Main content

Contributors:

Date created: 2025-01-28 07:07 PM | Last Updated: 2025-02-14 07:06 PM

Identifier: DOI 10.17605/OSF.IO/GHVP9

Category: Project

Description: The Functional Annotation of Animal Genomes (FAANG) consortium aims to annotate animal genomes across species, and work in the horse has substantially contributed to that goal. As part of this initiative, chromatin immunoprecipitation with sequencing (ChIP-seq) was performed to identify histone modifications corresponding to enhancers (H3K4me1), promoters (H3K4me3), activators (H3K27ac), and repressors (H3K27me3) in eight tissues from two Thoroughbred stallions: adipose, parietal cortex, heart, lamina, liver, lung, skeletal muscle, and testis. The average genome coverage of peaks identified by MACS2 for H3K4me1, H3K4me3, and H3K27ac was 6.2%, 2.2%, and 4.1%, respectively. Peaks were called for H3K27me3, a broad mark, using both MACS2 and SICERpy, with MACS2 identifying a greater average number of peaks (158K; 10.4% genome coverage) than SICERpy (32K; 24.3% genome coverage). Tissue-unique peaks were identified with BEDTools, and 1-47% of peaks were unique to a tissue for a given histone modification. However, correlations among usable reads, total peak number, and unique peak number ranged from 0.01 to 0.92, indicating additional data collection is necessary to parse technical from true biological differences. These publicly available data expand a growing resource available for identifying regulatory regions within the equine genome, and they serve as a reference for genome regulation across healthy tissues of the adult Thoroughbred stallion. doi: 10.3389/fgene.2025.1534461

Files

Files can now be accessed and managed under the Files tab.

Citation

Tags

ChIP-seqFAANGFunctional AnnotationHorseStallion

Recent Activity

Unable to retrieve logs at this time. Please refresh the page or contact support@osf.io if the problem persists.

OSF does not support the use of Internet Explorer. For optimal performance, please switch to another browser.
Accept
This website relies on cookies to help provide a better user experience. By clicking Accept or continuing to use the site, you agree. For more information, see our Privacy Policy and information on cookie use.
Accept
×

Start managing your projects on the OSF today.

Free and easy to use, the Open Science Framework supports the entire research lifecycle: planning, execution, reporting, archiving, and discovery.