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ABSTRACT 

 
Aim: The aim of this study is to assess the presence and implications of statistical artefacts created by a 
commonly used indicator of injury risk in both research and practice: the ratio between acute workload (AL) 
and chronic workload (CL), named ACWR. 
Methods: Using previously published data, we generated a contrived ACWR by dividing the AL by fixed and 
randomly generated CLs, and we compared these results to real data. We also reproduced previously reported 
subgroup analyses, including dichotomising players’ data above and below the median CL. Our analyses follow 
the same, previously published modelling approach. 
Results: After reproducing the original analyses with only the ACWR showing effects compatible with higher 
injury risk (odd ratios, OR: 2.45, 95%CI 1.28 to 4.71), we demonstrated similar findings by dividing AL by the 
“contrived” fixed and randomly generated CLs: OR=1.95 (1.18 to 3.52) dividing by 1510 (average CL); and OR 
using random CL= 1.53 (mean), ranging from 1.16 to 2.07. Random ACWR calculated reducing the variance of 
the original AL further inflated the ORs (mean OR=1.89, from 1.42 to 2.70). ACWR causes artificial 
reclassification of players compared to AL alone. Finally, neither ACWR nor AL alone confer a meaningful 
predictive advantage to an intercept-only model, even within the training sample (c-statistic = 0.574/0.544 
vs. 0.5 in both ACWR/AL and intercept-only models, respectively). 
Discussion: ACWR is a rescaling of the explanatory variable (AL, numerator), in turn magnifying its effect 
estimates and decreasing its variance despite conferring no predictive advantage. Other ratio-related 
transformations (e.g., reducing the variance of the explanatory variable and unjustified reclassifications) 
further inflate the OR of AL alone with injury risk. These results also disprove the etiological theory behind 
this ratio and its components. We suggest ACWR be dismissed as a framework and model, and in line with 
this, injury frameworks, recommendations, and consensus be updated to reflect the lack of predictive value 
of and statistical artefacts inherent in ACWR models. 
 
Keywords: training load; injuries; ratio; artefacts; acute; chronic.  
 
 
 
 

INTRODUCTION 
 
The number of studies examining the relation between 
training load and injuries in athletic populations have grown 
exponentially in recent years, and at present, there are over 
100 studies on the topic.1-4 To find an association between 
training load and injuries, various measures of training 
exposure have been created. The most popular metric, 
commonly used as a gold standard reference “model” for 
several international guidelines, is the acute:chronic 
workload ratio (ACWR).1,5-9 This ratio is obtained by dividing 
a ‘fatigue’ component by a ‘fitness’ component. The ‘fatigue’ 
component is represented by the acute workload (AL), 
commonly calculated using the workload of the week 
preceding the injury, while the ‘fitness’ component is 
represented by the chronic workload (CL), which is the 
average workload of the four weeks preceding the injury.6,7 
The AL compared to the CL as measured using this ratio is 
widely considered to reflect the risk of injury in athletic 
populations.  
 
ACWR has recently taken sports science and medicine by 
storm. It has consistently been claimed that the ACWR is 
associated with injury risk,1,5,7,10-13 making it a useful metric 

to reduce the injury risk or prevent injury.7 This metric has 
been popularised by several editorials and consensus in high 
impact factor sport science and medicine journals.5,7,10-13 
Speaking to their influence, these papers are amongst the 
most highly cited in the field. The rise in the attention 
received by “load management” in professional practice has 
also been fuelled by these studies. The influence of ACWR 
has even bled into the international circuit; it is being used 
in the development international guidelines and consensus 
statements by leading organisations such as the 
International Olympic Committee (IOC).12 ACWR is 
ubiquitous, and is included in national athlete management 
systems and commercially available software under the 
assumption that it can help reduce injuries. 
 
Adaptations of ACWR have been proposed using different 
ways to calculate the AL and CL, such as the exponentially 
weighted moving average (EWMA),14,15 coupled or 
uncoupled (AL included or not in the CL calculation),16 and 
different time windows.17,18 Regardless of the method, all 
have been suggested to work (i.e., are associated with 
injury); yet, all have conserved a common characteristic: 
they are all ratios. Researchers have warned about the use 
of the ACWR because of a ratio’s failure to normalise the 
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numerator by the denominator and the risk of artefacts (i.e. 
it adds unnecessary noise).19 However, not only did these 
warnings not gain traction,2 they have been largely ignored, 
and in doing so, ignore issues that have been highlighted by 
statisticians for decades.19-21  
 
The aim of this study is to explicate the ratio effects of the 
ACWR. By using a previously published dataset from 
professional football players, where originally, a relation 
between ACWR and injury was reported, we demonstrate 
the artefacts introduced through the use of a ratio. 
 

METHOD 

Dataset  

Although this demonstration could also be achieved with 
simulated data, we used a previously published dataset to 
show the impact on real world data and results. The details 
of the data collection can be found in the original manuscript 
that has been made freely accessible online by the publisher. 
The manuscript does not comply with the Strengthening the 
Reporting of Observational Studies in Epidemiology or 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis recommendations for 
reporting since it is a methodological study.22,23 

Participants 

Briefly, the players’ individual training load was collected on 
a professional Italian Serie A team, on 34 players (age: 26 ±5 
y; height: 182 ± 5 cm; body mass: 78 ± 4 kg) over 3 
competitive seasons (2013/14, 2014/15, and 2015/16). The 
dataset was the same used by Fanchini et al.,24 but we 
deleted the individual player loads with missing data to 
allow better comparisons between analyses and to avoid 
any missing data imputation potential influence. 36 weekly 
loads were excluded out of 1955 (1.8%) and two injuries out 
of 72. The final dataset included 1919 individual weekly 
sessions and 70 injuries. Descriptive data are presented in 
Table 1.  

Training load and injury 

Internal training load was quantified using the session Rating 
of Perceived Exertion (RPE) method; that is, by multiplying 
the training session duration by the corresponding RPE value 
determined using the Borg’s CR10 scale.25 Using these 
training loads, we calculated:  
 
1. AL, average training load of 1 week preceding the 

injury; 
2. CL, rolling averages of 4, 3 and 2 weeks preceding the 

injury including the AL in the calculation of CL (i.e., 
coupled) as in the original study; 

3. CL, rolling averages of preceding the injury without 
including the AL in the calculation of CL (i.e., uncoupled) 
for the calculation of #7: 

4. ACWR, ratio between AL and CL; 
5. Contrived ACWR, ratios between AL and fixed and 

randomly generated values of CL; 
6. Week-to-week change, difference between ALs the two 

weeks preceding the injury; 
7. AL-CL difference, absolute AL-CL difference (coupled 

and uncoupled); 
 
Data were also categorised using quartiles, and two groups 
based on the median CL value were also determined.  
Injuries were classified according to international 
guidelines,26 and recorded by medical staff. Only non-
contact, time loss injuries were used for the analysis. 

ACWR variations 

For this study we created contrived ACWRs using fixed CLs: 
500, 1000, 1510 (corresponding to the average CL of the 
sample), 2000, and 2500. These represent the effect of a 
simple linear rescaling of the AL, as no variance is 
contributed by the CLs. 

 
In addition to fixed CLs, we also calculated ACWR values 
using independently and identically distributed randomly 
generated data (from a normal distribution). We first 
generated samples having the same mean and standard 
deviation (SD) of the original sample, and two sets with 
lower (SD original 282/2=141 AU) and higher (SD original 
282+141=423 AU) values than the original SD. We generated 
25, 20 and 20 ACWR values for each condition, respectively. 
Second, we performed these simulations (100/condition) for 
a range of mean chronic workloads (500 through 2500, step 
size = 100; original mean = 1510) and coefficients of 
variation (CV) (5% through 50%, step size = 5%; original CV ≈ 
20%).  In doing so, we covered a large sampling space and 
investigated the effects of different magnitudes and spreads 
of CLs, which were independent of time, individual, and thus 
true CL. Estimates from these random models were 
calculated using trimmed mean, excluding the top and 
bottom 10% of simulated estimates; otherwise, there were 
instances of massive outliers which shifted the mean by 
greater than one order of magnitude. 

Statistical analysis 

All analyses were consistent with that of the previously 
published study: generalised estimating equations (GEE) 
with a logistic link function, robust variance estimation, and 
an exchangeable working correlation matrix. We note that 
GEEs were not chosen because we considered them the best 
way to analyse these kinds of observational studies, but 
rather, to illustrate the potential for artefacts in a way that 
is congruent with the analytical approaches present in the 
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literature. In addition to assessing the resulting odds ratios 
(OR), we also assessed proper scoring rules (Brier), c-
statistics (equivalent to area under the receiving operator 
characteristic curve), and the estimated probabilities of 
injury. If the parameter estimate is statistically significant 
but the model itself does not fit the data well, the overall 
value of the parameter is unclear. We contend that, 
ultimately, we are interested in modelling injury risk, and as 
such, the model should fit the outcome well, statistically 
significant parameter or otherwise. Given the low sample 
size,27 the absolute values of the Brier scores were not 
interpreted; instead, the Brier scores were calculated for 
comparison purposes. Finally, although not shown, similar 
results were obtained with other traditionally used analyses 
and variations (e.g. GEE using Poisson and changing working 
correlation matrix, or logistic regression without accounting 
for repeated measures, etc.).  
 
Mean difference and 95% confidence intervals (95%CI) were 
also calculated for comparing injured and non-injured 
players.  
 

RESULTS 
 
Descriptive data of the explanatory variables used in this 
study are presented in Table 1, including the quartiles used 
for categorising. Depictions of injuries as a function of AL, CL, 
and ACWRs are presented in Figure 1.  
 
The results of the GEE using the original data but without 
using the ACWR, are presented in Table 2. Importantly, the 
results of the original model (ACWR, 4 weeks) indicate 
ACWR as a predictor confers no predictive advantage to an 
intercept-only model, even within the training sample (Brier 
score = 0.035 vs. 0.035; c-statistic = 0.574 vs. 0.5 in ACWR 
and intercept-only models, respectively; AL alone was 
identical to ACWR). Despite this, we investigated and 
quantified the role of different workloads in other models. 
 
Some associations are what would classically be considered 
“statistically significant” (p < 0.05). However, the odd ratios 
(OR) were negligible or their Brier scores and c-statistics 
were comparable to an intercept-only model. These results 
are similar to the ones of the original publication24 and 
directly follow from the distributions of the raw data, which 
indicate that injuries are relatively evenly dispersed across 
AL, CL, and ACWR (Figure 1). The results using the original 
ACWR, the ACWR created using fixed values of CL, and 
dichotomising the players’ data in high and low CL are 
presented in Table 3. All the ORs from the association 
between injury and ACWR values were in the direction of 
increased injury risk, with the exclusion of the analysis of the 
high CL group.  
 

Average point estimates (ORs) obtained by generating 
random CL for the calculation of the ACWRs are presented 
in Figure 2 (large space) and Appendix 1 (small space, 
relative to original sample). The direction of association was 
generally consistent across random models, but the 
magnitude was a function of the mean CL and the coefficient 
of variation of the CL. In all cases, the models had poor 
predictive performance, much like the original model. The 
ORs obtained from GEE using ACWR calculated from random 
CL with the same SD (282 AU) ranged from 1.16 to 2.07. 
Using half the original SD (141 AU) the ORs ranged from 1.41 
to 2.70. Increasing the SD to 423 AU, the ORs ranged from 
0.89 to 1.31. Details (p values and CIs) of this analysis are 
presented in Appendix 1. 
 
In Table 4 we presented the comparison between injured 
and uninjured players’ data for AL, AL divided by the a fixed 
value corresponding to the average original CL (1510 AU), 
ACWR from 4 to 2 weeks and AL or ACWR for the two groups 
classified according to the median CL values. Differences 
between groups are presented with the corresponding 
95%CI.  
 
Crosstab showing the classification of the players’ data point 
according to four categories of AL and four categories of 
ACWR are presented in the Table 5. Crosstabs are for the 
two groups based on median CL separately. Number of 
injuries for each ACWR category are also presented (for low 
CL group we also indicated the original AL category). 
Categories have been created as quartiles (values presented 
in Table 1). The within player relation between AL and CL is 
presented in Appendix 2.  
 

DISCUSSION 

 
We systematically evaluated the ACWR concept by 
comparing it to an acute-to-random workload. When used 
in training load–injury models, the ACWRs creates 
remarkable statistical artefacts in the effect estimates. Here, 
we focus on the outcomes generated by these artefacts and 
provide some preliminary explanations. These findings 
demonstrate that when ACWR is used as an explanatory 
variable, results are always influenced by artefacts and 
artificial alterations. We have also shown that, depending on 
the characteristics of the sample (injury and data 
distribution), these artefacts can result in associations that 
can be statistically significant or compatible with increased 
or decreased injury risk.  
 
The theory behind the use of the ACWR states that, when 
the AL exceeds the CL, an athlete is underprepared and 
hence at higher injury risk. The ACWR would indicate “both 
the athlete’s risk of injury and preparedness to perform”.7 
This concept was linked to the Banister model, which used 
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two components: fitness (represented by the chronic load) 
and fatigue (represented by acute workload). The ACWR has 
also been linked to another similar metric, Total Stress 
Balance, also calculated using the fitness and fatigue 
components of Banister.5-7 7 However, while these two 
reference models were additive, for reasons unbeknownst 
to the authors, ACWR relies on a ratio. Moreover, it was 
suggested that the negative effect of increasing load is 
greater when the CL is lower.28 These models are 
conceptually different insofar as the Banister model 
investigates the effect of fatigue while controlling for fitness, 
while ACWR implies the absolute effect of fatigue changes 
with fitness. 
 
The ACWR approach can be reframed similarly to the 
Banister model by way of stratifying observations based on 
CL. We tested the utility of these stratification procedures 
by reanalysing a previously published dataset. In doing so, 
we did not find any meaningful associations (Table 2). We 
also examined the independent effects of AL, CL, and their 
interaction; again, we did not find any meaningful 
associations with injury risk, suggesting that controlling for 
CL does not confer a meaningful advantage. These results, in 
addition to those of the original study, apparently supported 
this association since ACWR was the only variable found 
significantly related to injury risk (Table 3). Stratifying or 
controlling by CL does not seem to be advantageous, which 
suggests one of two conclusions: (1) ACWR appropriately 
captures the construct we are attempting to model (injury 
risk), or (2) CL does not contain any useful information. We 
performed further analyses to test these competing 
explanations. 
 
If the proposed etiological theory of ACWR was correct, then 
dividing the individual AL by a contrived CL (i.e., a value not 
corresponding to the real CL of each player) should produce 
disparate results from ACWR, since it violates the underlying 
etiological theory. Therefore, we started by simply dividing 
the AL of all the players by the same value (i.e., the average 
CL value, 1510 AU), and this ‘contrived’ CL replaced the 
players ‘real’ CL. Rather than an ACWR, this is an “acute to 
fixed workload ratio.” Surprisingly, the OR was 1.95 (1.08 to 
3.52), which is just slightly lower than the OR from the ACWR 
model (2.45, 1.28 to 4.71). Importantly, our analysis still 
suggested that the acute:‘fixed’ workload ratio performed 
similarly and still yielded a “statistically significant” 
association with injury risk. We repeated the analysis with 
other ‘contrived’ fixed values, and intuitively, by increasing 
or decreasing the denominator, the p-values remained the 
same, while the estimates increased or decreased (see Table 
3).  
 
Therefore, we generated random CL samples with a similar 
mean and SD of the original data, which is the equivalent of 
dividing the AL of a player by the CL of another hypothetical 

random teammate. Since this has no logical basis, it can be 
conceived as a null model to assess the value of CL. Once 
again, we found associations between these contrived 
ACWR values and injury. From these data, we could call 
findings based on ACWR into question—the ACWR appears 
to simply be a linear rescaling of AL alone and provides no 
additional information. What is more, this finding calls into 
question theory behind the ACWR, which may have arisen 
as a post hoc theory from a statistically significant predictor  
rather than one borne and hypothesized a priori from a deep 
theoretical framework (i.e. HARK-ing, Hypothesised After 
Results are Known). Undeniably, the results strongly 
demonstrate that CL does not reflect “preparation’ of the 
players and confer no added value, as even randomly-
generated, ACWRs with contrived CLs perform similarly to 
ACWRs with true CLs. 
 
But why does this happen? Actually, the answer is quite 
simple. By dividing the numerator (AL) by a number, the 
researchers have just rescaled the numerator. The 
parameter estimates from the model correspond to a one 
unit increase in the explanatory variable. When rescaling, 
the unit is still one, but it now corresponds to a different 
quantity in the explanatory variable. The new unit of the 
ACWR indeed corresponds to the amount of the CL; i.e., 1 
unit = 1 CL. If the CL is on average 2000 (AU, meters, etc.), 
the new estimate is now 2000 times the estimate 
corresponding to 1 in the original scale (e.g., 1 AU or 1 m). In 
other words, the scale of the parameter estimate must 
offset the rescaling of the numerator. Since measures like 
ORs (or relative risk, etc.) are multiplicative, the new effect 
is even greater. That is, the model estimates log(OR) as the 
parameter, which is exponentiated to obtain the OR. What 
is multiplicative on the log(OR) scale is exponential when 
brought back to the original OR scale, and thus, the OR is 
raised to 2000. Whatever the number γ of the denominator, 
the “new” OR will be the one of the numerator raised to γ. 
To draw a concrete example, if we have OR=1.001 for 1 m, 
but we want to refer the OR for 1 km, we can divide the 
original variable by 1000. The new OR will be: 1.0011000. 
Simply, this transformation follows from the laws of 
logarithms and magnifies the magnitude of the OR 
estimated using AL alone; when predictor units change, 
parameter estimate units change accordingly.  
 
The rescaling of AL can be, and has been, used to produce 
more impressive parameter estimates. Through simple 
transformations, a difference in AL will generate impressive 
effects when using the ratio. Indeed, in the sub-analysis 
performed to reflect previous studies (e.g., dichotomising 
player data based on a median split of CLs), we found 
appreciable differences in the AL between injured versus 
uninjured player data. As shown in Table 4, the injured 
players in the low CL group have greater ALs. As for the 
whole sample, there is a negligible effect of AL, even if 
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statistically significant (ORs from 1.000 to 1.001). However, 
when the ACWR was used, the OR increases exponentially to 
2.9 (1.6 to 5.1, Table 4). As further confirmation, an even 
greater OR was obtained dividing by the AL by 1510 AU 
compared to “real” CL (3.5, 1.7 to 7.3). Once again, the 
underlying etiological theory (chronic load “protective”) has 
nothing to do with the reasons for these results—rather, 
these results follow directly from the mathematics 
underlying the statistical model.   
 
Dividing the AL by the CL not only changes the properties of 
the mean, but also the variance. Because CL is a temporally 
smoothed version of the AL, it has lower variance, and thus, 
when using it as the divisor, it creates a variable with a lower 
coefficient of variation and smaller mean than AL alone. This 
results in a greater parameter estimate, and also influences 
the p-values and CIs. By generating random CLs with a mean 
similar to the original sample, but enlarging or restricting the 
SD, the point estimates, CIs and p-value are changed 
compared to the AL alone (Appendix 1). Specifically, when 
the SD of the randomly generated CL data was lowered, the 
p-values decreased and ORs increased. This can be also seen 
in the Figure 2B that shows the ORs generated by with 
different CL means and coefficients of variation (i.e. SD). 
While these results can be obtained using both coupled and 
uncoupled ACWRs, the coupled ACWR has additional issues. 
Since the numerator is included in the denominator, the 
variance of the ratio will inevitably be smaller. This 
additional artefact, caused by shrinking the SD, also explains 
why the use of the CL calculated using the average of more 
weeks (or days) is exploits this artefact. Using a rolling 
average in the denominator creates a positive correlation 
between the numerator and denominator. The result of this 
is that large values of AL are attenuated by division by larger 
CLs, hence reducing the variability of the ratio.29  
 
General Problems with Ratios in Predictive Models 
 
While the aforementioned consequences of the ratio 
transformation are sufficient to invalidate the ACWR and the 
etiological theory behind it, we highlight a further problem 
generated by transforming data into a ratio as it results in a 
reclassification. First, we note the differences in properties 
between multiplicative (ratio) and linear scales. Indeed, 
Curran-Everett and others20,30 have warned against the use 
of ratios and percentages in such analyses, in part because 
the values depend on the direction of the comparison. For 
example, if training load is reduced from 1000 to 800 
(meters, AU, etc.), the relative decrease will be 20%, while if 
you increase from 800 to 1000, the relative increase will be 
25%. These multiplicative changes are in contrast to additive 
ones, which are linear.  
 
Second, because ACWRs are a proportion and thus sensitive 
to the denominator, individual players with low absolute ALs 

tend to have greater ACWRs, resulting in model 
miscalibration. For example, injured players with the lowest 
AL values tend to move in the higher category of the ACWR. 
This is evidenced by Table 5, where the data of high and low 
CL groups are presented separately to reproduce a typical 
dichotomisation of the data used in previous studies. 
Individual data with the lowest levels of AL belonging to the 
first quartile (< 1261 AU) moved into the higher ACWR 
categories (226 individual data, 57%); similar reclassification 
can be seen in the other categories. This shift was more 
prevalent in the low CL group since dichotomising by CL 
means also separating by AL. Lower AL values are more likely 
to produce greater ACWR values when AL increases, since it 
represents a larger proportion of the denominator (CL). 
Indeed, there is an obvious relation between AL and CL 
(Figure 2). Similar subgroup analyses have been used to 
support the claim that high CL is protective while low CL 
predisposes athletes to injuries when “spikes” of workload 
occur: studies have reported a stronger association between 
ACWR and injury risk at low compared to high CL.28,31 
Performing the same analysis in this sample (n.b. this was 
not done in the original publication), the ACWR was also 
found to be associated with greater injury risk for the low CL 
group only, thus seemingly supporting previous findings. 
While one may think that this reclassification is appropriate, 
since it appears to account for the increase “impact” of 
increasing load when the player is not “prepared” (i.e. low 
CL), we have already shown that this theory (protection or 
predisposition) does not stand since the CL itself magnifies 
and smooths the effect of AL effect estimates (i.e. just a 
rescaling number). If this theory held true (low CL 
predisposing), we would have found an association between 
AL or AL-CL change and the levels of CL (Table 2), and we 
would not have found similar results when using the 
contrived CL values. This did not occur. Rather, we also 
observed that each of the 12 injured players in the high 
ACWR group came from lower categories of the AL. Three 
were from the first quartile, one from the second and eight 
from the third. This example showed that the reclassification 
is artificial and the ratio gives more “weight” to absolute 
changes at low workloads and more “weight” when the 
workloads increase rather than when they decrease. This 
explains why this reclassification occurred more in the low 
than high CL group. Moreover, from a statistical theory 
standpoint, the “split”-based analysis implies an interaction 
between ACWR and CL; however, not only does this simplify 
to AL alone, but the OR=1.0 (1.0, 1.0) for their interaction. 
Although this adjustment does not have as large an impact 
as rescaling, it still biases the results and creates artificial 
differences between injured and uninjured. Reclassification 
of 12 injured players out of 36 in the high ACWR has a clear 
effect on the results and, as in previous studies, also on the 
calculations of other figures such as injury rate. While in the 
past, similar results have been used to support the 
predisposing effect of low CL. However, the evidence and 
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logic we present suggest this is, instead, another result of 
the combination of statistical artefacts and noise added by 
the ratio, also causing re(mis)classification.  
 
The ACWR creates artefacts generated by the combination 
of the aforementioned factors altering and magnifying the 
effects of the AL (numerator). Depending on the relation 
between AL and injuries, the effect estimates are increased 
and, depending on the distribution of the denominator, they 
are further inflated. Therefore, the ACWR values calculated 
from different smoothing averages (e.g., 2 to 4 weeks) with 
the highest value and lowest SD (Figure 2B) will magnify the 
estimates and influence the p-values and CIs. The use of a 
ratio and further reducing the variance of the explanatory 
variable using other smoothing strategies—such as the 
EWMA, as suggested and used in some studies—suffers 
from the same problems. In addition, they also are not 
conceptually superior since the starting idea of a CL-AL 
interaction is not supported, but rather is just an artefact 
(whatever the mathematical “strategy” to calculate the 
“fatigue” and “fitness” components). Studies showing the 
superiority of ACWR based on EMWA, or the “equivalence” 
between coupled and uncoupled, confirm that these 
methods produce the same artefacts.14,16,32 Similarly, 
explorative studies trying to find the best combination of AL 
and CL time windows to “optimize” parameter estimates 
may just be optimizing these artefacts (involuntary p-
harking).17 Hold-out samples should be used to evaluate the 
effects of optimization, and prediction/model fit should be 
assessed rather than parameter estimation alone. Similarly, 
most arbitrary pre analytical data “treatment” also amplifies 
these artefacts by, for example, changing the variance of the 
AL, CL, and their ratio (e.g. deleting CL below 1 or 2 SD, single 
imputation, etc.).8,17,28 
 
It may seem from the arguments we put forth that the “key” 
metric to focus on is the acute workload. Although we will 
not address this topic in detail here, it is not so 
straightforward. Simply comparing the AL (or any other 
potential factor) of injured versus non-injured is not 
sufficient as the studies from which these data come are 
prone to several potential biases well known in 
epidemiology.33,34 Therefore, it is not a question of 
“statistical analysis” or creating new metrics calculated from 
each other, but rather design and conceptually selecting 
explanatory variables based on a proper conceptual and 
theoretically sound framework, all while controlling for 
confounding factors. Moreover, it is essential that the 
predictive performance of these models be assessed out-of-
sample. If these models are predictive of injury in hold-out 
samples, experimental approaches to manipulating the 
predictors (e.g., acute load) should be employed to assess 
the causal nature of the relationship. This approach is 
essential for causal inference, which is arguably the tacit aim 
of these studies. Indeed, as a evidence of this causal 

interpretation, other than the overinterpretation of the 
studies themselves, we now have international guidelines 
and consensus suggesting how to manipulate these 
prognostic factors (training load metrics) to reduce the 
injury risk, which assumes a causal effect (i.e., a perturbation 
in x results in a change in y). Importantly, this assumption 
has been made in the complete absence of any attempts to 
estimate causal effects and based on results determined by 
artefacts due to data transformations. The interpretation 
should always be based on and commensurate with the real 
nature and goal of the study (descriptive, predictive, causal). 
 
Predictive Value of ACWR and Acute Workload 
 
Although not the primary purpose of this work, we briefly 
explored the in-sample predictive value of the ACWR. 
Despite having a statistically significant and large OR, ACWR 
confers no predictive advantage with respect to injury risk.  
Proper scoring rules are virtually identical between ACWR 
and an intercept-only model (both Brier scores = 0.0351), 
and the intercept-only model has a slightly greater c-statistic 
than the ACWR model (0.574 vs. 0.5). In the ACWR model, 
the average probability of injury of those who were injured 
was 0.039 (Figure 4). We replicated the aforementioned 
analyses using AL-only, and the results were identical, with 
the exception of the c-statistic, which went from 0.574 to 
0.544. From a predictive standpoint, when used in isolation, 
neither AL nor ACWR contain useful information, even when 
assessed in the training sample. 

Conclusion 

We are confident that most of these errors that have been 
made in previous studies were unintentional.  It is also 
reasonable that the authors believe that the reported 
relation between training and injury was authentic, and that 
the etiological theory created to support the ACWR and its 
components was rational. However, as the ACWR model 
fitted popular beliefs so well, it became a self-fulfilling 
prophecy and lowered scientists willingness to critically 
evaluate the construct. The selection of candidate 
prognostic factors may benefit from explorative studies, but 
we urge scientists to avoid procedures that may produce 
statistical artefacts and that focus on the dichotomization of 
effects (e.g., null hypothesis significance testing). In the 
current study, we have demonstrated using published data 
and simulations that:  
 
• the etiological theory developed to explain the relation 

found in some studies between ACWR and injury risk is 
not supported;  

• the ratio is a rescaling procedure, exponentially 
magnifying the effect of the AL; 

• a ratio using averages of the numerator as the 
denominator will have a lower SD, such that a one unit 
increase in the new explanatory variable will 
correspond to a higher ORs; 



   

8 
 

• the ratio also causes artificial and non-physiologically 
justified reclassifications, further influencing the 
results; 

• neither ACWR nor AL contain useful information for 
predicting injury; 

• the findings based on ACWR reported in the literature 
are therefore all affected by artefacts that, depending 
on the data characteristics, resulted in negative, 
positive, or no associations (in this dataset positive 
associations).  
 

Practical applications 

The ACWR and its components should be dismissed. Moving 
forward, time should be focused on selecting and identifying 
appropriate proxy measures and developing reasonable 
causal assumptions. Creating new metrics without 
conceptual reference models and relying on statistical 
significance, especially for prediction, should be avoided. 
The results of previous studies should be reconsidered, and 
authors and editors should make efforts to correct the 
erroneous messages that were disseminated, and their 
associated theoretical frameworks should be revised. 
Finally, international and national organizations and athlete 
management system that base their recommendations on 
the results of these studies should revise their 
recommendations, acknowledging these artefacts and lack 
of predictability. 
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Table 1. Descriptive data of the explanatory variables used in the analyses 

 

  Mean Median SD Range Minimum Maximum Percentiles 
  25 50 75 
Acute Load 1526 1542 442 2977 120 3097 1261 1542 1851 

Chronic Load (4 weeks) 1510 1523 282 1820 437 2257 1328 1523 1718 

Chronic Load (3 weeks) 1511 1524 299 1843 518 2362 1304 1524 1727 

Chronic Load (2 weeks) 1516 1532 333 2366 280 2646 1287 1532 1752 

Week to week difference 20 1 620 4187 -1990 2197 -355 1 377 

Acute - Chronic load (coupled) 15 26 362 2566 -1257 1309 -203 26 249 

Acute - Chronic load (uncoupled) 22 42 457 3405 -1594 1811 -246 42 315 

ACWR 4 weeks 1.016 1.017 0.270 2.841 0.129 2.970 0.867 1.017 1.166 

ACWR 3 weeks 1.014 1.012 0.257 2.473 0.140 2.612 0.871 1.012 1.151 

ACWR 2 weeks 1.010 1.000 0.243 1.842 0.158 2.000 0.886 1.000 1.129 
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Figure 1. Distributions of loads and load ratios for data points where injuries did and did not occur. 

(A) depicts the distribution of acute (top) and chronic (bottom) loads for all data points included. (B) 
illustrates the distributions of acute-to-chronic workload ratios for different lengths of time. The 
yellow indicates data points where no injury occurred, while dark purple indicates data points where 
injuries did occur. Note, the injured data points are relatively uniformly dispersed, indicating that 
neither the raw loads or load ratios will be predictive of injury risk.  
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Table 2. Parameters of various models estimated from original data. 
 

  
B Std. Error 

Wald Exp(B) 95% Confidence Intervals 

  Sig. OR Lower Upper 

Acute workload (AL) 0.000 0.000 0.027 1.000 1.000 1.001 
Week to week AL difference 0.000 0.000 0.022 1.000 1.000 1.001 
Chronic workload (CL) 0.000 0.001 0.969 1.000 0.999 1.001 
AL - CL difference (coupled) 0.001 0.000 0.025 1.001 1.000 1.001 
AL - CL difference (uncoupled) 0.000 0.000 0.107 1.000 1.000 1.001 
       
Acute workload  0.001 0.000 0.011 1.001 1.000 1.001 
CL < 1328 0.334 0.480 0.486 1.396 0.545 3.574 
1329 < CL < 1522 0.216 0.387 0.576 1.241 0.582 2.648 
1523 < CL < 1717 0.020 0.380 0.958 1.020 0.484 2.150 
CL > 1718 (ref) 0.000 . . 1.000 . . 
       
Acute workload 0.002 0.001 0.062 1.002 1.000 1.004 
Chronic workload 0.001 0.001 0.570 1.001 0.998 1.003 
AL * CL 0.000 0.000 0.223 1.000 1.000 1.000 
       
Log(Acute workload) 1.159 0.376 0.002 3.188 1.53 6.65 
Log(Chronic workload) -1.012 0.777 0.193 0.364 0.079 1.67 
       
Week to week AL difference 0.000 0.000 0.021 1.000 1.000 1.001 
Chronic workload  0.000 0.001 0.936 1.000 0.999 1.001 
       
Week to week AL difference 0.000 0.000 0.022 1.000 1.000 1.001 
CL < 1328 -0.073 0.412 0.860 0.930 0.414 2.087 
1329 < CL < 1522 -0.036 0.356 0.920 0.965 0.481 1.937 
1523 < CL < 1717 -0.117 0.363 0.747 0.890 0.437 1.812 
CL > 1718 (ref) 0.000 . . 1.000 . . 
       
AL - CL difference (coupled) 0.001 0.000 0.017 1.001 1.000 1.001 
Chronic workload  0.000 0.001 0.870 1.000 0.999 1.001 
       
AL - CL difference (coupled) 0.001 0.000 0.019 1.001 1.000 1.001 
CL < 1328 -0.093 0.401 0.817 0.911 0.416 1.998 
1329 < CL < 1522 -0.042 0.353 0.905 0.959 0.480 1.914 
1523 < CL < 1717 -0.127 0.363 0.726 0.881 0.432 1.794 
CL > 1718 (ref) 0.000 . . 1.000 . . 
       
AL - CL difference (uncoupled) 0.003 0.001 0.001 1.003 1.001 1.005 
Chronic workload  0.000 0.000 0.285 1.000 1.000 1.001 
AL-CL * CL 0.000 0.000 0.003 1.000 1.000 1.000 
       
AL - CL difference (uncoupled) 0.000 0.000 0.101 1.000 1.000 1.001 
CL < 1328 -0.057 0.403 0.888 0.945 0.429 2.081 
1329 < CL < 1522 -0.010 0.356 0.977 0.990 0.493 1.987 
1523 < CL < 1717 -0.110 0.364 0.764 0.896 0.439 1.831 
CL > 1718 (ref) 0.000 . . 1.000 . . 
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Table 3. Parameters of various models estimated using the original acute:chronic workload ratio 
(ACWR from 2 to 4 weeks) and ACWRs created using fixed values for the chronic workload, for whole 
sample and players’ data dichotomised in two groups based on the chronic load median value. 
 

  
B 

Std. 

Error 

Wald Exp(B) 95% Confidence Interval 

  Sig. OR Lower Upper 

Original ACWR values 
ACWR 4 weeks 0.896 0.333 0.007 2.451 1.276 4.707 
ACWR 3 weeks 1.121 0.296 0.000 3.069 1.718 5.485 
ACWR 2 weeks 1.172 0.388 0.003 3.228 1.510 6.900 
ACWR with fixed values 
Acute/500 0.221 0.100 0.027 1.247 1.025 1.517 
Acute/1000 0.441 0.200 0.027 1.555 1.051 2.301 
Acute/1510 0.667 0.302 0.027 1.948 1.078 3.520 
Acute/2000 0.883 0.400 0.027 2.418 1.104 5.295 
Acute/2500 1.104 0.500 0.027 3.015 1.132 8.032 
Subgroup (chronic load > 1523 AU)     
Acute workload 0.000 0.000 0.529 1.000 1.000 1.001 
ACWR 4 weeks 0.342 0.784 0.663 1.407 0.303 6.542 
Acute/1510 0.316 0.502 0.529 1.372 0.513 3.670 
Subgroup (chronic load < 1523 AU)     
Acute workload 0.001 0.000 0.001 1.001 1.000 1.001 
ACWR 4 weeks 1.276 0.374 0.001 3.583 1.721 7.463 
Acute/1510 1.066 0.292 0.000 2.903 1.639 5.143 
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Figure 2. Results from models using true and random acute-to-chronic workload ratios. (A) fitted 
values (probability) for each real data point included in the model. Even though the acute-to-chronic 
workload ratio has a statistically significant odds ratio that is greater than 1, all probabilities of injury 
are low, and the probabilities of those who were injured do not clearly separate from those who 
were not. This indicates that the model is poorly calibrated and acute-to-chronic workload ratio does 
not contain predictive information, even when “tested” in the training dataset. (B) results for models 
that use random chronic workloads. Left, as mean chronic workload increases and coefficient of 
variation decreases, odds ratios increase—this is a basic statistical property of ratios. Right, c-
statistics or AUCs from random chronic workload models are similar to that from the model that 
uses true chronic workload (cf. 0.574), and all are also similar to an intercept-only model (cf. 0.5). 
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Table 4. Differences between injured and uninjured players 

Explanatory variables (AU) N Mean SD P level 
Mean difference 

95% Confidence Interval 
Effect size 

(pooled SD) Lower Higher 

Acute workload Injured 70 1601 337 0.063 78 -4 161 0.18 
 Uninjured 1849 1523 445 

     
    

 
Acute/1510 Injured 70 1.061 0.223 

0.063 0.052 -0.003 0.107 0.18 
 Uninjured 1849 1.009 0.295 

          
ACWR 4 weeks Injured 70 1.085 0.219 0.010 0.071 0.018 0.125 0.26 
 Uninjured 1849 1.014 0.271 

          
ACWR 3 weeks Injured 70 1.092 0.210 

0.002 0.081 0.030 0.132 0.31 
 Uninjured 1849 1.011 0.259 

         
 

ACWR 2 weeks Injured 70 1.083 0.229 0.009 0.076 0.020 0.131 0.31 
 Uninjured 1849 1.008 0.244 

Subgroup (Chronic > 1523 AU)         
Acute Load Injured 34 1758 290 

0.612 26 -77 130 0.07 
 Uninjured 926 1732 358 

          
ACWR 4 weeks Injured 34 1.011 0.171 0.675 0.013 -0.048 0.074 0.07 
 Uninjured 926 0.998 0.193 

Subgroup (Chronic < 1523 AU)         
Acute Load Injured 36 1453 314 

0.013 140 31 250 0.33 
 Uninjured 923 1313 425 

          
ACWR 4 weeks Injured 36 1.155 0.239 

0.004 0.126 0.043 0.209 0.38 
  Uninjured 923 1.029 0.331 



 

 

Table 5. Cross tabulation to show the reclassification of individual player data 
 

High chronic group ACWR    

(> 1523 AU) < 0.87 0.88-1.02 1.03-1.17 > 1.17 Total 

A
cu

te
 lo

ad
  < 1261 73 7 0 0 80 

1262-1542 37 164 0 0 201 

1543-1851 1 186 105 0 292 

>1852 0 51 264 72 387 

Total 111 408 369 72 960 

  Injured 3 13 16 2 34 

       
Low chronic group ACWR    

(< 1523 AU) < 0.87 0.88-1.02 1.03-1.17 > 1.17 Total 

A
cu

te
 lo

ad
  < 1261 174 168 43 15 400 

1262-1542 0 112 131 36 279 

1543-1851 0 0 119 69 188 

>1852 0 0 2 90 92 

Total 174 280 295 210 959 

  Injured 1 11 12 12* 36 
 
*, n=3 from acute load <1261; n=1 from 1262-1542; n=8 from 1543-1851 
 
 
 
  



   

 

Appendix 1. 
Coefficients, p values, odd ratios (ExpB) with 95% confidence intervals for the odd ratios estimated 
using as explanatory variable the acute:chronic workload ratios calculated dividing each player 
acute workload by randomly generated chronic workload values having the same standard 
deviation than the original chronic workload (282 SD), lower (141 AU) or higher (423 AU). 
 

Parameter B Sig ExpB Lower Upper 

From random CL with SD=282     
Random set 1 0.33 0.11 1.39 0.93 2.08 

Random set 2 0.34 0.10 1.41 0.94 2.11 

Random set 3 0.72 0.01 2.05 1.23 3.42 

Random set 4 0.70 0.00 2.01 1.27 3.18 

Random set 5 0.34 0.15 1.40 0.89 2.22 

Random set 6 0.17 0.38 1.19 0.81 1.74 

Random set 7 0.52 0.01 1.69 1.16 2.46 

Random set 8 0.51 0.02 1.67 1.07 2.58 

Random set 9 0.41 0.10 1.51 0.92 2.47 

Random set 10 0.40 0.02 1.50 1.06 2.12 

Random set 11 0.35 0.12 1.42 0.91 2.21 

Random set 12 0.28 0.14 1.33 0.91 1.94 

Random set 13 0.36 0.04 1.43 1.02 1.99 

Random set 14 0.43 0.03 1.54 1.04 2.29 

Random set 15 0.32 0.21 1.38 0.84 2.27 

Random set 16 0.54 0.08 1.72 0.95 3.12 

Random set 17 0.40 0.07 1.48 0.98 2.26 

Random set 18 0.50 0.05 1.64 1.01 2.67 

Random set 19 0.15 0.56 1.16 0.71 1.89 

Random set 20 0.48 0.04 1.61 1.03 2.50 

Random set 21 0.33 0.15 1.39 0.89 2.19 

Random set 22 0.41 0.06 1.50 0.98 2.31 

Random set 23 0.73 0.00 2.07 1.33 3.21 

Random set 24 0.35 0.19 1.42 0.84 2.40 

Random set 25 0.36 0.19 1.43 0.83 2.47 

     

From random CL with SD=141     
Random set 1 0.66 0.01 1.94 1.22 3.07 

Random set 2 0.77 0.01 2.15 1.24 3.75 

Random set 3 0.66 0.02 1.93 1.10 3.37 

Random set 4 0.51 0.07 1.66 0.96 2.88 

Random set 5 0.52 0.09 1.68 0.92 3.04 

Random set 6 0.66 0.03 1.93 1.05 3.56 



   

 

Random set 7 0.53 0.07 1.69 0.97 2.96 

Random set 8 0.67 0.01 1.96 1.18 3.26 

Random set 9 0.65 0.02 1.91 1.11 3.28 

Random set 10 0.59 0.05 1.81 1.01 3.25 

Random set 11 0.59 0.05 1.81 1.01 3.25 

Random set 12 0.61 0.02 1.84 1.12 3.03 

Random set 13 0.50 0.08 1.64 0.94 2.85 

Random set 14 0.83 0.00 2.30 1.35 3.91 

Random set 15 0.50 0.07 1.65 0.96 2.83 

Random set 16 0.35 0.18 1.42 0.85 2.40 

Random set 17 0.71 0.01 2.03 1.17 3.54 

Random set 18 0.78 0.01 2.17 1.24 3.81 

Random set 19 0.46 0.09 1.58 0.93 2.70 

Random set 20 0.99 0.00 2.70 1.48 4.92 

     

From random CL with SD=423     
Random set 1 0.27 0.16 1.31 0.90 1.91 

Random set 2 0.01 0.39 1.01 0.99 1.03 

Random set 3 0.12 0.07 1.12 0.99 1.28 

Random set 4 0.08 0.38 1.09 0.90 1.30 

Random set 5 0.15 0.22 1.17 0.91 1.49 

Random set 6 0.15 0.03 1.16 1.01 1.32 

Random set 7 0.07 0.55 1.08 0.85 1.36 

Random set 8 0.26 0.02 1.29 1.05 1.59 

Random set 9 0.04 0.76 1.04 0.79 1.37 

Random set 10 0.05 0.63 1.05 0.86 1.28 

Random set 11 -0.12 0.31 0.89 0.71 1.12 

Random set 12 0.04 0.76 1.04 0.82 1.32 

Random set 13 0.12 0.36 1.13 0.87 1.47 

Random set 14 0.24 0.11 1.28 0.95 1.72 

Random set 15 0.14 0.31 1.15 0.88 1.50 

Random set 16 0.23 0.19 1.26 0.89 1.77 

Random set 17 0.24 0.06 1.27 0.99 1.63 

Random set 18 0.26 0.03 1.30 1.03 1.63 

Random set 19 0.01 0.90 1.01 0.82 1.25 

Random set 20 0.17 0.45 1.18 0.76 1.84 
 

  



   

 

Appendix 2. 
Within player relations between acute workload and chronic workloads 
 

 
 
 
 


