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The development of transient waves generated by bottom motion is studied numerically
in this work. A non-hydrostatic numerical scheme, based on solving the two dimensional
Euler equations using two-layer approximation for the vertical direction, is implemented.
The dispersion relation of this scheme is shown to agree with the analytical dispersion
relation over a wide range of kd0, where k denotes the wave number and d0 the charac-
terustic water depth. To ensure that a good balance between non-linearity and disper-
sion is accommodated by the scheme, the propagation of a solitary wave (undisturbed in
shape) was simulated. Our next focus was on the simulation of transient waves generated
by bottom motion. After conducting a benchmark test against Hammack’s experimental
results for downward bottom motion, an anti-symmetric bottom thrust was considered.
The resulting transient waves developed different behavior depending on the water depth.
Finally, to mimic the December 2004 tsunami, a seabed motion was generated over Aceh
bathymetry. This simulation showed that a package of wave trains developed and propa-
gated towards the Aceh coast, and exhibited inter alia the feature of shoreline withdrawal
often observed.
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1. Introduction

Seabed disturbances that displace large amounts of water are the primary mech-

anism for tsunami generation. Thus the sea surface typically deforms in response

to a sudden movement of the sea floor caused by a submarine earthquake, and the

deformed surface then propagates into the open ocean as a tsunami. Over the ocean

depth, the propagation is dispersive (i.e. wave components of different wavelengths

travel at different speeds) and the whole process is nonlinear.

The problem of tsunami generation and propagation has deserved careful study.

Berry [2005], and Mei et al. [2005] analytically investigated transient waves gener-

ated by bottom motion based on linear theory, and numerical investigations have

previously been undertaken by many authors.. Dutykh et al. [2007] presented a

numerical simulation of waves generated by various types of bottom motion, and

Kervella et al. [2007] compared a three-dimensional linear and a nonlinear BEM

tsunami generation model. Saito and Furumura [2009] implemented the finite dif-

ference method in a three-dimensional simulation of tsunami generation due to

sea-bottom deformation. Fuhrman and Madsen [2009] conducted an analytical and

numerical study of a high order Boussinesq model to consider the generation and

propagation of tsunamis, including the run-up. Experimental studies of tsunami

generation were undertaken by Takahashi et al. [1993] and Hatori [1966]. Zhao et

al. [2009] used a Boussinesq model to simulate a tsunami wave generated by sub-

marine slumps and slides numerically, and Zhao et al. [2013] studied a potential

tsunami generated in the Okinawa Trench and consider the evolution of tsunami

waves over continental shelves with gentle slope. Due to different scale of seabed de-

formation, different waveforms in the near shore regions were found. In this article,

we simulate the development of transient waves resulting from an anti-symmetric

bottom thrust, using a two-layer non-hydrostatic staggered scheme to solve the Eu-

ler equations in two dimensions. After a detailed description of this efficient scheme,

we show it leads to typical features associated with a tsunami — viz. its arrival is

often preceded by the withdrawal of water from a beach and the first crest arriving

may not be the largest.

Our numerical scheme is a variant of the non-hydrostatic staggered approach

solving the two-dimensional Euler equations originally proposed by Stelling and

Zijlema [2003]. The scheme is based on a conservative staggered scheme for the

shallow water equations (SWE) that satisfactorily models long waves in shallow

areas — i.e. when kd0 ∈ [0, π/10], where k is the wave number and d0 the water

depth. Beyond this interval, in the area of dispersive wave, the shallow water model

which neglects the dynamic pressure is no longer adequate and the full Euler equa-

tions should be incorporated. However, solving the Euler equations requires much

heavier computation, particularly if the additional vertical dimension is resolved

into small grids. Thus for computational efficiency, numerical algorithm solving the
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Euler equations with few-layer in the vertical direction is of our interest. Here, we

focus on a two-layer scheme and conduct several benchmark tests.

In Section 2, the two-layer non-hydrostatic staggered scheme is formulated. The

dispersion relation of this scheme is then derived and shown to conform to the

analytical dispersion over a wide range of kd0, and a solitary wave simulation is

performed. In Section 3, we focus on the simulation of transient waves generated by

bottom motion. It is notable that our scheme can handle active generation, which

mean dynamics of the seafloor displacement can be computed. After simulating

the Hammack [1973] benchmark test of free surface wave generated by a down-

ward bottom thrust, an anti-symmetric bottom thrust was considered. In response

to the anti-symmetric motion, the free surface developed into a package of wave

trains, exhibiting typical tsunami behavior — viz. a tsunami arrival preceded by

a withdrawal from the shoreline. For relevance to the 2004 Indian Ocean tsunami,

the same anti-symmetric bottom motion was applied to a cross-section of the Aceh

bathymetry to simulate an hypothetical tsunami. The simulation generated a wave

consisting of a pulse and a trough propagating to the surrounding area. This wave

hit the eastern coast starting with a trough, while the waves crashed into the west

coast in the form of a pulse. Finally, our conclusions are given in Section 4.

2. Two-layer non-hydrostatic staggered scheme

We consider a layer of ideal fluid bounded above by a surface z = η(x, t) and below

by an impermeable bottom z = −d(x, t). Let u(x, z, t) and w(x, z, t) denote the

respective horizontal and vertical fluid velocity components in the two-dimensional

Euler equations

ut + uux + wuz + gηx + qx = 0, (1)

wt + uwx + wwz + qz = 0, (2)

ux + wz = 0, (3)

where the total pressure is decomposed into its hydrostatic and hydrodynamic parts

— i.e.

total pressure = g(η − z) + q(x, z, t),

with q(x, z, t) denoting the hydrodynamic pressure.

In our algorithm for integrating the Euler equations (1,2,3), the vertical region

is divided into layers with the same thickness. Although better accuracy should be

gained if more layers are used, for numerical efficiency a model with only a few lay-

ers may be adopted. Indeed, thorough comparison between numerical and analytical

results, and also with experimental results obtained by Stelling and Zijlema [2003],

suggest that accurate wave characteristics involving dispersion and non-linearity
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can be achieved using only two layers. Here we adopt the two-layer scheme, and its

formulation is described below.

Fig. 1. The staggered grid and positions of the unknowns.

Figure 1 shows a sketch of the fluid domain. The total water depth is h(x, t) =

η(x, t) + d(x, t); and zk(x, t) for k = 1, 2 and z3(x, t) = −d(x, t)) denote the free

surface, interface and bottom topography, respectively. The vertical flow region is

divided into two layers of the same thickness h1(x, t) = h2(x, t) = 1
2h(x, t). Further,

we write

wk(x, t) ≡ w(x, z = zk, t), pk(x, t) ≡ q(x, z = zk, t), for k = 1, 2, 3, (5)

and locate the grid points for wk and pk, for k = 1, 2, 3, along the surface, interface

and bottom topography — and systematically set vanishing pressure along the sur-

face p1 = 0 and vanishing vertical velocity along the bottom w3 = 0.

We apply the Keller-box or Preissmann scheme; see e.g. Lam and Simpson [1976],

to the linearized equation (2) to yield

1

2
(∂twk + ∂twk+1) = −pk − pk+1

hk
, for k = 1, 2, (6)

in the upper and lower layer, respectively. Then introducing the depth averaged

horizontal velocities for the upper and lower layer as

uk(x, t) ≡ 1

hk

∫
layer−k

u(x, z, t) dz, for k = 1, 2, (7)

the respective depth integrated momentum equations are

∂tuk + uk∂xuk + gηx = −1

2
(∂xpk + ∂xpk+1), for k = 1, 2, (8)
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where we approximate the integral using a trapezoidal rule. Applying the Keller-box

scheme to approximate the continuity equation (3) for both the upper and lower

layers yields

wk − wk+1

hk
+ ∂xuk = 0, for k = 1, 2. (9)

Finally, to determine the water level η(x, t) we use the depth integrated continuity

equation

ht + ∂x (h1u1) + ∂x (h2u2) = 0. (10)

Summarizing, the two-layer non-hydrostatic approximation consists of the seven

equations (6, 8, 9, 10).

Fig. 2. The staggered grid and positions of the unknowns.

We proceed further with formulating two-layer non-hydrostatic staggered grid

scheme as follows. The horizontal x−axis is divided in a staggered way, and locations

of the unknowns are depicted in Figure 2. Our scheme belongs to the edge-based

scheme category, since the dependent variables p2, p3, w1, w2 are located at the edge

of each cell. Other depth integrated schemes are mostly center-based. In our edge-

based scheme the zero pressure condition at the surface and the zero vertical velocity

component along the bottom can be obtained accurately. This is actually the key

point that makes our two-layer algorithm effective and efficient. The full discrete
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system corresponding to (6, 8, 9, 10) is thus:

hn+1
j − hnj

∆t
+

∗hn
j+ 1

2

un
1,j+ 1

2

− ∗hn
j− 1

2

un
1,j− 1

2

2∆x
+

∗hn
j+ 1

2

un
2,j+ 1

2

− ∗hn
j− 1

2

un
2,j− 1

2

2∆x
= 0(11)

un+1
1,j+ 1

2

− un
1,j+ 1

2

∆t
+ (u1∂xu1)|nj+ 1

2
+ g

ηn+1
j+1 − ηnj

∆x
= −

pn+1
2,j+1 − p

n+1
2,j

2∆x
(12)

un+1
2,j+ 1

2

− un
2,j+ 1

2

∆t
+ (u2∂xu2)|nj+ 1

2
+ g

ηn+1
j+1 − ηnj

∆x
= −

pn+1
2,j+1 − p

n+1
2,j

2∆x
−
pn+1

3,j+1 − p
n+1
3,j

2∆x
(13)

1

2

wn+1
1,j − wn1,j

∆t
+

1

2

wn+1
2,j − wn2,j

∆t
= −2

0− pn+1
2,j

hn+1
j

, (14)

1

2

wn+1
2,j − wn2,j

∆t
= −2

pn+1
2,j − p

n+1
3,j

hn+1
j

, (15)

wn+1
1,j − w

n+1
2,j + hn+1

j

un+1
1,j+ 1

2

− un+1
1,j− 1

2

2∆x
= 0, (16)

wn+1
2,j − 0 + hn+1

j

un+1
2,j+ 1

2

− un+1
2,j− 1

2

2∆x
= 0. (17)

Here we have taken h1 = h2 = h/2, zero pressure along the surface (p1 = 0), and

zero vertical velocity along the bottom (w3 = 0). In (11) the notation ∗ means the

upwind approximation

∗hnj+ 1
2

=


hnj , if (un

1,j+ 1
2

+ un
2,j+ 1

2

) > 0

hnj+1, if (un
1,j+ 1

2

+ un
2,j+ 1

2

) < 0

max(ηj , ηj+1) + min(dj , dj+1), if (un
1,j+ 1

2

+ un
2,j+ 1

2

) = 0

(18)

Moreover, the advection terms uk∂xuk, for k = 1, 2 are calculated using the mo-

mentum conservative approximation described in Stelling and Duinmeijer [2003].

The hydrodynamic terms p2, p3 in (12-15) are calculated using a predictor-

corrector method as follows. For each time step, the hn+1 are computed from (11).

The predicted values of u1, u2 are then computed from (12,13) on setting the right-

hand side to zero (omitting hydrodynamic terms), and these predicted values (in-

dicated with )̂ are corrected using

un+1
1,j+ 1

2

= û1,j+ 1
2
− ∆t

2∆x

(
pn+1

2,j+1 − p
n+1
2,j

)
, (19)

un+1
2,j+ 1

2

= û2,j+ 1
2
− ∆t

2∆x

(
pn+1

2,j+1 − p
n+1
2,j + pn+1

3,j+1 − p
n+1
3,j

)
. (20)

In this correction step, the dynamic pressure values pn+1
2 , pn+1

3 , are needed, and

they are calculated first. Now adding two times (16) to (17) provides the equation

wn+1
1,j + wn+1

2,j + hn+1
j

un+1
1,j+ 1

2

− un+1
1,j− 1

2

2∆x
+ hn+1

j

un+1
2,j+ 1

2

− un+1
2,j− 1

2

∆x
= 0, (21)
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and substituting (14, 15, 19, 20) into (21) results in a linear system of equations for

pn+1
2,j , p

n+1
3,j that can be solved using an iterative method. In summary, our compu-

tational procedure is as follows.

1. Compute hn+1 from (11).

2. Compute the predicted values of û1, û2 using (12, 13) with zero right hand sides.

3. Solve the linear system for pn+1
1 , pn+1

2 by successive over-relaxation method.

4. Compute the corrected values of un+1
1 , un+1

2 using (19, 20), respectively.

5. Compute wn+1
2 using (15), and wn+1

1 using (14).

It is notable that the staggered scheme of the SWE hydrostatic numerical model is

just the predictor step; for every time step we compute hn+1 and un+1
1 , un+1

2 from

step 1 and step 2, respectively. For simulation that contains dry areas, the following

wet-dry procedure should be implemented; if hn+1 is less than a small positive

number (which means the corresponding cell is dry enough), step 2 is replaced by

simply set un+1
1 and un+1

2 to zero. Further details on this staggered scheme can be

found in Pudjaprasetya and Magdalena [2014]. This scheme will be used later in the

simulation of waves propagate towards Aceh coast that involves moving shoreline.

2.1. Dispersion relation

We now discuss the dispersion relation of the discrete equations. Substituting
hnj
unk,j+1/2

wnk,j
pnk,j

 =


H

Uke
i∆x/2

Wk

Pk

 ei(kj∆x−ωn∆t). (22)

into (11-17) yields a system of linear equations with seven unknowns H,Uk,Wk, Pk,

for k = 1, 2. After some algebra, we can simplify the coefficient matrix as follows:

−iW id0K
2E

id0K
2E 0 0 0 0

iEgK −iW 0 0 0 iEK
2 0

iEgK 0 −iW 0 0 iEK
2

iEK
2

0 id0k
2 0 1 −1 0 0

0 0 id0K
2 0 1 0 0

0 0 0 −iW 0 − 8E
d0

4E
d0

0 0 0 0 −iW 4E
d0
− 4E
d0
,


(23)

with E = eiω∆t/2, W = 2 sin(ω∆t/2)
∆t , K = 2 sin(k∆x/2)

∆x . The determinant of this

coefficient matrix is

1

16

i

d2
0

E2W
(
d4

0K
4W 2 − 16d3

0gK
4 + 96d2

0K
2W 2 − 256d0gK

2 + 256W 2
)
,
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and we have a non-trivial solution to the system of linear equations when the de-

terminant is zero — producing the dispersion relation of the discrete scheme(
ω

ω0

)2

=
16(d2

0k
2 + 16)

d4
0k

4 + 96d2
0k

2 + 256
, with ω2

0 ≡ gk2d0, (25)

on invoking lim∆t→0W = ω and lim∆x→0K = k. The ratio (ω/ω0)
2

is plotted

together with the exact dispersion(
ωexact
ω0

)2

=
tanh(kd0)

kd0
(26)

in Figure (3), showing that the dispersion relation of our discrete model closely

approximates the exact analytical dispersion relation (26) for a wide range of kd0.

Indeed, for 0 < kd0 < 7 the numerical dispersion relation (25) approximates the

analytical dispersion (26) with an error less than 1.1%.

Fig. 3. Dispersion relation (25) in comparison with exact dispersion relation (26).

We next present a test case of standing wave simulation in a closed basin. In

a computational domain [0, L = 10m], an initial monochromatic wave η(x, 0) =

0.1 cos kx with k = π
10 , over a water depth of d0 = 10 m is considered. This is a

dispersive wave since kd0 = π, but it is almost linear since the amplitude to depth

ratio for this wave is small. The exact solution from linear wave theory is

η(x, t) = 0.05
(

cos(
π

10
(x− ct) + cos(

π

10
(x+ ct))

)
, (27)

with the wave speed c = ω/k, and frequency ω given in (26). For the computation,

we took ∆x = 0.05, ∆t = 0.01. The numerical wave signal at x = 17.5 m and the

exact solution are plotted in Figure 4. Wave signals calculated using the hydrostatic

SWE model and the two-layer non-hydrostatic model are plotted in Figure 4 (top)

and (bottom), respectively. The hydrostatic model produces an incorrect wave fre-

quency ω = 3.14 sec−1, whereas the two-layer non-hydrostatic model predicts a
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wave frequency ω = 1.795 sec−1 near the exact analytical frequency ωexact = 1.77

sec−1.

Fig. 4. Wave signal at x = 17.5 m (top) calculated using SWE hydrostatic model, (bottom)
calculated using non-hydrostatic model.

2.2. Solitary wave simulation

Our second test of the non-hydrostatic scheme was to simulate a solitary wave,

propagating undisturbed in shape with constant velocity. Let A be the wave ampli-

tude, d0 the water depth, and λ the wave speed. The exact solitary wave is given

by

η(x, t) = A sech2ξ(x− λt), λ =
√
g(d0 +A), ξ =

√
3A

4d2(d+A)
. (28)

In a computational domain [0, 1000] with grid partition ∆x = 1, ∆t = 0.1, the initial

solitary wave with parameters A = 1 and d0 = 10 was adopted. The calculated

solitary waves at subsequent times are plotted together with the exact solitary

waves in Figure 5, showing that our non-hydrostatic numerical scheme can calculate

a solitary wave that closely conforms to the analytical solitary wave over a long

period of time. The good agreement with the analytical solitary wave indicates that

our scheme can balance the non-linearity and dispersion correctly.
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Fig. 5. Numerical solitary wave together with the exact solitary wave at subsequent times t =
0, 7, 14, 21 sec.

3. Transient waves generated by seabed thrusts

A two-layer non-hydrostatic scheme was used to simulate the development of tran-

sient waves generated by various seabed thrusts. It is notable that our scheme

can handle active generation, in which a time-dependent bottom motion −d(x, t)

can be incorporated. To be precise, the term hnj in (11) is in fact h(xj , t
n) ≡

η(xj , t
n) + d(xj , t

n).

3.1. Downwards bottom thrust

The main experimental benchmark test for tsunami generation scheme is the work

by Hammack [1973]. Hammack’s conducted experiments in a very long wave tank

of length 31.6 m and width 39.4 cm. In the downward bottom experiment, a section

of the bed fell to a maximum displacement ζ0 in an asymptotic manner, governed

by

d(x, t) = d0 − ζ0(1− e−αt)H(b2 − x2), (29)

where H denotes the Heaviside step function. A characteristic time tc may be de-

fined as the time for the bottom thrust to reach 2/3 of the maximum displacement

ζ0 — cf. Figure 6 (right). The parameter tc can be adjusted to simulate various

types of motion (impulsive, intermediate or slow), but here we focus on impulsive

motion.

We mimicked Hammack’s downward bottom thrust experiment, where the undis-

turbed water depth was d0 = 5 cm and the downward section had dimensions b = 61

cm and ζ0 = −0.5 cm. Our computation was conducted in a computational domain

[0, L] using the spatial and time steps ∆x = b/12 cm and ∆t = 0.004 sec. A fully

reflecting wall was prescribed at the right and left computational boundaries by tak-

ing u(0, t) = 0, u(L, t) = 0, and the simulations were stopped before any reflections

occurred. As a result of the downward bottom motion, the water surface drops to

a maximum displacement of −ζ0 — and after reaching this maximum the surface
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Fig. 6. Bed deformation model: (left) a downwards bottom thrust, (middle) an anti-symmetric
bottom thrust, (right) the exponential time-dependent function (1 − e−αt) and the characteristic
time tc.

returns to the still water level, except for an oscillatory tail.

Fig. 7. Time series of surface elevation η/d0 w.r.t t
√
g/d0−(x−b)/d0 resulting from a downward

bottom motion. The waves were recorded at locations (a) (x− b)/d0 = 0, (b) 20, (c) 180, (d) 400.

Figure 7 presents a time series of the surface elevation computed using our

non-hydrostatic scheme, in comparison with Hammack’s results. The generated free

surface flow was recorded at the four locations (x − b)/d0 = 0, 20, 180, 400, and

plotted against the shifted time variable t
√
g/d0 − (x − b)/d0. The results show

that our non-hydrostatic numerical scheme can accommodate bottom motion. The
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generated wave in Figure 7 (a) is in agreement with Hammack’s experimental wave.

Simulation at later times, when the main wave has propagated into the domain,

our numerical wave signal nicely conform the experimental and numerical results of

KdV model, both are taken from Hammack [1973]. Further comparisons with various

experiments of Hammack [1973], and also with other numerical models in Lynett

and Liu [2002] and Fuhrman and Madsen [2009], can be found in Pudjaprasetya

and Tjandra [2014].

3.2. Anti-symmetric bottom thrust on a constant topography

Next, we relaxed the hard wall left boundary and observed the development of tran-

sient waves resulting from an anti-symmetric bottom motion. In the d’Alembert

solution, the initial one-dimensional wave splits into two waves of the same form,

one propagating to the left and the other to the right. The linear non-dispersive

model predicts the wave shape to be the same as the initial displacement, which may

evolve to different waveforms depending on water depth. For tsunami propagation,

it is important to know how the waves deform under a fully nonlinear dispersive

model, since it determines tsunami feature that approaches a coastline.

Our first investigation used the analytical formula of transient waves developed

by a sudden tilting of the bottom reported in Mei et.al. [2005]. We considered an

anti-symmetric bottom motion

d(x, t) = d0 − ζ0H(t) (H(x+ b)− 2H(x) +H(x+ b)) , (30)

where H denotes the Heaviside function and d0 the initial constant depth. For this

anti-symmetric bottom thrust (30), the resulting leftward and rightward propagat-

ing waves are symmetric with respect to the origin. The explicit formula for the

rightward propagating wave derived from the linearized model is

ζ(x, t) = D̃(0)

(
2√
ghh2t

) 2
3

Ai′

((
2√
ghh2t

) 1
3

(x−
√
ght)

)
, (31)

with

D̃(0) = −
∫ ∞
−∞

xHodd
0 (x) dx, Hodd

0 (x) =
dd

dx
. (32)

The above formulation corresponds to ω2 ≈ gk(kd0 − 1
3d

3
0k

3), a two-term ap-

proximation of the well known water wave dispersion relation ω2 = gk tanh kd0,

and we expect (31) to hold for intermediate or deep-water areas. Moreover, the

main feature of the resulting surface wave is given by Ai′(z) as depicted in Figure

8. This encoutaged us to study transient wave development resulting from an anti-

symmetric bottom motion.

We conducted further simulations using the bottom motion (30) over a flat

depth d0, where the computation domain was [0, 120 km] and the bottom thrust
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Fig. 8. The curve of Ai′(z) as a function of z, which shows a train of waves with increasing
amplitude led by a negative wave.

was located at 40 km. We took the parameters ζ0 = 10 m, b = 1919.4 m for the

anti-symmetric bottom thrust, tc = 2 sec, and the gravity g = 9.8 m/sec2; and

∆x = 383.9 m and ∆t = 0.2 sec for the spatial and time steps. These parameters

were also used in the simulation over Aceh bathymetry, given in the next subsection.

Thus the anti-symmetric bottom (30) was set in motion, generating a propagating

surface wave. In the first two simulations, the bottom was flat: d0 = 600 m (shallow

water depth) and d0 = 1100 m (intermediate depth).

Fig. 9. The right running part of the transient wave after 8 minutes of propagation over (top) a
shallow depth d0 = 600 m, (bottom) an intermediate depth d0 = 1100 m.

In Figure 9 the development of transient waves over a flat depth is presented. In

response to the anti-symmetric bottom thrust, in both Figures 9 (top) and (bottom)

a package of wave trains developed preceded by a negative wave front, but quite

different features were observed. In the case of the intermediate water depth, due
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to a stronger dispersive effect the developed wave train package has features like

the Ai′ function, where the first pulse is followed by the second and third pulses,

etc.. In this simulation, the amplitude of the third pulse is larger that the first two.

However, the same bottom thrust at a shallower depth develops different tsunami

wave trains. In this case, the amplitude of the first wave is the largest, and its max-

imum amplitude exceeds the maximum amplitude in the intermediate depth case

— cf. Figure 9 (top).

On their way to the beach, the wave packages passing over a continental shelf

undergo shoaling effects where the velocity and wavelength decreases and their

amplitude increases, but the main features stay the same, with the rightward prop-

agating wave packages is preceded by a leftward propagation. This may explain a

phenomenon often reported — viz. that the arrival of a tsunami arrival is preceded

by the ocean receding from the shoreline. Furthermore, depending on the depth,

different types of wave packages may develop. Thus over a relatively shallow region

the leading wave has the largest amplitude, whereas over a relatively deep region

the the second or the third wave has the largest amplitude, as in the 1868 tsunami

in Africa and the 1946 tsunami in Hilo, Hawaii — cf. Bryant [2008]. It was reported

that many people were killed by the third wave, which was higher that the preceding

two.

3.3. Anti-symmetric bottom thrust over Aceh bathymetry

The anti-symmetric bottom thrust was also applied to a cross-sectional bathymetry

representative of Aceh, Sumatra, Indonesia. Our computation was directed to a

simulation of a typical tsunami surface wave propagating over the Indian Ocean

towards the coastline.

The Indian Ocean bathymetry near Aceh obtained from NOAA, with one minute

resolution, is displayed in Figure 10 (left). The hypocentre of the 2004 Indian

Ocean earthquake is indicated as a black circle, and the cross-section (95.0278oE,

3.2335oN)-(96.6583oE, 3.6959oN) connects this hypocentre to the nearest Aceh

coast. The bathymetry along this cross-section is depicted in Figure 10 (right),

and using this bathymetry we simulated a transient wave developed by the anti-

symmetric bottom thrust.

Parameters for the bottom motion used here were the same as in the previous

runs, and the resulting transient wave is shown in Figure 11. If we follow the right-

ward propagating wave train: the wave approaching the eastern coast is preceded

by a wave trough. This means that the tsunami arrival along Aceh beaches was pre-

ceded by a drawback from the shoreline, exposing a normally submerged seabed,

which Bryant [2008] reported was not observed along the African or any other east-

facing coast. Following the right running waves, they will arrive on a relatively
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Fig. 10. Indian Ocean bathymetry near Aceh with the color bar representing water depth (m)
(left) and cross-section (right) at (95.0278oE, 3.2335oN)-(96.6583oE, 3.6959oN).

Fig. 11. Transient wave after 8 minutes of propagation over cross-sectional Aceh bathymetry.

shallow water area. Computation is conducted using the SWE hydrostatic model

including wet-dry procedure, and the wave profiles at subsequent times are plotted

in Figure 12, where three waves are clearly visible. Of these waves, the second that

appears to have the largest amplitude must be expected to hit the coast with the

largest energy. In passing, we note this hypothetical tsunami simulation may not be

realistic, for which detailed data related to the earthquake and an accurate model

for subduction slab are needed.

4. Conclusions

A non-hydrostatic numerical scheme to solve the two-dimensional Euler equations

using a two-layer approach was considered. For kd0 ∈ [0, 7], the dispersion relation

of the scheme agrees with the exact dispersion relation with an error less than 1.1%.
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Fig. 12. Wave profiles over a shallow water area of Aceh coast at subsequent times.

Moreover, the scheme produced a negative wave that conforms with Hammack’s ex-

perimental test, in response to a downward bottom thrust. For an anti-symmetric

seabed thrust, the simulated wave developed a package of free surface wave trains

preceded by a negative wave front, which may explain the observed phenomenon
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that an incoming tsunami is preceded by an apparent ocean withdrawal from the

shoreline due to a wave trough, which is then followed by a pulse that bring about

a strong impulsive flooding. In some cases the second or the third wave pulse may

have larger amplitude than the first. Finally, we emphasise that the precise form of

the tsunami wave train approaching a shore strongly depends on the precise bottom

motion and the inshore topography.
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