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In the psychological literature, there are two seemingly different approaches to inference: that from estimation of posterior intervals and that
from Bayes factors. We provide an overview of each method and show that a salient difference is the choice of models. The two approaches
as commonly practiced can be unified with a certain model specification, now popular in the statistics literature, called spike-and-slab priors.
A spike-and-slab prior is a mixture of a null model, the spike, with an effect model, the slab. The estimate of the effect size here is a
function of the Bayes factor, showing that estimation and model comparison can be unified. The salient difference is that common Bayes
factor approaches provide for privileged consideration of theoretically useful parameter values, such as the value corresponding to the null
hypothesis, while estimation approaches do not. Both approaches, either privileging the null or not, are useful depending on the goals of the

analyst.
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Bayesian analysis has become increasing popular in many fields
including psychological science. There are many advantages to
the Bayesian approach. Some champion its clear philosophical
underpinnings where probability is treated as a statement of belief
or information and the focus is on updating beliefs rationally in
face of new data (de Finetti, 1974; Edwards, Lindman, & Savage,
1963). Others note the practical advantages—Bayesian analysis
often provides a tractable means of solving difficult problems that
remain intractable in more conventional frameworks (Gelman, Car-
lin, Stern, & Rubin, 2004). This practical advantage is especially
pronounced in cognitive science where substantive models are
designed to account for mental representation and processing. As
a consequence, the models tend to be complex and nonlinear, and
may include multiple sources of variation (Kruschke, 2011b; Lee
& Wagenmakers, 2013; Rouder & Lu, 2005). Bayesian analysis,
especially Bayesian nonlinear hierarchical modeling, has been par-
ticularly successful at providing straightforward analyses in these
otherwise difficult settings (e.g., Rouder, Sun, Speckman, Lu, &
Zhou, 2003; Vandekerckhove, Tuerlinckx, & Lee, 2011; Vandeker-
ckhove, 2014).

Bayesian analysis is not a unified field, and Bayesian statisti-
cians disagree with one another in important ways (Senn, 2011)."
We highlight here two popular Bayesian approaches that may seem
incompatible inasmuch as they provide different answers to what
appears to be the same question. We discuss these approaches in
the context of the simple problem where there is an experimental
and control condition and we wish to characterize the evidence
from the data for the presence or absence of an effect.

In one approach, termed here the estimation approach, the
difference between the conditions is represented by a parameter,

! Perhaps such disagreements should be expected given the contentious history of academic statis-
tics. Even null hypothesis significance testing is a contentious hybrid of Fisherian and Neyman-
Pearson schools of thought (Gigerenzer et al., 1989; Lehmann, 1993).
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and the posterior density of this parameter is updated using Bayes’
rule. Two examples of posteriors on effect size are provided by the
curves in Figure 1; in these examples there are 50 observations
per curve. The next step is going from these posteriors to inferen-
tial statements. We highlight two approaches: 1. Lindley (1965), in
his early career, notes that one could examine the highest-density
credible intervals (HDCls). These highest-density credible intervals
contain a fixed proportion of the mass, say 95%, and posterior
values inside the interval are more plausible than those outside
the interval. Examples of these HDCls are shown in Figure 1 as
dashed vertical lines. Values outside the intervals may be consid-
ered sufficiently implausible to be untenable. By this reasoning,
there is evidence for an effect in Figure 1A as zero is outside the
credible interval; there is a lack of evidence for an effect in Fig-
ure 1B as the zero is inside the credible interval. 2. Kruschke
(2012) and Kruschke and Liddell (2017) take a modified version of
this approach, in which the credible interval is compared to a pre-
established region called a region of practical equivalence (ROPE).
ROPEs are small intervals around zero containing only values that
are considered to be practically the same as zero. An example
of a ROPE might be the interval on effect sizes from —.1 to .1,
and this interval is shaded in Figure 1. In Kruschke’s approach,
one concludes that the null hypothesis is false if the HDCI falls
completely outside of the ROPE. If the HDCI falls completely inside
of the ROPE, one concludes that the null hypothesis is (for all prac-
tical purposes) true. If the HDCI partly overlaps with the ROPE,
Kruschke recommends one reserve judgment. By this reasoning,
neither posterior in Figure 1 yields a firm decision though the HDCI
in Figure 1A comes close to being fully outside the ROPE. The fact
that that HDCI both contains the ROPE and is so much wider than
it in Figure 1B might indicate that more data are needed. The key
commonality of these two estimation approaches is that inference
is based on the posterior distributions of key parameters.

Although the posterior-estimation approach seems straightfor-
ward, it is not recommended for drawing conclusions about the
presence or absence of effect by a number of Bayesian psychol-
ogists (Dienes, 2014; Gallistel, 2009; Rouder, Speckman, Sun,
Morey, & lverson, 2009; Wagenmakers, 2007). These authors



instead advocate a Bayes factor approach for drawing such con-
clusions. In Bayesian analysis, it is possible to place probability
on models themselves without recourse to parameter estimation.
In this case, a researcher could construct two models: one that
embeds no difference between the conditions and one that embeds
some possible difference. The researcher starts with prior beliefs
about the models and then updates these rationally with Bayes’
rule to yield posterior beliefs. Evidence from data is how beliefs
about the models themselves change in light of data; there may
be a favorable revision for either the effects or null-effects model.
This Bayes factor approach remains controversial too, and it has
been critiqued as well for being too sensitive to the prior density on
parameter values (see Liu & Aitkin, 2008; Gelman & Carlin, 2017;
Kruschke, 2011a).

From a pragmatic view, Bayes factor and posterior estimation
often lead to the same conclusion when observed effects are large.
This is not too surprising as large effects should be detected by
all approaches. Conclusions may differ, however, when observed
effects are small. Consider for example the posterior in Figure 1A
where the posterior 95% credible interval does not include zero. If
zero is considered sufficiently implausible, this posterior seemingly
provides some evidence for an effect. Yet, the Bayes factor, which
is discussed at length subsequently, is only 2.8-to-1 in favor of the
effect. If we had started with 50-50 beliefs about an effect (vs. a
lack of an effect), we end up with just less than 75-25 beliefs in light
of data. While this is some revision of belief, this small degree is
considered modest rather than substantial (Jeffreys, 1961; Raftery,
1995). Likewise, consider the posterior for Figure 1B where the
posterior 95% credible interval is centered around zero. With the
ROPE inference, there might be a hint of evidence for no effect, but
the width of the credible interval is problematic for firm assessment.
With Bayes factor, however, the evidence is 6.8-to-1 in favor of the
null model. We may state positive evidence for an invariance of
performance across the two conditions.

This divergence in conclusions leaves the nonspecialist in a
quandary about whether to use posterior estimation or Bayes
factors. Here we address this quandary head-on: We will first
draw a sharp contrast between the two approaches and show
that they provide for quite different views of evidence. Then, to
help understand these differences, we highlight a unification that
has run in the Bayesian literature since Jeffreys (1938). We show
that the Bayes factor may be represented as part of estimation
under a certain model specification known currently in the statistics
literature as a spike-and-slab model (George & McCulloch, 1993).
With this demonstration, a key difference between estimation and
a Bayes factor approach comes into full view: it is a difference in
model specification. These spike-and-slab models entail different
assumptions than more conventional models. Our view is that
the assumptions underlying spike-and-slab are the most judicious
ones for most scientific questions. Once researchers understand
these assumptions, they can make informed and thoughtful choices
about which are most appropriate for specific research applications.
Guidance is provided subsequently.

Posterior Estimation

Bayesian posterior estimation is performed straightforwardly
through updating by Bayes’ rule. Let us take a simple example
where a set of participants provide performance scores in each of
two conditions. For example, consider a priming task where the
critical variable is the response time, and participants provide a
mean response time in a primed and unprimed condition. Each
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participant’s data may be expressed as a difference score, namely
the difference between mean response times. Let Y;, i =1,...,n
be these difference scores for n participants. In the usual analy-
sis, a researcher might perform a ¢-test to assess whether these
difference scores are significantly different from zero.

In contrast, Bayesian analysis begins with consideration of a
model, and in this case, we assume that each difference score is a
draw from a normal with mean p and variance o>:

Y; ~ Normal(p,0°), i=1,...,n. [1]

In the following development, we will assume that o2 is known to
simplify the exposition, but it is straightforward to dispense with this
assumption. It is helpful to consider the model in terms of effect
sizes, §, where § = u/c is the true effect size and is the parameter
of interest.

Bayesian analysis proceeds by specifying what is known or
believed about the effect size parameter 6. This information is
expressed as a prior distribution on parameters. In this article, we
use the term prior and model interchangeably as a prior is nothing
more than a model of parameters. Model M provides prior beliefs
on J.

My 8 ~ Normal(0, o3). [2]

The centering of the distribution at zero is interpreted as a state-
ment of prior equivalence about the direction of any possible
effect—negative and positive effects are a priori equally likely. The
prior variance, o must be set before analysis.

It is helpful to explore how the value of this setting affects
estimation. Figure 2A shows this effect. Ten hypothetical values
of Y;, the difference scores, are shown as small line segments
across the bottom (x-axis) of the plot. The sample mean of these
ten is shown as the vertical line. The posterior distributions of §
are shown for three different prior settings. The first prior setting,
oo = .5, codes an a priori belief that ¢ is not much different than
zero. The second prior setting, oo = 2, is a fairly wide setting that
allows for a large range of reasonable effect sizes without mass
on exceedingly large values. The third prior setting, oo = 5000
indicates that researcher is unsure of the effect size, and holds
the possibility that it can be exceedingly large. Even though the
priors are very different, the posterior distributions are quite similar.
We may say that the posterior is robust to wide variation in prior
settings. In fact, it is possible to set 090 = oo to equally weight
all effect sizes a priori, and in this case, the posterior would be
indistinguishable from that for oo = 5000.

This robustness to prior specification in estimation translates to
a robustness in making inferential statements. Figure 2B shows
the case for Lindley’s credible interval approach. Shown is the
minimal observed effect size needed such that zero is excluded
from the lower end of the credible interval. As can be seen, this
value stabilizes quickly and varies little. The same behavior holds
for Kruschke’s ROPE approach as well (dashed lines).

It may be tempting to think that this robustness is a general
property of posterior estimation. We will show it is not. There are
useful models where posterior estimates are not robust to prior
settings. In these cases, the prior settings become theoretically
important parts of the model specification.

Bayes Factors

In Bayesian analysis, it is possible to place beliefs directly onto
models themselves and update these beliefs with Bayes’ rule. Let
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Fig. 1. Examples of posterior distributions of effect size. The intervals between the vertical dashed lines are the 95% highest density credible intervals. The shaded regions are
a small region of posterior equivalence (ROPE). A. The posterior is localized away from zero though not completely away from the ROPE. B. The posterior is localized around
zero though it extends past the ROPE. The conclusions drawn from these posteriors depend on heuristical rules used for interpretation.
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Fig. 2. The dependence of the posterior estimation on prior setting oo. A. Posterior distributions on effect size § for N = 10 and for a sample effect size of .35. for three
settings of 0. The small blue bars denote the observations. The value of o' is known and set to 1.0. B. Minimum observed effect sizes needed such that the posterior 95%
credible interval excludes zero. The two lines are for sample sizes of 10 (top) and 40 (bottom). The results show a robustness to the prior setting of o¢.
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M 4 and M g denote any two models. Let Pr(M ) and Pr(Mp)
be a priori beliefs about the plausibility of these two models. It is
more desirable to state relative beliefs about the two models as
odds. The ratio Pr(M4)/Pr(Mpg) is the relative plausibility of
the models, and for example, the statement Pr(Ma)/Pr(Mzg) =
3 indicates that Model M 4 is three times as plausible as Model
Mp. Odds such as Pr(Ma)/Pr(Mg) are called prior odds
because they are stipulated before seeing data. They may be
contrasted to posterior odds, which are the same odds in light
of the data and denoted Pr(Ma | Y)/Pr(Mg | Y). be the
prior and posterior odds, respectively. Bayes rule for updating to
posterior odds from prior odds is

Pr(MalY)
Pr(MglY)

The updating factor,

_ Pr(Ma)
= PrMp) x B. [3]

. Pr(Y | Ma)
~ Pr(Y | Mg)’

is called the Bayes factor, and it describes how the data have led
to a revision of beliefs about the models. Several authors including
Jeffreys (1961) and Morey, Romeijn, and Rouder (2016) refer to
the Bayes factors as the strength of evidence from data about
the models precisely because the strength of evidence should
refer to how data lead to revision of beliefs. This evidence flows
strictly though the probability of observing data under the models, a
property of inference which is also known as the likelihood principle
(Berger & Wolpert, 1988).

The Bayes factor has a second interpretation stemming from it
being the relative probability of data under models. The probability
of data under a model may be thought of as the predictive accuracy
of that model — the degree to which the model predicted the data.
The data in the equation are the observed data we obtain in an ex-
periment. If the probability of observed data is high, then the model
predicted the observed data to be where they were observed. If
the probability of data is low, then the model did not predict the
observations well. The Bayes factor is the relative predictive accu-
racy of one model over another. The deep meaning of Bayes’ rule
is that the strength of evidence is the relative predictive accuracy,
and this is captured by the Bayes factor in Equation 3.

When we write the Bayes factor as B 4 g, the subscripts indicate
which two models are being compared. A Bayes factor of Bap =
10 means that prior odds should be updated by a factor of 10 in
favor of model M 4; likewise, a Bayes factor of Bag = .1 means
that prior odds should be updated by a factor of 10 in favor of model
M. Bayes factors of Bap = oo and Bap = 0 correspond to
infinite—total—support of one model over the other with the former
indicating infinite support for model M 4 and the latter indicating
infinite support for model M g. We might say in such a case that
one of the models is ruled out (i.e., “falsified”) by the data.

For the simple example of comparing performance in two exper-
imental conditions, we need one model for an effect and a second
model for a lack of an effect (which is also called an invariance). A
suitable model for an effect is the previous model, M; given in (2).
A model for an invariance is given by

Mo :

With this setup, the Bayes factor is straightforward to compute.?

6 =0.

2The Bayes factor between Model M1 and M is

1 ( n2d? ) 4]
exp G
‘/ncrg+1 2("7‘<~>1/(7-(2))

Big =

4 0f 10

Inference by Bayes factor is more dependent on the prior set-
ting o2 than is inference by the preceding posterior-estimation
approach. Figure 3A shows the effects of increasing oo. As can be
seen, the Bayes factor B favors the alternative when o is small
(say, near 1) but decreases toward zero as o¢ becomes increas-
ingly large. Of note is the limit as oo gets increasingly large. These
diffuse priors on effect size in the alternative leads to total support
for the null model over the alternative (Lindley, 1957), and this
result contrasts to that for inference with credible intervals where
inference is stable when oy becomes increasingly large. This result
occurs because the Bayes factor is sensitive to the complexity of
the model, and when the 02 = oo, the alternative can account
for all data equally well, without constraint. Consequently, it is
penalized completely. Figure 3B provides an different view of the
effect of prior setting oo. It shows the minimum positive effect size
need to support a Bayes factor of 3-to-1 in favor of Model M, over
M, and is comparable to Figure 2B. As can be seen, inference
by Bayes factor is more sensitive to prior settings than inference
by estimation. The key region of difference is for increasing prior
variance, o2. As o2 becomes large, greater and greater observed
effect sizes are needed to evidence an effect. This behavior is
in contrast to that for inference by credible intervals (Figure 2B)
where there is stability with increasing prior variance.

At first glance, this dependence of the Bayes factors on the prior
settings may seem undesirable. One fear is that researchers can
seemingly obtain different results by adjusting the prior settings
perhaps undermining the integrity of their conclusions (Gelman &
Carlin, 2017). This dependence seems all the more undesirable
when contrasted to the the robustness of posterior intervals to prior
settings as shown in Figure 2 (Kruschke, 2011a). However, the
situation is far more nuanced. Both Bayesian parameter estimation
and Bayes factor model selection are supported by the same rules
of probability (see Etz & Vandekerckhove, this issue), and the
differences are more subtle and perhaps even more interesting
than they first appear. In the next section we cover a well-known
unification, and with this unification can pinpoint the differences
and make recommendations for researchers.

Before we do so, we should note that from a mathematical
viewpoint, the Bayes factor approach cannot be assailed. The
Bayes factors are the natural, direct, and unavoidable consequence
of Bayes’ rule. They are often critiqued because of the above
robustness issue, but the logical consequences of these critiques
are that either that one should not place beliefs on models or
not use Bayes’ rule for updating these beliefs. The estimation
of posteriors is also mathematically unassailable as it too is the
natural, direct, and unavoidable consequence of Bayes’ rule. The
critical issue is the step between estimation and using estimates to
draw conclusions about the presence or absence of effects. These
rules do not come from Bayes rule, and in this sense they may be
considered heuristics.

Unification

We follow a classic line of unification that has been well recognized
in the statistical literature since Jeffreys (1939). The differences
between the estimation and Bayes factor approach can be under-
stood by combining models M, and M. Figure 4A shows the
combination, which is expressed as a mixture. One component
of the mixture is the usual normal model on effect size (Model
M), and this component is denoted by the curve in Figure 4A.

where d is the observed effect size given by Y /o.

Rouder et al.
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Fig. 3. The dependence of Bayes factor on prior setting 0. A. Bayes factor as a function of o for N = 40 and for an observed effect size of .35. B. Minimum observed effect
sizes needed such that Bayes factor favors the alternative by 3-to-1. The filled circles show the lower and upper bounds of reasonable variation in prior standard deviation.

The other component is a placing mass on the point of zero, and
this component is denoted by the arrow. In this case, the arrow is
half-way up its scale, shown in dashed line, indicating that half of
the total mass is placed at zero, and the other half is distributed
around zero. This model is well known in the statistics literature as
a spike-and-slab model (Mitchell & Beauchamp, 1988). We denote
it by Model M_.® The spike-and-slab model in Figure 4 has two
parameters: the amount of probability in the spike, denoted po,
and the variance of the slab, denoted o2. Figure 4A shows the
case where po = 1/2and o3 = 1.

It is straightforward to update beliefs about § in the spike-and-
slab model using Bayes’ rule.* Figure 4B-C show a few examples
for different observed effect sizes. In all cases, the resulting pos-
terior is in the spike-and-slab form, but the spike has changed
mass and the slab has shifted and rescaled. Figure 4B shows
the posterior for a small observed effect size of 0.1. The spike is

3The density of a spike-and-slab model is given by
f(8) = pos(d) + (1 = po)#(6/00),

where s is the density of the spike, defined next, ¢ is the density of a standard normal, pq is the
prior mass on the spike, and 0(2] is the variance of the slab. The density of the spike, s, is known
as a Dirac delta function and defined as follows: Consider a normal density centered at zero with
standard deviation 7, denoted g(§) = ¢(6/n). The Dirac delta function, s, is defined as the
density in the limit that n — 0:

s(6) = lim ¢ (é) = { o0,
n—0 n 0,

“The resulting posterior density, f(5|Y) is

§ =0,
otherwise.

§ — p1
F81Y) = p1s(8) + (1 — p1)¢ (7) ,

o1

where
(4ot

2
ndo?y

£0

po + (1= po)Bo1
where d is the observed effect size and By is the Bayes factor between Model Mg and M .

p1 =
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enhanced as the effect is compatible with a null effect. The slab
is attenuated in mass, narrowed, and shifted form 0 to about .1.
Figure 4B shows the posterior for a large observed effect size of
0.5. The spike is attenuated as the effect is no longer compatible
with the null, and the slab is enhanced, narrowed, and shifted from
0 to about .5.

How shall we interpret the spike-and-slab specification? The
spike-and-slab specification instantiates the case where the zero
point is theoretically and qualitatively different from the other points.
For instance, in the usual testing scenarios, researchers consider
the “no-effect” baseline to be theoretically and qualitatively different
than effects. The spike-and-slab model instantiates this qualitative
difference, and, consequently, licenses the theoretically useful
categories of “effect” and “no effect.”

There are alternative interpretations that we find somewhat
cumbersome. One is that the spike-and-slab can be viewed not as
a model but as a model-averaging device. Here, the goal is not so
much to define categories of effect and no-effect, but to average
across both of them. Another alternative interpretation comes from
Kruschke and Liddell (2017). Here, the spike and slab are seen
as separate components in a hierarchical model. Accordingly, a
focus on Bayes factors denotes a focus on the choice between
components; a focus on posterior estimation entails parameter
estimation after choosing the slab. We find this view difficult inas-
much as there is no a priori reason to choose the slab to focus on
estimation. If one admits the possibility of the spike, then assuredly
it should affect posterior estimation as well.

The spike-and-slab model is useful for examining whether pos-
terior estimation is always robust to prior settings. In the previous
slab-only model, the prior setting o2 played only a minimal role
so long as o3 was somewhat large. Figure 4D-E show how two
different prior settings, 02 = 1 and o2 = 10 affect parameter
estimates. Here, there is an effect of the prior settings. As as prior
variance is increased, more posterior mass is concentrated in the
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Fig. 4. The spike-and-slab model is a mixture of a spike, shown as an arrow, and slab, shown as the normal curve. A. Prior distribution on effect size with half the mass in the
spike, and the slab centered around zero. B-C. The posterior on effect size § for observed effect sizes of d = .1 and d = .5, respectively, for a sample size of 40. D-E. The
posterior on effect size for prior slab variances of US = 1land ag = 10, respectively for d = .3. F. Critical values needed for stating an effect from posterior Cls as a function

of prior slab variance o7.

spike. The estimate of p in particular is sensitive to prior settings.
Figure 4F shows the critical effect size needed for inferential state-
ments from posterior estimates. It is the analog of Figure 2B, but
for the spike-and-slab model rather than for the slab model. As
can be seen, inference with credible intervals, even with ROPES,
depends on the prior variance setting. The dependency is similar
to that for Bayes factor in Figure 3B.

This similarity in dependency is not too surprising because there
is an intimate relationship between the spike-and-slab posterior
distribution and the Bayes factor By for the comparison between
models M, and M: The Bayes factor describes the change in
the spike. The prior probability of the spike, po, can be expressed
as odds, wo = po/(1 — po). The posterior probability of the spike,
p1, can likewise be expressed as odds, w1 = p1/(1 — p1). The
Bayes factor is the change in odds: wi/wo. In Figure 4B, for
example, the initial odds on the spike were 1-to-1, indicating that
equal mass was in the spike as was in the slab. In light of data, the
posterior odds were 7.4-to-1, or that 88% of the posterior mass was
in the spike and 12% of posterior mass was in the slab. Indeed, the
Bayes factor for this case is Bo1 = 7.4, and this factor describes
the change in odds in the spike in light of data (because originally
they were 1-to-1).

One of the more interesting consequences of spike-and-slab
models is that they display regularization without recourse to hier-

6 of 10

archical structures. The solid curves are posterior means of 6 as a
function of observed effect size d. For the slab-only specification
(Panel A), the estimated mean follows the observed value, and
does so for all prior values of o3. But, for the spike-and-slab speci-
fication (M, Panel B), there is a pull toward zero. In hierarchical
models, this pull is known as shrinkage, and we borrow the term
here. The degree of shrinkage from the spike-and-slab model is
adaptive in that shrinkage toward zero is sizable for small observed
values while there is hardly any shrinkage for large values. The
dynamics are that small observed effect sizes are more compatible
with the hypothesis that there is no effect, and therefore, estimates
are more influenced by the zero value. Large effects in contrast
are more compatible with the hypothesis that there is an effect,
and the estimates are more influenced by the sample effect size.
The amount of adaptive shrinkage depends on the prior setting o2.
As o2 increases, there is more shrinkage to zero as the spike is
relatively more salient. In this regard, the prior setting o2 serves as
a tuning parameter. This adaptive shrinkage is very much like other
regularization approaches such as lasso regression (Lehmann &
Casella, 1998), and it protects researchers from overstating the
importance of modest effects. In this case, if one believes a priori
that zero is special, it should result in much conservatism for small
effects.

The unification through spike-and-slab priors highlights similari-

Rouder etal.



1.0

= Slab Only

Spike-And-Slab

Posterior Mean

-1.0

-0.5 0.0 0.5
Observed Effect, d

1.0

-1.0 -0.5 0.0 0.5 1.0
Observed Effect, d

Fig. 5. A comparison of slab-only (M) and spike-and-slab (M ;) specifications for a moderate sample size of N = 40. A-B: Posterior mean of § as a function of d for a
few prior settings of o—g. The light grey line is the diagonal, and the posterior mean of the slab-only model approaches this diagonal as the prior becomes more diffuse. The
posterior mean in the spike-and-slab model shows adaptive shrinkage where small values observed values result in greatly attenuated estimates.

ties and differences between inference from posterior estimation
and inference from Bayes factors as they are commonly used in
psychology. The similarities are obvious, both methods are sibling
approaches in the Bayes’ rule family lineage. They rely similarly on
specification of detailed models including models on parameters
(priors), and updating follows naturally through Bayes’ rule. There
are differences as well, and the difference we highlight here is that
in model specification. The recommended methods of inference
by estimation, say those proposed by Kruschke, rely on priors
that preclude spikes at set points such as points of invariance.
The Bayes factor approaches we have developed in Guan and
Vandekerckhove (2016), Rouder et al. (2009), Rouder and Morey
(2012) and Rouder, Morey, Speckman, and Province (2012), place
point-mass on prespecified, theoretically important values. It is
this difference in model specification—rather than the difference in
inferential statistic—that leads to some of the most salient practical
differences between the Bayes factor and estimation approaches.

Which Model Specification To Use?

A critical question for researchers is then which model specification
to use. The answer is that the choice depends on the context of
the analysis and the goals of the researcher. As a rule of thumb, if
zero is a theoretically meaningful or important quantity of interest it
makes sense to consider a point mass on zero. The spike-and-slab
model instantiates this qualitative difference, and in the process
license the theoretically useful categories of “effect” and “no effect.”
In the context of this goal of stating evidence for or against effects,
it is reasonable and judicious to use a spike-and-slab estimation
approach.

In the past, we have justified the usage of models with point-
mass at zero as corresponding to theoretically useful invariances
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(Rouder et al., 2009). In most sciences, for example, these in-
variances correspond to scientific laws or useful conservations.
In psychology, however, such justifications may seem abstract.
The current state-of-the-art is that we do not have many laws, in-
variances, or conservations to test (but see, e.g., Donkin, Newell,
Kalish, Dunn, & Nosofsky, 2015, for exceptions).

Does the lack of scientific laws preclude the usage of Bayes fac-
tors in psychology? We think the theoretical coarseness of the field
actually enhances the need for Bayes factors. In our field, there is
usually little theoretical consideration of the metric size of phenom-
ena. For example, we know of no theory of Stroop interference that
anticipates whether effects will be 20 ms or 200 ms even though
these values vary by a factor of 10! Psychologists gain theoretical
specificity by exploring what factors affect phenomena and what do
not. For example, the size of Stroop interference is affected by the
proportion of congruent and incongruent items (Logan & Zbrodoff,
1979); it is not affected by tonic levels of arousal (MacLeod, 1991).
To account for the congruency proportion effect, we may posit
that people maintain low-level expectations about the stimulus to
guide processing, but such a theory does not predict the amount
of the effect. Indeed, our theories, which tend to be verbal, rarely
anticipate or are challenged by metric-level data. In these common
cases, having a statistical model that instantiates the categorical
difference between null effects and effects makes sense. The slab
models where points remain undistinguished cannot provide for
this categorical difference.

Specifications that capture this categorical difference are not
limited to spikes. For example, we could declare a region of equiv-
alence, say an interval —.1 < ¢ < .1, which is theoretically and
qualitatively different than values outside this interval. The model
specification then becomes a mixture of this region with wider slabs,
and its density may be given by () = pu() + (1 — p)o (22,
| University of California, Irvine |
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where u is a density over the equivalence region. Here, the key
is that we assign a probability to each component, and it is that
this probability is updated in light of data that provides for the
categorical difference. Morey and Rouder (2011) develop Bayes
factors for this equivalence region approach and compare it to
conventional equivalence testing. Rouder (2016) provides R code
in his archived blog post, “Roll Your Own: How to Compute Bayes
Factors for Your Priors.”

In some cases—perhaps ones where measurement is a main
goal and where the zero value has no special meaning—a slab-
only approach may be best. Researchers in these measurement
contexts, however, should avoid drawing inferences about whether
or not there are effects in the data as the model specification
does not capture such categorical difference and Bayes’ rule does
not provide a reallocated probability for either proposition. Any
inference about the existence of an effect in the slab-only model
should be treated as an informal heuristic not tied directly to Bayes’
rule.

There will be some differences among researchers as to which
specification is best in any given context. These differences should
be welcomed as they are part of the richness of adding value in
psychological science (Rouder, Morey, & Wagenmakers, 2016). In
all cases, however, researchers should justify their choices in the
context of the goals.

Which Approach To Use

While model specification is a critical difference between poste-
rior estimation approaches and Bayes factor approaches, there
are other differences as well. Bayes factors are updating factors.
They describe how data lead to a revision of belief, and in this
sense, they are a measure of the relative strength of evidence
from the data for competing propositions. Following Jeffreys (1961)
and many others, we find them ideal for scientific communication.
Researchers reporting Bayes factors are providing a description
of evidence. Bayes factors may be understood naturally as odds
without recourse to further qualification. In particular, it is not nec-
essary nor helpful to decide if a Bayes factor is sufficiently big just
as it is not necessary to have a criterion for “big” odds. Refraining
from making decisions strikes us as advantageous in most con-
texts. If researchers feel compelled to make a decision, however,
then they may be guided by Bayes rule. Accordingly, the posterior
quantities become important, and these are combined with loss
or utility considerations in making decisions (Savage, 1972). For
example, if one wishes to decide whether there is or is not an effect,
then p; the posterior probability of being in the slab, becomes the
critical quantity. Criteria that reflect the expected utility of the result-
ing decision may be placed on this quantity. Hence, Bayes factors
serve as a direct evidence measure that may be combined with
prior odds and utility considerations in statistical decision making.

Posterior estimation always remains useful in reporting the re-
sults of analyses. Posterior means give an overall indication of
where we think values are best localized, and posterior intervals
describe the precision of this localization. Posterior means and Cls
may provide valuable graphical displays, especially for researchers
who are used to confidence intervals. Moreover, these analyses
are not exclusive; one may graph a posterior and report a Bayes
factor as evidence, combine it with prior odds and a loss function
to reach a decision. From our vantage point, however, the Bayes
factor remains primary as it is most intimately tied to the data—it
is the evidence from the data for competing, theoretically relevant
positions. We do not endorse using posterior intervals for stating
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evidence or reaching decisions about competing theoretical po-
sitions such as whether or not there is an effect. Instead, these
posterior intervals are best used as providing overall summaries of
posterior distributions.

Prior Dependency

Researchers who consider Bayes factors may worry about their
dependence on prior settings especially when compared to estima-
tion with slab-only models. This worry is assuredly overstated, and
a bit of common sense provides for a lot of constraint. It seems
to us unreasonable to consider prior settings that are too small or
too large as researchers generally know that true effect sizes in
psychological experiments are neither arbitrarily small or large. A
lower limit of og is perhaps 0.2 as researchers rarely search for
effect sizes smaller than this value and the practical value of such
small effects will often be low.® Likewise, an upper limit is perhaps
1.0 as the vast majority of effect sizes are certainly smaller than
this value and effects much larger than that would often be clear in
day-to-day life. Within these reasonable—if context-dependent—
limits, Bayes factors vary but not arbitrarily so. We have highlighted
the Bayes factor values associated with these limits in Figure 3A
as filled circles. Here the Bayes factors differ from 1.7 to 2.8 or
by about 40%. This variation is not too substantial—the Bayes
factor is reasonably robust—and in both cases the evidence for an
effect is marginal. Such variation strikes us as entirely reasonable
and part-and-parcel of the normal variation in research (Rouder
et al., 2016). It is certainly less than other accepted sources such
as variation in stimuli, operationalizations, paradigms, subjects,
interpretations and the like.

The Potential of Spike-And-Slab Models In Psychology

Spike-and-slab models are currently timely and topical in the statis-
tics literature. We think they gain popularity in the psychological
sciences as psychologists adopt new analytic techniques, espe-
cially in big-data applications. Consider applications in imaging
where there are a great many voxels or in behavioral genetics
where there are a great many nucleotide markers in a SNP ar-
ray. It is desirable to consider the activity in any one voxel or
the contribution to behavior of any one marker, and the resulting
models necessarily have a large numbers of parameters, say with
one parameter for each voxel or each marker. It is in this con-
text, when there are large numbers of parameters relative to the
sample size, that spike-and-slab priors have become popular. The
seminal article for assessing covariates in this context is George
and McCulloch (1993), and recent conceptual and computational
advances, say from Scott and Berger (2010) and Rockova and
George (2014), make the approach feasible in increasing large
big-data contexts.

In these big-data contexts, the spike-and-slab specification
captures the position that many elements will not contribute to the
outcome. For example, in the fMRI case, many voxels will have
no task-related activity; in the genetics case, many markers will
be unrelated to behavior. A spike-and-slab specification is placed
on each voxel or marker, and this specification acts as a means of
categorization. If the posterior value of spike mass falls below a
set criterion, then these voxels are markers may be retained in the
final model. Otherwise, the voxel or marker is not retained.

SWhich is not to say that small effects cannot be theoretically meaningful in certain contexts, but we
believe interest in very small effects to be generally low.
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As an example of big-data applications in psychology, we high-
light the recent work of Sanyal and Ferreira (2012) who used
spike-and-slab priors for fMRI analysis. These researchers sought
to enhance the spatial precision of imaging by improving the spatial
smoothing. Typically, researchers smooth the image by passing
a Gaussian filter over it. Sanyal and Ferreira instead performed a
wavelet decomposition where activation is represented as having
a location and a resolution. In this approach there is a separated
wavelet coefficient for each resolution and location pairing, and
the upshot is a proliferation of coefficients. Sanyal and Ferreira
placed a spike-and-slab prior on these coefficients, and used large
values of po, the prior probability that a coefficient is zero. In
analysis, the posterior for many of these coefficients remained
dominated by the spike, and could be removed. When the activa-
tion was reconstructed from only the coefficients for which there
was substantial mass from the slab, the image quality improved
from the elimination of mostly high-frequency components. The
resulting smoothing was spatially adaptive—it was more smooth
where activation was spatially homogenous (say within structures)
and less smooth where activation was spatially heterogeneous
(say at boundaries).

Conclusions

In this paper we discuss a well-known, classic unification between
two competing Bayesian approaches—that based on the estima-
tion of posterior intervals and that based on Bayes factors. A salient
difference between these two approaches is model specification.
It is common in estimation approaches to place broad priors over
parameters that give no special credence to a zero point. Common
Bayes factor approaches, such as that from Rouder and Morey and
colleagues (Rouder et al., 2009; Rouder & Morey, 2012; Rouder
et al., 2012; Guan & Vandekerckhove, 2016) are closely related to
estimation with a prior that has some point mass at zero. Which
model specification a researcher should choose, whether a broad
slab or a spike-and-slab, should depend on the context and goals
of the analyst. For the usual case where researchers are interested
in whether there is or effect or not, the categorical differences pro-
vided by point masses that reallocate in light of data is appropriate
and useful, while common slab-only specifications do not provide
this facility.
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