used

and the subject of active development, and can be roughly divided into five cate-

gories: pointwise methods, convolution methods, recurrent neural network (RNN)-

based methods, recursive neural network (RvNN)-based methods, and graph-based

methods.

Graph-based methods make use of the graph structure of the point cloud, of-

ten applying a DGCNN network [296, 297] as the underlying architecture. Since

graph-based methods have to the best of our knowledge no applications in plant

phenotyping at the moment, they are not discussed in this paper.

Pointwise methods PointNet, introduced by Qi et al. [298], is a pioneering effort

in this regard and provides a unified approach to a number of 3D recognition tasks

including object classification and segmentation. However, this method has trouble

capturing local structures, limiting its ability to recognize fine-grained patterns and

to generalize to complex scenes.

Li et al. [299] built an automated organ-level point cloud segmentation system for

maize plants, using Label3DMaize [203] to label data from a high-throughput data

acquisition platform for individual plants, and PointNet to implement stem-leaf and

organ instance segmentation.

Later, Qi et al. [300] introduced PointNet++ which is a hierarchical neural net-

work that applies PointNet recursively on a nested partitioning of the input point

set. While PointNet used a single max-pooling operation to aggregate the entire

point set, their new architecture builds a hierarchical grouping of points into pro-

gressively larger and larger local regions along the hierarchy.

Heiwolt et al. [301] applied the PointNet++ architecture, adjusted for point-wise

segmentation applications, on tomato plants and showed that this network was able

to successfully predict per-point semantic annotations for soil, leaves, and stems

directly from point cloud data.

To better incorporate local geometric structures, the last years have seen a num-

ber of improvements upon the Pointnet architecture, including PointSIFT [302],



Harandi et al. Page 44 of 92

SGPN [303], DGCNN [296], LDGCNN [304], SRN-PointNet++ [305], ASIS [306],

PointGCR [307], and PointNGCNN [308]. To the best of our knowledge, these im-

proved methods have yet to be applied to plant phenotyping.

Convolution methods As point clouds consist of irregularly spaced, unordered

points, convolution operators designed for regular, grid-based data cannot be ap-

plied directly.

To address this issue, Li et al. [309] introduced PointCNN which generalizes the

design of a CNN to be applicable to point clouds. Ao et al. [310] applied PointCNN

on morphological characteristics of the maize plant to segment stem and leaves of

the individual maize plants in field environments. They showed that their approach

overcomes the major challenges in organ-level phenotypic trait extraction associated

with the organ segmentation.

Wu et al. [275] proposed PointConv, extending traditional image convolution to

3D point cloud data with non-uniform sampling. They found that PointConv out-

performs networks like PointNet and PointNet++ on several widely used datasets

in terms of accuracy and IoU.

Gong et al. [311] developed Panicle-3D, which has higher segmentation accuracy

and faster network convergence speed than PointConv, and applied the proposed

network on point clouds from rice panicles. A drawback of the method is that it

requires large volumes of labelled data to train the network.

Chen et al. [312] developed the DeeplabV3+ network for semantic segmenta-

tion, using the convolutional neural network (CNN) structure of the DeeplabV3

network [272] as a starting point and adding a decoder module for refining the

segmentation results, especially along object boundaries. Chen et al. [90] used this

network to segment banana central stocks.

As an alternative convolution method, we also mention the work of Jin et al. [313],

who proposed a voxel-based CNN (VCNN) to do semantic segmentation and leaf

instance segmentation on the collected LiDAR point clouds of 3000 maize plants.

Despite these ongoing efforts, three main challenges still exist: (a) the lack of well-

labelled 3D plant datasets, (b) achieving highly accurate point-level organ semantic

and instance segmentation, and (c) the generalization of the proposed method to
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other plant species (since most DL approaches are currently focused on a single

species at a time).

To address the third challenge, Li et al. [276] proposed a dual-function point

cloud segmentation network named PlantNet, the first architecture to be able to

work on several plant species, and applied their method on tobacco, tomato, and

sorghum plants. They also provided a well-labelled point cloud dataset for plant

stem-leaf semantic segmentation and leaf instance segmentation containing 5460

LiDAR-scanned crops (including 1050 labelled tobacco plants, 3120 tomato plants,

and 1290 sorghum plants).

RNN-based methods These techniques have recently been used for segmentation

because they are able to capture inherent context features and enhance the con-

nection between local features of the point cloud. They first transform a block of

points into multi-scale blocks or grid blocks, after which features are extracted by

using PointNet. These features are then fed into recurrent consolidation units to

obtain the output-level context. One of the most popular networks in this category

is 3DCNN-DQN-RNN [314].

Bernotas et al. [17] used two different neural network architectures, an RNN and

an R-CNN. The R-CNN was pre-trained using transfer learning weights generated

on the Common Objects in Context (COCO) data set and both networks were

trained starting with random initial weights. Comparing both approaches on thale

cress rosettes, the most accurate leaf segmentation results were achieved with models

based on the R-CNN architecture using pre-trained weights.

RvNN-based methods These networks, developed by Socher et al. [315], can achieve

predictions in a hierarchical structure. In this category, PartNet, presented by Yu et

al. [316], is a DL model for top-down hierarchical, fine-grained segmentation of 3D

shapes. This network takes a 3D point cloud as input and then performs a top-down

decomposition and outputs a segmented point cloud at the level of part instances.

Wang et al. [44] applied PartNet for instance segmentation on their 3D plant

dataset of lettuce consisting of a mixture of real and synthetic data. They showed

that the constructed PartNet network had the potential to accurately segment the

3D point cloud leaf instances of lettuce.
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6 Perspectives

As this paper has shown, there exists an abundance of automated solutions for 3D

phenotyping. It remains a challenge, however, to find a low-cost, high-throughput

3D reconstruction method that can handle different types of plants and plant traits,

especially considering difficulties such as occlusion. All 3D measuring methods have

in common that with increasing plant age, the complexity and thus the amount of

occlusion increases. Even though this problem can be addressed in part by using

more viewpoints, occlusion will always be present, independent of the type of sen-

sor, the number of viewpoints or the sensor setup, as the inner center of the plant

will at a specific moment in time be occluded by the plant (leaves) itself. Although

some solutions exist that use volumetry, such as using MRI or radar systems, a

more complex and expensive measuring setup should be taken into account [18].

Furthermore, many methods and solutions can be applied on individual plants but

not on dense canopies. SfM, for example, obtains good results for the 3D recon-

struction of plants (and is additionally one of the most cost-effective methods), but

it is not suitable for very dense canopies [317].

Performing a reconstruction of real scenes in 3D phenotyping as a function of

time is a challenging but important task, since it will allow for dynamic traits to be

considered, such as growth rates which could provide information about the growth

behavior of plants throughout their different growth stages. The detection of such

variations in growth rates might permit the identification of genes controlling plant

growth patterns or the selection of plant genotypes with strong resistance for high

production or harvesting strategies [43].

Registering plants over the course of time is challenging due to the anisotropic

growth, changing topology, and non-rigid motion in between the time of measure-

ments. For the registration problem, correspondences between point clouds of plants,

taken at different points in time, should be determined and then should be regis-

tered using a non-rigid registration approach. Regarding our previous discussion

about registration (see Section 3.5), point cloud registration for non-rigid plants is

itself a challenging problem especially when some correspondences are missed and

still is an open area of research. Focusing on detecting key correspondences can be

considered as a solution to overcome this problem.
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One area in which much progress can be foreseen for 3D phenotyping, and espe-

cially for the task of segmenting 3D representations of plants, is the application of

machine learning algorithms (see Section 5). As discussed, most of the ML meth-

ods have been used in plant segmentation, and finding applications outside of plant

segmentation or adapting these ML methods to cover different areas in the plant do-

main can be an area of research in the future, for example in denoising or registering

the plant point cloud [34, 186].

Deep learning presents many opportunities for image-based plant phenotyping,

but these techniques typically require large and diverse amounts of ground-truthed

training data to learn generalizable models without providing a priori an engineered

algorithm for performing the task. In most vision-based tasks where deep learning

shows a significant advantage over engineered methods, such as image segmenta-

tion, classification, and detection and localization of specific objects in a scene, the

size of the dataset is typically in the order of tens of thousands to tens of millions

of images. This requirement is challenging, however, for applications in the plant

phenotyping field, where available datasets are often small and the costs associated

with generating new data are high [1]. Furthermore, the manual segmentation of

plant images is a cumbersome, time-consuming, and error-prone process. To allevi-

ate this problem, Ubbens et al. [1] proposed a new method for augmenting plant

phenotyping datasets using rendered images of synthetic plants, while Chaudhury

et al. [318] proposed a generalized approach to generate annotated 3D point cloud

data of a thale cress plant using some artificial plant models.

So far several comprehensive collections of benchmark datasets for plant pheno-

typing with annotations have been made publicly available: the dataset of Khanna

et al. [319] containing biweekly color images, infra-red stereo image pairs, and hy-

perspectral camera images of sugar beet plants along with applied treatment and

weather conditions of the surroundings, collected over two months; the ROSE-X

dataset of Dutagaci et al. [264] including 11 fully annotated 3D models of real rose-

bush plants obtained through X-Ray imaging; the Pheno4D dataset of Schunck et

al. [160] containing highly accurate and registered point clouds of 7 maize and 7

tomato plants collected on different days (approximately 260 million 3D points); the

multi-modality dataset MSU-PID of Cruz et al. [320] containing segmented top-view

RGB images of growing thale cress and bean plants; the CVPPP leaf segmentation
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dataset of Minervini et al. [196] containing segmented top-view images of growing

thale cress and tobacco plants; the KOMATSUNA dataset of Uchiyama et al. [195]

containing segmented top-view RGB images of spinach (Komatsuna) plants; and

the Annotated Crop Image Database of Pound et al. [257] containing images and

annotations of wheat spikes and spikelets. Among them, the three datasets of MSU-

PID, CVPPP, and KOMATSUNA consist of raw and annotated 2D color images of

rosette plants taken from above. The analysis of these images involves segmenting

individual and overlapping leaves, for which neural networks have had the greatest

success [321–326].

As more benchmark datasets for 2D and 3D plant phenotyping are being made

available, the application of neural networks is expected to achieve a similar level

of success as in other areas.

Fully automated 3D segmentation approaches for plant point cloud which could

cope with a wide range of different shaped plants are a challenging problem, and

also are a bottleneck in achieving big data processing of 3D plant phenotyping [299].

Recently, Wei et al. [327] presented a novel point cloud segmentation network called

BushNet which is for the semantic segmentation of bush point clouds in large-scale

environments. However, there is no application on plant cases so far.

In this regard, future research trends can focus on the adaptation and customiza-

tion of newly developed ML models for applications in plant phenotyping, and also

on generalizing capabilities of current models to be used on different kinds of plants.

Segmentation is not the only part of the 3D plant phenotyping which can get the

benefit of DL methods. However, DL is currently not frequently used for other

phenotyping steps such as skeletonization and denoising. This, too, could form a

fruitful area for future research, to assist e.g. with alleviating the impact of noise

and missing data.

Last, we foresee that AI-assisted plant phenotyping may have the potential to op-

timize pest control and improve crop yield, through the large-scale analysis of plant

traits and the identification of signs of biotic and abiotic stresses, such as pest dam-

age, drought, and high temperatures. This is especially the case as ML methods

have enabled practitioners to move beyond single-plant phenotyping to estimate

plant traits at the canopy or field level, providing a more comprehensive under-
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standing of how stressors impact overall crop health, thus improving agricultural

productivity and sustainability.

7 Conclusion

This review provides a broad but non-exhaustive overview of processing and anal-

ysis methods applied or applicable in 3D plant phenotyping. As shown, the set of

techniques applicable in this field is very diverse, which contributes to the complex-

ity of the task of 3D plant phenotyping. As this is an expanding field, we foresee

that additional methods not mentioned in this review will be explored in the future.
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Abbreviations

µCT Micro Computed Tomography

2D Two-Dimensional

3D Three-Dimensional

CNN Convolutional Neural Network

COCO Common Objects in Context

CPD Coherent Point Drift

CRF Conditional Random Field

CT Computed Tomography

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DL Deep Learning

ERT Electrical Resistance Tomography

FCN Fully Convolutional Network

FPFH Fast Point Feature Histogram

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HOG Histogram of Oriented Gradients

HSV Hue, Saturation, and Value

ICP Iterative Closest Point

IoU Intersection over Union

KNN K-Nearest Neighbors

LFPC Local Features on Point Cloud

LFVD Local Feature on Volumetric Data

LiDAR Light Detection and Ranging

LOESS Locally Estimated Scatterplot Smoothing

ML Machine Learning

MLS Moving Least Squares

MOBB Minimum Oriented Bounding Box

MRI Magnetic Resonance Imaging

MSAC M-estimator Sample Consensus

MVS Multi-View Stereo

NT Neutron Tomography

NURBS Non-Uniform Rational Basis Splines
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PCA Principal Component Analysis

PFH Point Feature Histogram

PMVS Patch-based Multi-View Stereo

PS Photometric Stereo

R-CNN R-Convolutional Neural Network

RAIN Randomly Intercepted Nodes

RANSAC Random Sample Consensus

RBOF Radius-Based Outlier Filter

RFC Random Forest Classifier

RNN Recurrent Neural Network

RvNN Recursive Neural Network

SD Standard Deviation

SfM Structure from Motion

SFS Shape-From-Silhouette

SOM Self-Organizing Maps

SOR Statistical Outlier Removal

SVM Support Vector Machine

TLS Terrestrial Laser Scanner

ToF Time of Flight
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González-Barbosa, E.-A.: Dynamic Measurement of Portos Tomato Seedling Growth Using the Kinect 2.0

Sensor. Agriculture 12(4), 449 (2022). doi:10.3390/agriculture12040449

46. Zhang, M., Xu, S., Huang, Y., Bie, Z., Notaguchi, M., Zhou, J., Wan, X., Wang, Y., Dong, W.:

Non-Destructive Measurement of the Pumpkin Rootstock Root Phenotype Using AZURE KINECT. Plants

11(9), 1144 (2022). doi:10.3390/plants11091144

47. Zhang, K., Chen, H., Wu, H., Zhao, X., Zhou, C.: Point cloud registration method for maize plants based on

conical surface fitting—ICP. Scientific Reports 12(1), 1–15 (2022). doi:10.1038/s41598-022-10921-6

48. Li, Y., Fan, X., Mitra, N.J., Chamovitz, D., Cohen-Or, D., Chen, B.: Analyzing Growing Plants from 4D Point

Cloud Data. ACM Transactions on Graphics 32(6), 157 (2013). doi:10.1145/2508363.2508368

49. Zhang, S.: High-speed 3D shape measurement with structured light methods: A review. Optics and Lasers in

Engineering 106, 119–131 (2018)

50. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical

Engineering 19(1), 191139 (1980)

51. Horn, B.K.: Shape from shading: A method for obtaining the shape of a smooth opaque object from one view

(1970)

52. Geng, J.: Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics 3(2), 128–160

(2011)

53. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric Stereo with General, Unknown Lighting. International

Journal of Computer Vision 72(3), 239–257 (2007)

54. Treuille, A., Hertzmann, A., Seitz, S.M.: Example-Based Stereo with General BRDFs. In: European

http://dx.doi.org/10.1186/1471-2105-14-238
http://dx.doi.org/10.3390/s140203001
http://dx.doi.org/10.1016/j.compag.2014.09.005
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-435
http://dx.doi.org/10.3390/agriculture12040449
http://dx.doi.org/10.3390/plants11091144
http://dx.doi.org/10.1038/s41598-022-10921-6
http://dx.doi.org/10.1145/2508363.2508368


Harandi et al. Page 55 of 92

Conference on Computer Vision, pp. 457–469 (2004). Springer

55. Higo, T., Matsushita, Y., Joshi, N., Ikeuchi, K.: A hand-held photometric stereo camera for 3-D modeling. In:

2009 IEEE 12th International Conference on Computer Vision, pp. 1234–1241 (2009). IEEE

56. Dowd, T., McInturf, S., Li, M., Topp, C.N.: Rated-M for mesocosm: allowing the multimodal analysis of

mature root systems in 3D. Emerging Topics in Life Sciences 5(2), 249 (2021)

57. Jones, D.H., Atkinson, B.S., Ware, A., Sturrock, C.J., Bishopp, A., Wells, D.M.: Preparation, scanning and

analysis of duckweed using x-ray computed microtomography. Frontiers in Plant Science 11, 2140 (2021)
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247. Balfer, J., Schöler, F., Steinhage, V.: Semantic Skeletonization for Structural Plant Analysis. In: Sievänen, R.,

Nikinmaa, E., Godin, C., Lintunen, A., Nygren, P. (eds.) 7th International Conference on

Functional-Structural Plant Models (FSPM2013), Saariselkä, Finland, pp. 42–44 (2013)

248. Sodhi, P.: In-field Plant Phenotyping using Model-free and Model-based methods. PhD thesis, Carnegie

Mellon University Pittsburgh, PA (2017)

249. Anderson, M.C., Denmead, O.: Short Wave Radiation on Inclined Surfaces in Model Plant Communities 1.

Agronomy Journal 61(6), 867–872 (1969)

250. Duncan, W., Loomis, R., Williams, W., Hanau, R., et al.: A model for simulating photosynthesis in plant

communities. Hilgardia 38(4), 181–205 (1967)

251. Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J.: Lidar Remote Sensing for Ecosystem Studies: Lidar,

an emerging remote sensing technology that directly measures the three-dimensional distribution of plant

canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest,

landscape, and global ecologists. Bioscience 52(1), 19–30 (2002).

doi:10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2

252. Omasa, K., Hosoi, F., Konishi, A.: 3D lidar imaging for detecting and understanding plant responses and

canopy structure. Journal of Experimental Botany 58(4), 881–898 (2007)

253. Hosoi, F., Omasa, K.: Estimation of vertical plant area density profiles in a rice canopy at different growth

stages by high-resolution portable scanning lidar with a lightweight mirror. ISPRS Journal of Photogrammetry

and Remote Sensing 74, 11–19 (2012). doi:10.1016/j.isprsjprs.2012.08.001

254. Hosoi, F., Omasa, K.: Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using

High-Resolution Portable Scanning Lidar. IEEE Transactions on Geoscience and Remote Sensing 44(12),

3610–3618 (2006). doi:10.1109/TGRS.2006.881743

255. Cabrera-Bosquet, L., Fournier, C., Brichet, N., Welcker, C., Suard, B., Tardieu, F.: High-throughput

estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a

phenotyping platform. New Phytologist 212(1), 269–281 (2016). doi:10.1111/nph.14027

256. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmentation. International Journal of

Computer Vision 59(2), 167–181 (2004). doi:10.1023/B:VISI.0000022288.19776.77

257. Pound, M.P., Atkinson, J.A., Wells, D.M., Pridmore, T.P., French, A.P.: Deep Learning for Multi-Task Plant

Phenotyping. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, pp. 2055–2063

(2017). doi:10.1109/ICCVW.2017.241. IEEE

258. van Dijk, A.D.J., Kootstra, G., Kruijer, W., de Ridder, D.: Machine learning in plant science and plant

breeding. Iscience, 101890 (2020)

259. Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S.: Machine learning for high-throughput stress

phenotyping in plants. Trends in Plant Science 21(2), 110–124 (2016)

260. Jiang, Y., Li, C.: Convolutional Neural Networks for Image-Based High-Throughput Plant Phenotyping: A

Review. Plant Phenomics 2020 (2020)

261. Seo, H., Badiei Khuzani, M., Vasudevan, V., Huang, C., Ren, H., Xiao, R., Jia, X., Xing, L.: Machine learning

http://dx.doi.org/10.1073/pnas.1304354110
http://dx.doi.org/10.1109/ICIP.2001.958278
http://dx.doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
http://dx.doi.org/10.1016/j.isprsjprs.2012.08.001
http://dx.doi.org/10.1109/TGRS.2006.881743
http://dx.doi.org/10.1111/nph.14027
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77
http://dx.doi.org/10.1109/ICCVW.2017.241


Harandi et al. Page 65 of 92

techniques for biomedical image segmentation: An overview of technical aspects and introduction to

state-of-art applications. Medical Physics 47(5), 148–167 (2020). doi:10.1002/mp.13649

262. Connor, M., Kumar, P.: Fast Construction of k-Nearest Neighbor Graphs for Point Clouds. IEEE Transactions

on Visualization and Computer Graphics 16(4), 599–608 (2010)

263. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

264. Dutagaci, H., Rasti, P., Galopin, G., Rousseau, D.: ROSE-X: an annotated data set for evaluation of 3D plant

organ segmentation methods. Plant Methods 16(1), 1–14 (2020). doi:10.1186/s13007-020-00573-w

265. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990).

doi:10.1109/5.58325

266. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition.

Proceedings of the IEEE 77(2), 257–286 (1989). doi:10.1109/5.18626

267. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A Review on Deep

Learning Techniques Applied to Semantic Segmentation. arXiv preprint arXiv:1704.06857 (2017)

268. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P.,

Garcia-Rodriguez, J.: A survey on deep learning techniques for image and video semantic segmentation.

Applied Soft Computing 70, 41–65 (2018)

269. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing

338, 321–348 (2019)

270. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep Projective 3D Semantic

Segmentation. In: International Conference on Computer Analysis of Images and Patterns, pp. 95–107 (2017).

Springer

271. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic Image Segmentation with Deep

Convolutional Nets and Fully Connected CRFs. arXiv preprint arXiv:1412.7062 (2014).

doi:10.48550/arXiv.1412.7062

272. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic Image Segmentation

with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern

Analysis and Machine Intelligence 40(4), 834–848 (2017). doi:10.1109/TPAMI.2017.2699184

273. Bhagat, S., Kokare, M., Haswani, V., Hambarde, P., Kamble, R.: Eff-UNet++: A novel architecture for plant

leaf segmentation and counting. Ecological Informatics, 101583 (2022). doi:10.1016/j.ecoinf.2022.101583
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http://arxiv.org/abs/1708.07570
http://arxiv.org/abs/1708.02551
http://arxiv.org/abs/1605.09410
http://dx.doi.org/10.3389/fpls.2017.01190
http://dx.doi.org/10.1016/j.compag.2021.106653
http://dx.doi.org/10.3389/fpls.2020.552509
http://dx.doi.org/10.1016/j.biosystemseng.2020.07.004
http://dx.doi.org/10.3390/electronics9091550
http://dx.doi.org/10.1007/s00122-020-03726-6
http://dx.doi.org/10.3390/s20113150


Harandi et al. Page 69 of 92

et al.: Assessing the Performance of RGB-D Sensors for 3D Fruit Crop Canopy Characterization under

Different Operating and Lighting Conditions. Sensors 20(24), 7072 (2020)

342. Hsu, H.-C., Chou, W.-C., Kuo, Y.-F.: 3D revelation of phenotypic variation, evolutionary allometry, and

ancestral states of corolla shape: a case study of clade Corytholoma (subtribe Ligeriinae, family Gesneriaceae).

GigaScience 9(1), 155 (2020). doi:10.1093/gigascience/giz155

343. Li, M., Shao, M.-R., Zeng, D., Ju, T., Kellogg, E.A., Topp, C.N.: Comprehensive 3D phenotyping reveals

continuous morphological variation across genetically diverse sorghum inflorescences. New Phytologist 226(6),

1873–1885 (2020). doi:10.1111/nph.16533

344. Théroux-Rancourt, G., Jenkins, M.R., Brodersen, C.R., McElrone, A., Forrestel, E.J., Earles, J.M.: Digitally

deconstructing leaves in 3D using X-ray microcomputed tomography and machine learning. Applications in

Plant Sciences 8(7), 11380 (2020). doi:10.1002/aps3.11380

345. Boerckel, J.D., Mason, D.E., McDermott, A.M., Alsberg, E.: Microcomputed tomography: approaches and

applications in bioengineering. Stem cell research & therapy 5(6), 1–12 (2014)

346. Xia, C., Shi, Y., Yin, W., et al.: Obtaining and denoising method of three-dimensional point cloud data of

plants based on tof depth sensor. Transactions of the Chinese Society of Agricultural Engineering 34(6),

168–174 (2018)

347. Choi, S., Kim, T., Yu, W.: Performance Evaluation of RANSAC Family. Journal of Computer Vision 24(3),

271–300 (1997)

348. Loch, B.I.: Surface fitting for the modelling of plant leaves. PhD thesis, University of Queensland Australia

(2004)

http://dx.doi.org/10.1093/gigascience/giz155
http://dx.doi.org/10.1111/nph.16533
http://dx.doi.org/10.1002/aps3.11380


Harandi et al. Page 70 of 92

Tables

Table 1: A comparison of 3D imaging methods.

Type Sensor Principle Advantages Disadvantages Output

Active Uses active

sensors such

as structured

light and laser

scanners

Uses radiometric

interaction with

the object to di-

rectly capture a

3D point cloud

(1) Overcomes correspon-

dence problems

(2) High accuracy

(1) Limited to specific en-

vironments and illumination

conditions

(2) Requires specialized, ex-

pensive equipment

(3) Lack of color information

(1) 3D point

clouds

(2) Depth maps

Passive Uses passive

sensors such as

standard imaging

cameras

Analyzes multiple

images from

different perspec-

tives to generate

a 3D point cloud

(1) Low cost

(2) Includes color informa-

tion

(1) Correspondence problems

(2) Low accuracy (outliers

and noise)

(3) Computationally complex

(4) Relatively slow

(1) 3D point

clouds

(2) Depth maps

(3) Voxels

Table 2: A comparison of 3D imaging techniques.

Method Principle Advantages Disadvantages Environment

Active Methods

3D Laser Scanner

(LiDAR)

Determines the range

by targeting an object

or a surface using a

laser to measure the

time for the reflected

light to return to the re-

ceiver

(1) High resolution

(2) Low-cost devices available

(3) Relatively insensitive to light-

ing conditions

(4) Suitable for high volume

scanning

(1) Complex scanning pro-

cess

(2) Requires calibration

(3) Lack of depth detection

mechanism

(1) Fields

(2) Controlled

environments

Laser Triangula-

tion

Captures 3D data by

pairing the laser light

source with a sensor ar-

ray (e.g., camera)

(1) High accuracy at close range

(2) High resolution

(3) Low cost

(4) Relatively insensitive to the

lighting conditions or surface tex-

tures

(1) Low accuracy at large dis-

tances

(2) Computationally inten-

sive

(3) No color information

(4) Difficult to scan transpar-

ent or reflective surfaces

(1) Fields

(2) Controlled

environments

Photometric

Stereo

Estimates local surface

orientation by using a

sequence of images of

the same surface from

the same viewpoint but

under illumination from

different directions

(1) High resolution

(2) Low cost

(3) High speed

(4) Reasonable computational

cost

(1) Difficult to handle shiny

and semi-translucent surfaces

(2) Requires calibration

(1) Fields

(2) Controlled

environments
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Table 2: A comparison of 3D imaging techniques.

Method Principle Advantages Disadvantages Environment

Structured Light Projects a series of

known patterns onto

the object and builds up

a 3D image by measur-

ing the deformation of

the patterns

(1) High accuracy

(2) High-speed scanning

(3) High resolution

(1) Vulnerable to ambient

light interference

(2) Decreasing accuracy as

the measurement distance in-

creases

(1) Controlled

environments

Time of Flight

(ToF)

Builds up a 3D im-

age using light emit-

ted by a laser or LED

source and measuring

the roundtrip time be-

tween the emission of a

light pulse and the re-

flection

(1) Easy setup due to the small

size of the camera

(2) High-speed measurement

(3) Wide measurement range

(4) Relatively insensitive to am-

bient light

(1) Expensive

(2) Difficulties with shiny sur-

faces

(1) Fields

(2) Controlled

environments

Tomographic

Methods

Create a series of 2D

slices in order to gener-

ate a 3D volume

(1) High resolution

(2) High accuracy

(1) Not suitable for large-

scale field studies

(2) Time-consuming

(3) High cost

(1) Controlled

environments

Passive Methods

Light Field Mea-

suring

Reconstructing the 3D

information of a scene

by capturing both the

radiant intensity and

the direction of the in-

coming light in one

plane

(1) High-dimensional representa-

tion

(1) Technical complexity

(2) Computational cost

(1) Fields

(2) Controlled

environments

Multi-view Stereo

Techniques

Uses two or more

cameras to generate

parallax from different

perspectives to obtain

distance information

about an object

(1) Simplicity of use

(2) Low cost

(3) High accuracy

(1) Limited imaging range

(2) Low imaging quality

(3) Computationally inten-

sive

(4) Poor performance in real-

time

(5) Relatively sensitive to the

environment conditions

(1) Fields

(2) Controlled

environments

Space Carving Uses a voxel grid and

information from pic-

tures taken from differ-

ent perspectives to re-

move voxels which are

not part of the object

(1)Avoids correspondence prob-

lem

(2) Low cost

(2) Requires fewer images than,

e.g., SfM to obtain a good rep-

resentation

(1) Calibration requirements

(2) Quality of reconstruction

depends on the number of

views

(3) Exact segmentation re-

quirements

(4) Lack of depth detection

mechanism

(5) Not suitable for highly

non-convex objects

(1) Controlled

environments
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Table 2: A comparison of 3D imaging techniques.

Method Principle Advantages Disadvantages Environment

Structure from

Motion (SfM)

Captures 3D informa-

tion from sequences of

overlapping 2D images

(1) Low cost

(2) High resolution

(3) High color reproduction

(4) Wide measurement range

(5) Mature algorithm, frequently

used

(6) Some degree of automatic

calibration

(1) Need to move measure-

ment equipment continuously

(2) Reconstruction complex-

ity

(3) Time-consuming

(1) Fields

(2) Controlled

environments

Table 3: Well-established methods and algorithms used for 3D plant phenotyping.

Method Plant Short description

3D Image Acquisition and Regis-

tration

Continue on the next page
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

3D Laser Scanning (LiDAR) Aubergine [252]

Bamboo-leaf oak tree [252]

Barley [30, 156]

Benth (Nicotiana benthami-

ana) [183]

Birch [174]

Botanic trees [168]

Cereal plants [27]

Chickpea [328]

Elm tree [182]

Grape [329]

Grapevine [35]

Horse Chestnut [174]

Japanese cedar [252]

Japanese larch [252]

Maize (Corn) [34, 129, 160,

186, 330, 331]

Orchard tree [175]

Poplar [174]

Rapeseed (Brassica sp.) [32]

Red Oak [174]

Rosebush [264]

Sorghum [328]

Soybean [25]

Sugar beet [25, 36]

Sugar maple [182]

Sweet Chestnut [174]

Thale cress (Arabidop-

sis) [10, 28, 156]

Tomato [34, 160, 183]

Wheat [31, 35, 36]

Yellow birch [182]

Others [205, 332]

Measures accurately the distance between the sensor

and a target based on the elapsed time between the

emission and return of laser pulses (’Time-of-Flight’

(ToF) method) or based on trigonometry (the ’opti-

cal probe’ or ’light section’ methods).

Electrical Resistance Tomography

(ERT)

Chicory [56]

Maize (Corn) [56]

Switchgrass [56]

Is a geophysical technique for imaging sub-surface

structures from electrical resistivity measurements

made at the surface, or by electrodes in one or more

boreholes.

Gaussian Mixture Model GMM Apple tree [185]

Barley [121]

Cherry [185]

Thale cress (Arabidop-

sis) [185]

Represents discrete point sets by continuous density

functions [157].

Generalized Voxel Coloring Variant of Voxel Coloring which allows the cameras

to completely surround the scene [119].
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Iterative Closest Point (ICP) Barley [156]

Maize (Corn) [34, 38, 47,

129, 227]

Pepper [155]

Rapeseed (Rape) [33, 125]

Thale cress (Arabidop-

sis) [156]

Tomato

[34]

Minimizes distances between two point clouds. Often

used to obtain a full 3D reconstruction from multi-

ple 3D scans which capture the object from different

angles [112, 146–149].

Magnetic Resonance Imaging

(MRI)

Barley [63]

Bean plant [62]

Maize (Corn) [63]

Is a type of scan that uses strong magnetic fields and

radio waves to produce detailed images of the inside

of the body.

Marching Cubes Transforms a voxel grid into a polygon mesh. The

algorithm walks through the voxel grid and chooses

a certain surface configuration composed of triangles

from a table, based on the values of neighboring vox-

els. The individual polygons are then fused into a

surface [162].

Multi-view Stereo (MVS) Anthurium andraeanum [40]

Barley [108]

Banana [90]

Barley [103]

Basil [317]

Calathea makoyana [111]

Epipremnum aureum [111]

Grapevine [333]

Hedera nepalensis [111]

Ipoestia [317]

Ixora [317]

Litchi [88]

Maize (Corn) [107, 133, 227,

330, 334]

Monstera deliciosa [111]

Rape [89]

Soybean [77, 170, 334]

Sugar beet [108]

Tomato [2, 85, 101]

Wheat [169]

Uses two or more cameras to generate parallax from

different perspectives, and obtaining the distance in-

formation of the object and then reconstructs a 3D

shape from calibrated overlapping images captured

from different viewpoints [170]. In case of having two

cameras, it is called stereo vision.

Patch-based Multi-View Stereo

(PMVS)

Artificial plant [75]

Bambara groundnut [78]

Proso millet [78]

Rice [75, 76]

Wheat [75, 76]

Reconstructs a 3D point cloud model based on mul-

tiple color input images. A requirement of this al-

gorithm is that the intrinsic (such as focal length)

and extrinsic (3D position and orientation) camera

parameters are known.
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Photometric Stereo (PS) Dock (Rumex Obtusi-

folius) [12]

Potato [12]

Thale cress (Arabidop-

sis) [17]

Estimates the surface normals of objects by observing

the object under different lighting conditions [50].

Shape-from-silhouette (SFS)

(Shape-from-contour)

Artificial plant [209]

Barley [121]

Maize (Corn) [121, 123]

Sorghum [209]

Tomato [101]

Wheat [209]

Reconstructs the visual hull of an object, by means

of the intersection of silhouette cones determined by

the objects’ silhouettes captured from different an-

gles [335].

Space-Carving

(Shape-from-contour)

Aloe vera [81]

Banana [104]

Bromeliad species [81]

Chili [81]

Cordyline species. [81]

Cotton [99]

Maize (Corn) [99, 104]

Pumpkin (Cucurbita

pepo) [81]

Rapeseed [81]

Sorghum [105]

Other [102]

Reconstructs the maximal shape of an object that is

photo-consistent with the object. Photo-consistency

includes consistency with the objects silhouettes, but

also with its projected surface colors. The algorithm

iteratively ’carves’ space away from an enclosing vol-

ume in a well-defined way, until the shape is photo-

consistent with all the views [98].

Structured light Anthurium [48]

Cabbage [26]

Cucumber [26]

Dishlia [48]

Tomato [26]

Extracts the 3D surface shape based on the informa-

tion from the distortion of the projected structured-

light pattern without ionizing radiation [52].
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Structure from Motion (SfM) Barley [18]

Basil [317]

Brussels sprout [79]

Chili plant [11]

Grapevine [221, 333]

Ipoestia [317]

Ixora [317]

Maize (Corn) [9, 13, 82, 334,

336–338]

Nephthytis [94]

Olive [223]

Physalis sp. [9]

Poinsettia [94]

Brassica sp. (Rapeseed) [9]

Savoy cabbage [79]

Schefflera [94]

Soybean [14, 83, 84, 84, 334,

339]

Sugar beet [13]

Sunflower [11, 13, 79, 83,

240]

Thale cress (Arabidopsis) [9]

Tomato [11, 85, 338]

Wheat [9]

Other [135, 340]

Reconstructs the 3D structure using a series of 2D

images with a high degree of overlap, taken from dif-

ferent angles. It identifies matching features which

are tracked from image to image to produce esti-

mates of the camera positions and orientations, as

well as the coordinates of the features to create a

point cloud.
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Time of Flight (ToF)

(Including Microsoft Kinect sen-

sors)

Apple tree/orchard [110, 341]

Calathea makoyana [111]

Cyclamen [40]

Epipremnum aureum [111]

Hedera nepalensis [111]

Hydrangea [40]

Lettuce [44]

Maize (Corn) [13, 38, 47]

Monstera deliciosa [111]

Orchidaceae [40]

Paprika [109]

Pelargonium [40]

Pepper [155]

Pumpkin [46]

Rapeseed [33]

Rosebush [110]

Sorghum [39]

Soybean [43]

Sugar beet [13, 36]

Sunflower [13]

Tomato [45]

Wheat [36]

Yucca [110]

ToF cameras use time between emitted light and re-

flected light from thousands of points to conduct 3D

images.

Voxel Coloring

(Shape-from-photoconsistency)

Rose [97] Reconstructs a photo-consistent 3D shape not by

carving away voxels, but by identifying voxels that

have a unique coloring which is constant across

all possible photo-consistent interpretations of the

scene. Has the limitation that all cameras have to

be placed on one side of the scene.

X-Ray (Micro) Computed Tomog-

raphy (CT / µCT)

Barley [64]

Bean plant [59, 62]

Cassava [59]

Chickpea [64]

Duckweed [57]

Maize (Corn) [58, 61, 337]

Sinningia [342]

Sorghum [343]

Tomato [61]

Wheat [60, 61, 64]

Other [344]

Is a non-destructive imaging tool for the produc-

tion of high-resolution three-dimensional (3D) im-

ages composed of two-dimensional (2D) trans-axial

projections, or ‘slices’, of a target specimen [345].

3D Image Processing

Bilateral smoothing techniques Maize (Corn) [15]

Tomato [346]

Is a non-linear filtering technique and a simple, non-

iterative scheme for edge-preserving smoothing [137,

142]
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Clustering-based segmentation Grapevine [35, 221]

Olive [223]

Wheat [35]

Uses clustering algorithms to group data points that

are more similar to one another in order to obtain a

segmented image.

Color-Based Filter Brassica sp. [9]

Calathea makoyana [111]

Epipremnum aureum [111]

Hedera nepalensis [111]

Maize (Corn) [9]

Monstera deliciosa [111]

Physalis sp. [9]

Thale cress (Arabidopsis) [9]

Wheat [9]

Distinguishes between foreground and background

and removes background pixels based on the RGB

color information.

Dart throwing filter Sequentially add points from the original point cloud

to a downsampled point cloud if they don’t have a

neighbor in the output point cloud within a certain

radius [136].

Density-based spatial clustering of

applications with noise (DBSCAN)

Maize (Corn) [34, 82, 161]

Tomato [34, 161]

Removes clusters of size less than a predetermined

threshold if they are located further away than a cer-

tain distance from any other point cluster. Can be

used as noise filtering.

Mean shift Paprika [109] Iteratively shifts each data point to the average of

data points in its neighborhood by using kernel den-

sity estimation.

Moving Least Squares (MLS) Pepper [155] Iteratively projects points on weighted least squares

fits of their neighborhoods to cause the points to lie

closer to an underlying surface [131].

M-Estimator Sample Consensus

(MSAC)

Maize (Corn) [130] Is a variant of the RANSAC algorithm which adopts

bounded loss of RANSAC by using a different loss

function [347]

Radius-based outlier filter (RBOF) Calathea makoyana [111]

Epipremnum aureum [111]

Hedera nepalensis [111]

Monstera deliciosa [111]

Modifies the elemental criterion of a specific element

based on a weighted average of the criteria in a fixed

neighborhood.

Random Sample Consensus

(RANSAC)

Grape [329]

Maize (Corn) [82]

Soybean [77, 170]

Other [135, 205]

Fits geometric primitives to point clouds by choosing

the best among fits to numerous random samplings

of the data [128].

Spatial Region Filter Calathea makoyana [111]

Epipremnum aureum [111]

Hedera nepalensis [111]

Maize (Corn) [133]

Monstera deliciosa [111]

Removes all points outside a region defined in a 3D

coordinate system.
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Statistical Outlier Removal (SOR)

filter

Calathea makoyana [111]

Epipremnum aureum [111]

Hedera nepalensis [111]

Maize (Corn) [15, 38]

Monstera deliciosa [111]

Soybean [25, 84]

Sugar beet [25]

Other [135]

Removes points if the mean distance to its neigh-

bors surpasses a threshold based on the mean and

standard deviation of all neighbor distances.

Surface boundary filter (SBF) Calathea makoyana [111]

Epipremnum aureum [111]

Hedera nepalensis [111]

Monstera deliciosa [111]

Identifies and removes boundary points using a

threshold on the angle between a projected vector

in the normal plane to the first two principal com-

ponents and one of the principal components [111].

AVM: (1) not in main text?

Voxel grid downsampling Brassica sp. [9]

Calathea makoyana [111]

Epipremnum aureum [111]

Hedera nepalensis [111]

Maize (Corn) [9, 130]

Monstera deliciosa [111]

Physalis sp. [9]

Thale cress (Arabidopsis) [9]

Wheat [9]

Divides the point cloud into a 3D voxel grid and re-

places points within each voxel by the centroid of all

the points within the voxel [134].

3D Image Analysis

α-shape triangulation Thale cress (Arabidop-

sis) [156]

Barley [156]

Transforms a point cloud into a polygon mesh. The

shape is determined by connecting sets of 3 points

into a triangle if they can be circumscribed by a

sphere with radius α which doesn’t contain any other

points [163].

Breath-first flood-fill algorithm Tomato [101] Determines the area connected to a given node in a

multi-dimensional array.

Constrained region-growing Cotton [164] Segments a surface mesh segmentation by growing

regions from seed points to adjacent mesh faces, con-

strained by changes in curvature, which correspond

to sharp edges [207, 208].
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Delaunay Triangulation

(Advancing Front)

Aloe vera [81]

Brassica sp. [81]

Bromeliad species [81]

Chili [81]

Cordyline species [81]

Maize (Corn) [15, 229]

Pumpkin (Cucurbita

pepo) [81]

Rape [81]

Rice [229]

Creates a triangulation (in 2D) or covering by tetra-

hedra (in 3D) of a point cloud, such that no point lies

in the circumcircle of any triangle or tetrahedron. De-

launay triangulations tend to maximize the minimum

interior angle of each triangle or tetrahedron, and

hence avoid sharp angles (“sliver triangles”). Used in

the context of this paper to grow a surface from a

set of seed triangles. [233–235]

Dense Conditional Random Field

(CRF)

Maize (Corn) [227] Acquires an accurate and spatially consistent label-

ing of pixels after the application of a unary classifier

which doesn’t take the spatial context of pixel labels

into account. The model establishes pairwise poten-

tials on all pairs of pixels in the image. An energy

function consisting of both unary and pairwise com-

ponents is minimized [228].

Dijkstra’s algorithm Berryless grape [247]

Maize (Corn) [130]

Pine tree [180]

Finds the shortest path between vertices in a

graph [171].

(Fast) Point Feature Histogram

(FPFH / PFH)

Barley [226]

Benth (Nicotiana benthami-

ana) [183]

Grapevine [226]

Maize (Corn) [34, 161, 227]

Rapeseed (Rape) [125]

Tomato [34, 161, 183]

Wheat [226]

Other [224, 225, 340]

Describes the local geometry around a point in point

clouds using features based on the angular relation-

ships between pairs of points and their normals,

within a certain radius around each query point. The

features are counts within histogram bins of these val-

ues. FPFH is a more efficient version of PFH which

reduces the number of pairs for which angles have to

be calculated while retaining most of the discrimina-

tive power of PFH.

Locally Estimated Scatterplot

Smoothing (LOESS)

Maize (Corn) [229]

Rice [229]

Reconstructs a continuous surface even with the pres-

ence of the discontinuity of surface points.

Minimum oriented bounding box

(MOBB)

Rapeseed (Rape) [125] Determines the smallest bounding box for a point set

(i.e., smallest area, volume or hyper-volume in higher

dimensions) within which all points lie.

Minimum spanning tree Finds a subset of edges in a graph which connects

all the vertices, and which has a minimum total

length [172].

Non-Uniform Rational B-splines

(NURBS)

Mint [238]

Maize (Corn) [38]

Sunflower [239]

Other [237]

Defines smooth curves and surfaces by a list of 3D

coordinates of surface control points and associated

weights .
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

Randomly Intercepted Nodes

(RAIN)

Maize (Corn) [82] Simulates the behavior of randomly placed rain drops

to find the routes of these drops while moving from

point to point. Performs segmentation based on the

points considered as potential path candidates.

Spectral Clustering Thale cress (Arabidopsis) [9]

Birch [174]

Brassica sp. [9]

Horse Chestnut [174]

Maize (Corn) [9]

Physalis sp. [9]

Poplar [174]

Red Oak [174]

Sweet Chestnut [174]

Wheat [9]

Is a technique with roots in graph theory, where the

approach is used to identify communities of nodes in

a graph based on the edges connecting them.

Voxel Overlapping Consistency

Check

Cotton [99]

Maize (Corn) [99]

Encloses the voxel grid by a bounding box. Considers

the (area of) constituent voxels at different cross-

sections of this bounding box to segment between

stem and leaves.

Machine Learning Techniques

Boosting Soybean [84] Seeks to improve the prediction power by training

a sequence of weak models, each compensating the

weaknesses of its predecessors.

Deep Learning (DL) Banana [90]

Maize (Corn) [160, 299, 310,

313]

Rice [311]

Rosebush [264]

Rosette plants [1]

Sorghum [276]

Thale cress (Arabidop-

sis) [17]

Tobacco [276]

Tomato [2, 160, 276, 301]

DL is a very commonly employed algorithm in the

ML algorithms, and it is derived from the conven-

tional neural network but considerably outperforms

its predecessors. DL employs transformations and

graph technologies simultaneously in order to build

up multi-layer learning models. The most famous

types of deep learning networks are CNNs, RNNs,

and RvNNs.

Hidden Markov Models (HMMs) Maize (Corn) [34]

Tomato [34]

Are probabilistic models in which an unobservable

(“hidden”) Markov process influences an observable

process in a specific way. The goal is to est the hidden

states from the observations.

K-means clustering Barley [226]

Grapevine [226]

Maize (Corn) [117]

Sorghum [117]

Soybean [84]

Wheat [226]

Is one of the simplest and most popular unsupervised

machine learning algorithms and aims to partition n

observations into k clusters in which each observation

belongs to the cluster with the nearest mean, serving

as a prototype of the cluster.

Continue on the next page
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Table 3: Well-established methods and algorithms used for 3D plant phenotyping (cont.).

Method Plant Type Short description

K-nearest neighbors (KNN) Aloe vera [81]

Birch [174]

Brassica sp. [81]

Bromeliad species [81]

Chili [81]

Cordyline species [81]

Horse Chestnut [174]

Maize (Corn) [34, 133, 161,

186]

Poplar [174]

Pumpkin [81]

Rapeseed [81]

Red Oak [174]

Sweet Chestnut [174]

Tomato [34, 161]

Is a simple, supervised machine learning algorithm

that can be used to solve both classification and re-

gression problems and clusters the point set into a

series of k nearest neighbors.

Random Forest Classifier (RFC) Rosebush [264]

Other [135, 344]

Uses a combination of tree predictors such that each

tree depends on the values of a random vector sam-

pled independently and with the same distribution for

all trees in the forest [263].

Self-Organizing Map (SOM) Maize (Corn) [34, 161]

Tomato [34, 161]

Is an unsupervised neural network using the concept

of competitive learning instead of back-propagation.

Support Vector Machine (SVM) Maize (Corn) [34, 161, 227]

Soybean [84]

Tomato [34, 161]

Is a popular and commonly used choice for binary

classification problems which can perform nonlinear

classification.

Miscellaneous Techniques

Maize (Corn) [95]

Mango [122]

Olive [122]

Peach [122]

Pine tree [180]

Tomato [242]

Walnut [122]

Methods developed for specific plant applications.

Table 4: A comparison of segmentation techniques.

Segmentation method Principle Advantages Disadvantages

Clustering-based Segments the image into clusters

consisting of pixels with similar

characteristics

(1) Elimination of noisy spots

(2) Typically obtains homo-

geneous regions

(1) Sensitive to noise

(2) Hard to find initial param-

eters

Continue on the next page
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Table 4: A comparison of segmentation techniques.

Segmentation method Principle Advantages Disadvantages

Color-index-based Makes a distinction between fore-

ground and background values

based on a scalar value (e.g., green

channel)

(1) Simple to implement

(2) Low computational cost

(3) High efficiency

(1) Omitting spatial informa-

tion by only considering pixel

intensities

(2) Sensitive to noise

Edge-based Detects edge points based on sud-

den changes in intensity and gen-

erates edge segments by grouping

edge points together

(1) High accuracy in edge po-

sitioning

(2) High speed

(1) No guarantees about con-

tinuity and closure of edges

(2) Less suitable for images

with many edges

Region-based Divides the point cloud into differ-

ent clusters based on local smooth-

ness and curvature characteristics

or on the presence of features at a

certain scale

(1) Effective for complex im-

ages

(2) High accuracy in images

with high contrast between

regions

(3) Generally good perfor-

mance in noisy images

(1) Complicated algorithm

(2) Computationally inten-

sive

Threshold-based Divides pixels into groups based on

their intensity relative to a given

value or threshold

(1) Simple to implement

(2) Low computational cost

(3) High efficiency

(1) Depending only on the

pixel gray value without con-

sidering spatial details

(2) Sensitive to noise
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Figures

Figure 1 Schematic outline of typical processing and analysis steps for 3D plant phenotyping.

Through an active (1.a) or passive (1.b) 3D acquisition method, either a depth map (2.a), a point

cloud (2.b ) or a voxel grid (2.c) is obtained. After a number of preprocessing steps consisting of

background subtraction, outlier removal, denoising and/or downsampling, the primary 3D

representation may be transformed into a secondary representation, such as a polygon mesh (4.a),

an octree (4.b), or an undirected graph (4.c), which facilitates further analysis. The main analysis

steps, which may consist of skeletonization (5.a) segmentation (5.b) and/or surface fitting (5.c),

precede measurements on the canopy (6.a), plant (6.b), or plant organ (6.c) level. Figures 1.a

[30], 1.b [169], 2.b [35], 2.c [101], 4.a [164], 4.b [104], 4.c, 6.a [108], and 6.b [85] reprinted under

the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0). Figure 2.a, reprinted from [79], ©2015,

with permission from Elsevier. Figure 5.a [179] reprinted with permission from the American

Society for Photogrammetry and Remote Sensing, Bethesda, Maryland

(https://www.asprs.org/). Figure 5.b, ©2017 IEEE, reprinted with permission from [227].

Figure 5.c [348] and 6.c [248] reprinted with permission from the author.

http://creativecommons.org/licenses/by/4.0
https://www.asprs.org/
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Figure 2 Overview of 3D image acquisition techniques
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Figure 3 3D imaging system setup: (a) Laser triangulation, (b) Structure from Motion (SfM), (c)

Stereo vision, and (d) Time-of-Flight (ToF). Reprinted from [8] under the terms of the Creative

Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0).

Figure 4 Top view RGB image of a rosebush (A), and depth map of the same rosebush scaled in

mm with ground as reference, obtained by a Microsoft Kinect depth sensor (B), by [110]. The

depth map allows to differentiate the different composite leaves, which would be much harder

without depth information. Reprinted from [110], ©2015, with permission from Elsevier.

http://creativecommons.org/licenses/by/4.0
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Figure 5 Overview of 3D image processing techniques

Figure 6 Time series of a tomato plant scanned in various days together with the extracted

skeleton. Reprinted from [160] under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0).

http://creativecommons.org/licenses/by/4.0
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Figure 7 Overview of 3D image analysis techniques

Figure 8 Segmentation of a voxel grid representation of a tomato seedling in stem (green) and

individual leaves (colored) (left), and schematic illustration of the stem-leaf segmentation

algorithm (right), as used by [101]. The structure is filled from the bottom (red point). As long as

neighboring points are close together in space, they are treated as stem. Once they spread out,

the end of the stem (yellow points) is marked. The last point additions correspond to leaftips

(green and blue points). Reprinted under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0).

http://creativecommons.org/licenses/by/4.0
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Figure 9 Illustration of the spectral clustering approach used by [174]. The point cloud obtained

by laser scanning is converted into a graph representation, after which spectral embedding finds

intrinsic plant directions, which are decomposed in the principal plant axes. These correspond to

elementary units such as leaf blades, petioles, and stems. Reprinted by permission of the publisher

Taylor & Francis Ltd, (http://www.tandfonline.com) and the authors.

Figure 10 Point Feature Histograms for the laser scanned point cloud of a grapevine leaf (A) and

of a grapevine stem point cloud (B), by [35]. Reprinted under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

http://www.tandfonline.com
http://creativecommons.org/licenses/by/4.0
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Figure 11 Segmentation obtained by SVM on FPFHs before (a) and after (b) post-processing

with CRF by [227]. CRF corrects leaf false negatives near stem/leaf intersections, by minimizing

label differences across neighbors with similar surface normals. ©2017 IEEE, reprinted with

permission from the authors.

Figure 12 Leaf segmentation and surface fitting using NURBS on a point cloud representation of

soybean leaves, by [83]. Reprinted by permission from Springer Nature Customer Service Centre

GmbH: Springer Nature, Computer Vision - ECCV 2014 Workshops by Agapito, Bronstein, and

Rother, ©2015.
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Figure 13 Illustration of the leaf counting method used by [103]. A 3D surface model of barley is

segmented based on the eigenvalues of second-moments tensors of the surface, after which

connected components corresponding to the distal parts of leaves are counted, to yield the

number of leaves of the plant. Reprinted by permission from Springer Nature Customer Service

Centre GmbH: Springer Nature, Computer Vision - ECCV 2014 Workshops by Agapito, Bronstein,

and Rother, ©2015.

Figure 14 Example of the 3D measurements of plant organs as used by [248]. Stem diameters

were estimated by fitting cylinder shapes to stem point cloud segments (a), leaf widths by

determining the oriented bounding box around leaf point cloud segments and measuring their

shortest dimension (b), and leaf lengths by computing the shortest paths connecting the furthest

points on the leaf surface meshes (c). Reprinted with permission from the author.
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Figure 15 Overview of ML techniques for 3D plant phenotyping
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