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Abstract 40 
Understanding weight-related differences in functional connectivity provides key insight into 41 
neurocognitive factors implicated in obesity. Here, we sampled three groups from human 42 
connectome project data: 1) 47 pairs of BMI-discordant twins (n=94; average BMI-discordancy 43 
6.7 ± 3.1 kg/m2), 2) 47 pairs of gender and BMI matched BMI-discordant, unrelated individuals, 44 
and 3) 47 pairs of BMI-similar twins to test for body mass dependent differences in between 45 
network functional connectivity. Across BMI discordant samples, three networks appeared to be 46 
highly sensitivity to weight status; specifically, a network compromised of gustatory processing 47 
regions, a visual processing network, and the default mode network (DMN). Further, individuals 48 
with a lower BMI relative to their twin had stronger connectivity between striatal/thalamic and 49 
prefrontal networks (pFWE = 0.04) in the BMI-discordant twin sample. Cortical-striatal-thalamic 50 
networks underlie regulation of hedonically motivated behaviors. Stronger connectivity may 51 
facilitate increased regulation of decision-making when presented with highly rewarding, energy-52 
dense foods. We also observed that individuals with a higher BMI than their twin had stronger 53 
connectivity between cerebellar and insular networks (pFWE = 0.04). Increased cerebellar-54 
insula connectivity is associated with caloric deprivation and, in high BMI individuals, is 55 
associated compromised satiation signaling, thereby increasing risk for postprandial food intake. 56 
Connectivity patterns observed in the BMI-discordant twin sample were not see in a BMI-similar 57 
sample, providing evidence that the results are specific to BMI discordance. Beyond the 58 
involvement of gustatory and visual networks and the DMN, little overlap in results were seen 59 
between the two BMI-discordant samples. This may be a function of the higher study design 60 
sensitivity in the BMI-discordant twin sample, relative to the more generalizable results in the 61 
unrelated sample. These findings demonstrate that distinct connectivity patterns can represent 62 
weight variability, adding to mounting evidence that implicates atypical brain functioning with the 63 
accumulation and/or maintenance of elevated weight.  64 
 65 
  66 



Obesity is a chronic disease that affects two thirds of American adults (Flegal et al., 2012), and 67 
is associated with increased risk of metabolic disorders (Alberti et al., 2005), cardiovascular 68 
disease (Hubert et al., 1983), certain cancers (Calle and Kaaks, 2004), and mortality (Masters et 69 
al., 2013). Moreover, the prevalence of obesity is rapidly increasing worldwide (Collaborators, 70 
2017). This is highly concerning given that the efficacy of behavioral weight loss efforts are 71 
highly variable (Dombrowski et al., 2014; Loveman et al., 2011). A myriad of internal 72 
mechanisms and external stimuli influence weight regulation, such as: physiological appetitive 73 
feedback systems, reinforcement-driven eating habits, emotional and social cues, and stimuli 74 
from the food environment (Berthoud, 2006). Additionally, behavioral constructs such as 75 
impulsivity (Nederkoorn et al., 2006), inhibitory control (Lavagnino et al., 2016), and taste 76 
sensitivity (Grinker et al., 1972) are theorized to impact weight. The brain is the key integration 77 
point for processing these factors, incorporating inputs (e.g., homeostatic satiation signaling, 78 
attentional processing) to direct food intake behaviors, thereby influencing weight (Morton et al., 79 
2006). The examination of dynamic temporal correlations in the brain, i.e., functional 80 
connectivity, has provided considerable insight into aberrant resting-state brain networks 81 
(RSNs) associated with cognitive disease states (Van Den Heuvel and Pol, 2010; Woodward 82 
and Cascio, 2015). Therefore, a thorough understanding of how neural patterning varies with 83 
weight status is needed to accurately comprehend the neural correlates of weight regulation. 84 
Limited, but increasing evidence identify an association between elevated weight and altered 85 
neural functioning. For example, relative to healthy-weight, obesity was associated with 86 
decreased functional connectivity within networks comprising the medial prefrontal cortex and 87 
default mode network in response to viewing food stimuli (García-García et al., 2013), and with 88 
decreased functional connectivity within prefrontal and feeding circuits during taste 89 
administration of a milkshake (Geha et al., 2016). Further, obesity also was linked to increased 90 
connectivity within the attention network (premotor areas, superior parietal lobule, and visual 91 
cortex), as well as, stronger hypothalamic-striatal and amygdala-insular connectivity (Lips et al., 92 
2014). Collectively, these data provide early indication that elevated weight is associated with 93 
disruption in the functional integration of brain regions and networks that encode aspects of 94 
hedonically motivated behaviors, gustatory, and attentional processing. Though current data are 95 
limited to smaller sample sizes, so a more detailed understanding of alterations in functional 96 
connectivity associated with elevated weight in a large sample is warranted. 97 

Genetic composition also influences functional connectivity of RSNs (Glahn et al., 2010; 98 
Yang et al., 2016), which introduces variability in between-group investigations of weight status 99 
and RSN connectivity. Twin study designs provide a powerful approach to control for 100 
unmeasured confounds such as heritability and food environment during childhood when 101 
examining factors impacting weight status (Barsh et al., 2000; Farooqi and O’rahilly, 2000). In a 102 
small sample of female twins, increased weight was associated with decreased lateral functional 103 
connectivity within the striatum, providing evidence that brain-level effects studied with twin 104 
designs are sensitive to relatively small differences in weight (mean BMI-discordancy 3.96 105 
kg/m2)(Doornweerd et al., 2017). Broadly, existing investigations of weight-related RSN 106 
connectivity have compared effects between traditional BMI categories (e.g., healthy weight 107 
[BMI=18.5-24.9] vs. overweight [BMI=25.0-29.9] vs. obese [BMI>30.0]) (García-García et al., 108 
2013; Geha et al., 2016; Lips et al., 2014). However, BMI categories are arbitrary in nature, 109 
providing little clinically relevant information when individuals are near a cut-point). Importantly, 110 
relatively small fluctuations in body weight can significantly impact health (Jensen et al., 2013). 111 
For example, decreasing weight by ~5% can improve physiological predictors of disease 112 
(Blackburn, 1995; Douketis et al., 2005). As such, weight loss interventions typically do not use 113 
transitions from one BMI category to another as a metric of success, instead focusing on within-114 
subject weight change. A twin study design that draws on the strength of testing relative weight 115 
difference, agnostic to BMI categories, can provide a highly sensitive test of the impact of 116 
elevated weight on RSNs, while maintaining direct relevance to weight loss recommendations 117 



and interventions. Despite these advantages, twin study designs are limited in their 118 
generalizability to the population at large (Kukull and Ganguli, 2012). However, a parallel 119 
analysis in unrelated, BMI-discordant individuals can be leveraged to test the impact of weight 120 
on RSN connectivity simultaneously providing a metric of reliability and increasing 121 
generalizability.  122 

Here, we sought to determine weight dependent differences in functional connectivity 123 
patterning. To achieve this aim, we performed functional connectivity analyses in three 124 
independent samples: 1) a BMI-discordant twin sample; 2) a gender and BMI discordancy-125 
matched, unrelated sample; and 3) a BMI-similar twin sample. BMI dependent connectivity 126 
patterns observed in both the BMI-discordant twin and unrelated samples allows for 127 
identification of weight dependent altered functional connectivity that is stable across two 128 
samples and is generalizable to unrelated individuals. Confirmation that these RSNs patterns 129 
are not observed in a weight-similar sample provides support that the findings are not a result of 130 
an unseen third-variable confound. Based on studies of obese versus healthy weight groups 131 
(García-García et al., 2013; Geha et al., 2016), we hypothesized that differences in BMI-132 
discordant twins will be observed in connectivity between insular and frontal RSNs, specifically 133 
where lighter twins will show stronger connections to the insular and frontal networks. 134 
 135 
Methods 136 
Sample selection. All data were drawn from the HCP900-PTN data release the from the Human 137 
Connectome Project (HCP) (Van Essen et al., 2012). A visual representation of the sample 138 
selection procedures can be seen in Figure 1. HCP900-PTN data included 820 young adults, of 139 
which 410 individuals were twins. From the twin subsample, 98 participants were excluded from 140 
the analysis due to: incomplete data/not having a corresponding twin in the sample (n = 92), or 141 
a BMI < 18.5 (n = 6). Of the remaining 312 twin participants (npairs = 156), twin pair BMI 142 
discordancy, defined as the between twin difference in BMI (heavier twin’s BMI - lighter twin’s 143 
BMI), was calculated. BMI-discordant twin sample were defined using the upper tertile of BMI 144 
discordancy of the 312 twin participants. The BMI-similar twin sample was selected to have the 145 
same proportion of monozygotic and dizygotic twin pairs as the BMI-discordant sample, while 146 
maintaining a similar BMI in the twin pairs. Thus, the two twin analyses included a total sample 147 
of 188 twins (npairs = 94; 47 pairs per sample). To examine aspects of generalizability, unrelated, 148 
BMI-discordant participants (npairs = 47) were also selected from the non-twin participants 149 
included in the HCP900-PTN data. These unrelated, BMI-discordant pairs were selected to 150 
match the discordant twin sample on both BMI and gender. No significant differences between 151 
the unrelated and twin BMI-discordant samples were observed for gender, BMI, or BMI 152 
discordancy (p’s > 0.95).  153 
 154 
Data description and preprocessing. Participants completed 4 resting state functional MRI 155 
(rfMRI) runs over two days (2 runs per day) totaling 58 minutes and 12 seconds of rfMRI data 156 
per participant. Scanning details for this sample have been published previously (Van Essen et 157 
al., 2012). Briefly each rfMRI scan used an eight-factor multiband, gradient echo EPI sequence 158 
with the  following parameters: TR: 720ms, TE: 33.1ms, flip angle: 52 degrees, slice thickness: 159 
2.0mm (Van Essen et al., 2012). During the rfMRI scan, participants were instructed to look at a 160 
light crosshair on a dark background projected into their field of view.  161 

The human connectome project preprocessed all downloaded data in the HCP900-PTN 162 
release, and no additional preprocessing was performed locally. The HCP preprocessing 163 
pipeline is extensively published elsewhere and further documented is available on their website 164 
(https://www.humanconnectome.org/study/hcp-young-adult/documentation) and therefore will 165 
only be summarized here. Data were preprocessed using the recommended minimal 166 
preprocessing pipeline (Glasser et al., 2013). Independent component analysis (ICA) and FIX 167 
(FMRIB ICA-based X-noisifer) were used to assess and remove noise per participant per run 168 



(Salimi-Khorshidi et al., 2014; Smith et al., 2013). Individual participant data was registered 169 
using the areal-feature-based alignment and the Multimodal Surface Matching algorithm 170 
(‘MSMAII’) (Glasser et al., 2016; Robinson et al., 2014).  171 

 172 
Group ICA. MELODIC’s Incremental Group-PCA (MIGP) was used to generate dense 173 
connectomes of all participants’ individual timeseries (Smith et al., 2014). This dense 174 
connectome was then parcellated using group-ICA to create spatial-ICA network maps at 175 
dimensionalities of 15, 25, 50, 100, 200, and 300 distinct components (Glasser et al., 2016). 176 
From the HCP documentation, each component is a continuous range of values that may 177 
contain multiple spatially separate anatomical regions. The higher the number of components 178 
per map in general means the significant area per component is smaller. Given these traits of 179 
the network maps, the 25 and 100 component network maps were selected to examine the 180 
larger and more established resting state networks (using the 25 dimensionality), as well as 181 
potentially discreet regions that may drive effects (using the 100 dimensionality) (Ray et al., 182 
2013). Given that multiple components in a given network map may include the same 183 
anatomical region, components will be referred to as independent components (ICs) with their 184 
number and anatomical region(s) comprised within e.g., occipital pole (IC 9) relative to occipital 185 
pole (IC 3). Independent components that were considered to be noise were identified by two 186 
independent researchers. Components were flagged as noise when BOLD activity was primarily 187 
following the gyri and/or solely following the surface of brain/skull (Poldrack et al., 2011). As a 188 
result, ICs 18 and 24 were determined to be noise and were removed from consideration in the 189 
25-component parcellation.  190 
 191 
Individual component timeseries. Per dimensionality, individual participant timeseries were 192 
concatenated and spatially mapped to the corresponding network map described above. This 193 
created a single timeseries per component per participant. Therefore, each participant had a 194 
component timeseries made up of the 4800 time points (1200 time points over 4 runs) by the 195 
number of components (15, 25, 50, 100, 200, and 300). For this analysis, each participant had a 196 
component timeseries made up of either 4800x25 or 4800x100. 197 
  198 
Creation of netmats. The 25 and 100 component group network maps were each regressed 199 
against the corresponding individual component timeseries using the "dual-regression stage-1" 200 
approach to create individual participant network matrices (netmats) (Filippini et al., 2009).  201 
 202 
Heritability factor calculation. To determine the effect of heritability on connectivity of each 203 
network, a heritability score (Hb

2) was calculated for each network, based on Falconer’s formula 204 
(Falconer and Mackay, 1996).  205 

Hb2 = 2(rmz - rdz) 206 
We calculated the correlation between each twin pair per component in the netmat (both 25 and 207 
100 dimensionalities separately) and averaged the correlations in both the monozygotic and 208 
dizgotic twin groups respectively to create two average correlation matrices: monozygotic (rmz) 209 
and dizygotic (rdz). The difference between the rmz and rdz matrices was calculated and multiplied 210 
by 2. The resulting heritability matrix contained a Hb

2 value for each pairwise connection 211 
between components. Individual level netmats were then each weighted by the Hb

2 matrix to 212 
adjust for heritability effects. 213 
 214 
Statistical analyses.  FSLNets (Version 0.6, FMRIB, Oxford, UK) was used to assess BMI-215 
dependent differences between RSN connectivity. For each sample (BMI-discordant twins, BMI-216 
similar twins, and unrelated BMI-discordant pairs), full correlations with normalized covariances 217 
were run on the netmats described above to create a correlation matrix. A single group paired T 218 



test was performed on the correlation matrices with the following contrasts: 1) higher BMI 219 
individual compared to lower BMI individual (higher BMI > lower BMI), and 2) lower BMI 220 
individual compared to higher BMI individual (lower BMI > higher BMI). To correct for potential 221 
false positives, non-parametric permutation testing was used through FSL’s randomise tool with 222 
10,000 permutations per twin pair (or unrelated pair) (Winkler et al., 2014). Results were 223 
considered significance at pFWE < 0.05 (Eklund et al., 2016). Negative correlations were not 224 
included in analyses, as they are not interpretable in the present context (Murphy et al., 2009). 225 
  To account for generalizability of results and heritability confounding, connectivity results 226 
within the BMI-discordant twin sample were contrasted to that of the 1) unrelated, BMI-227 
discordant sample as a test of generalizability; and 2) in BMI-similar twin sample as a test of 228 
heritability confounding. Significant network connectivity in both contrasts was compared 229 
between BMI-discordant twins, unrelated BMI-discordant pairs, and BMI-similar twins. 230 
Equivalent results were identified when significant connectivity of two networks was observed in 231 
both samples. Connectivity results present in the both BMI-discordant pair samples (twin and 232 
unrelated), but not seen in the BMI-similar twin pairs were considered reliable and generalizable 233 
body mass contingent alterations in functional connectivity.  234 

Secondary analyses included examination of within pair and between group differences in 235 
behavioral, mood, substance abuse, and physiological characteristics theorized to relate to 236 
eating behavior and weight regulation or that may represent unique physiological differences 237 
between BMI discordant groups not encompassed by BMI alone: response inhibition and 238 
executive functioning as measured by the NIH Toolbox’s Flanker Task (age adjusted) 239 
(Lavagnino et al., 2016; Weintraub et al., 2013), self-regulation and impulsivity as measured by 240 
the Delay Discounting Task (Green et al., 1994; Nederkoorn et al., 2007), taste sensitivity as 241 
measured by the NIH Toolbox’s Taste Intensity Test (age adjusted) (Coldwell et al., 2013; 242 
Grinker et al., 1972), major depressive episodes, number depressive symptoms, alcohol use, 243 
tobacco use, illicit drug use or marijuana use and dependence, hemoglobin A1c and systolic 244 
and diastolic blood pressure. Mixed linear models were used to test for within-pair and between-245 
group differences in the behavioral and physiological measures via PROC MIXED in SAS 246 
(Version 9.4, SAS Institute Inc., Cary, NC, USA). Significance was thresholded at p < 0.05.  247 

Preregistration and analytic scripts for this study can be found via the Open Science 248 
Framework (Center for Open Science, Charlottesville, VA, USA, DOI 249 
10.17605/OSF.IO/VTMPW). All scripts for this analysis can be found on Github at 250 
https://github.com/niblunc/twin_HCP_paper.   251 

 252 
Results 253 
Sample Characteristics.  Participant data including age, gender, race/ethnicity, BMI and BMI 254 
discordancy, and zygosity can be found in Table 1. The BMI-discordant twins (npairs = 47) had a 255 
difference > 3.40 kg/m2, and BMI-similar twins (npairs = 47) had a difference ≤ 1.69 kg/m2. The 256 
distribution of BMI in the three samples can be seen in Figure 2.  257 
 258 
Connectivity in Body Mass Discordant Twins.  Body mass discordant twins (npairs= 47) had a 259 
mean BMI discordancy of 6.7 ± 3.1 kg/m2, representing a difference greater than one BMI 260 
category (NIH, 2017). A within-pair comparison confirmed significant difference in BMI (T = 7.4, 261 
p < 0.0001) between higher BMI and lower BMI twins. Network hierarchy, represented by the 262 
brackets in the upper portion of the image, and partial (below the diagonal) and full correlations 263 
(above the diagonal) of the 25-network parcellation for the BMI-discordant sample can be seen 264 
in Figure 3A. Between network connectivity results, controlled for heritability, are summarized in 265 
Table 2.   266 

When comparing the higher BMI twin to their lower BMI counterpart (higher BMI > lower 267 
BMI), we observed significantly stronger connectivity between the occipital pole (IC 9) and a 268 
network (IC 2) including the medial orbitofrontal cortex (mOFC), posterior cingulate 269 



cortex/precuneus, temporoparietal junction, and hippocampus, putatively representing the 270 
default mode network (DMN; T = 4.30; pFWE = 0.004; Table 2; Figure 4A). Stronger connectivity 271 
was also observed between the cerebellar right crus I (IC 16) and a network containing the 272 
anterior cingulate, insula, central operculum, and precentral gyrus (IC 7; T = 3.64; pFWE = 0.037; 273 
Table 2; Figure 4B), and between a network inclusive of the dorsolateral prefrontal cortex 274 
(dlPFC) and ventrolateral prefrontal cortex (vlPFC; IC 10) and left crus II of the cerebellum (IC 275 
22; T = 4.57; pFWE = 0.001 Table 2; Figure 4C).  276 

When comparing connectivity of the lower BMI twin relative to the higher BMI twin (lower 277 
BMI > higher BMI), significantly stronger connectivity was found between the occipital pole (IC 278 
9) and a network containing the occipital pole (IC 3), intracalcarine cortex, and lingual gyrus (T = 279 
4.04; pFWE = 0.003; Table 2; Figure 5A). Stronger connectivity was also found between the 280 
occipital pole (IC 9) network and the network inclusive of the insula, anterior cingulate, central 281 
operculum, and precentral gyrus networks (IC 7; T = 4.19; pFWE = 0.005; Table 2; Figure 5B). 282 
Additionally, stronger connectivity was seen between the dlPFC/vlPFC network (IC 10) and a 283 
network including the dorsal and ventral striatum and insula (IC 25; T = 3.70; pFWE = 0.035; 284 
Table 2; Figure 5C). 285 

 286 
Unique connectivity in Unrelated, Body Mass Discordant Pairs.  Network hierarchy and full and 287 
partial correlations of the 25-network parcellation for the unrelated, BMI-discordant pairs can be 288 
seen in Figure 3B. The mean BMI difference between the unrelated, BMI-discordant sample 289 
was also 6.7 ± 3.1 kg/m2, only 0.12 kg/m2 different relative to BMI-discordant twin sample (T = 290 
0.06, p = 0.95). Among the higher vs. lower BMI individuals, stronger connectivity was identified 291 
between a network identified as the default mode network (IC 2) and a network including the 292 
insula, central operculum, precentral gyrus, and anterior cingulate (IC 7; T = 4.71, p = 0.002; 293 
Table 2). Stronger connectivity was also observed between a network including the lateral 294 
occipital cortex (IC 4) and the lingual gyrus and occipital cortex (IC 12; T = 4.62; pFWE = 0.003). 295 
Stronger connectivity was not observed in the lower BMI individuals relative to their higher BMI 296 
counterparts in the unrelated pairs. 297 
 298 
Unique connectivity in Body Mass Similar Twins.  The mean body mass discordance in the BMI-299 
similar twin pairs (npairs = 47) was 0.7 ± 0.5 kg/m2. Network hierarchy and full and partial 300 
correlations of the 25-network parcellation can be seen in Figure 3C. Connectivity identified in 301 
the BMI-similar twin sample was not equivalent with connectivity observed in the BMI-discordant 302 
twins, controlling for heritability, there was no significant connectivity observed in either contrast. 303 
 304 
100-Network ICA Parcellation.  To probe whether connectivity patterns observed in the BMI-305 
discordant twin sample were driven by smaller parcels of networks, we completed the same 306 
functional connectivity analyses (including heritability weighting) using the 100-network ICA 307 
parcellation in the BMI-discordant twin sample. While significant connectivity was observed in 308 
comparing higher BMI > lower BMI twins and lower BMI > higher BMI twins (Supplement Table 309 
1), none of the connected networks using the 100 network parcellation reflected similar 310 
connectivity patterns seen in the larger networks stemming from the 25-network ICA 311 
parcellation.   312 
 313 
Secondary Analyses: Behavioral and Physiological Correlates and Differences as a Function of 314 
Zygosity.  Post-hoc examination of behavioral and physiological characteristics between the two 315 
body mass discordant samples revealed no significant interaction of BMI and twin-status on the 316 
following: Flanker task scores (T = 0.51, p = 0.61), area under the curve for the $2,000 delay 317 
discounting task (T = -0.49, p = 0.62), area under the curve for the $40,000 delay discounting  318 
task (T = 0.35, p = 0.73), taste sensitivity task (T = 0.59, p = 0.56), systolic blood pressure (T = 319 
0.56, p = 0.58), diastolic blood pressure (T = 0.76, p = 0.45), and hemoglobin A1c (T = 0.06, p = 320 



0.95), collectively indicating no behavioral or physiological differences between the two body 321 
mass discordant samples. Additionally, there were no between group or within pair differences 322 
in measures of mood and substance use disorders between the BMI-discordant samples (p’s < 323 
0.05). Visual representation of results can be seen in Supplemental Figure 1.  324 
 325 
Discussion 326 
Leveraging samples of body mass discordant twins, unrelated body mass discordant 327 
individuals, and body mass similar twins we sought to determine whether resting state network 328 
connectivity was impacted relative differences in BMI. Across the BMI discordant samples, we 329 
show that connectivity of networks inclusive of regions previously implicated in encoding 330 
gustatory processing (insula/parietal operculum), a network including the primary visual cortex, 331 
and the default mode network (DMN) are particularly sensitive to differences in BMI. In both BMI 332 
discordant samples, higher BMI individuals show stronger connectivity between default mode 333 
network with other networks, specifically the occipital pole (twin sample), and the network 334 
inclusive of gustatory processing regions (unrelated sample). Although the between network 335 
connectivity stemming from the DMN is different between the two samples, both are in line with 336 
previous investigations that indicate elevated BMI is associated with aberrant gustatory and 337 
visual processing (Small et al., 2001; Stice et al., 2008; Stoeckel et al., 2008) and with 338 
increased connectivity within the DMN (Tregellas et al., 2011). Further, results from BMI 339 
discordant samples were not evident in BMI-similar twins, providing support that connectivity 340 
results are a function of BMI. Beyond the aforementioned three networks that appear to be 341 
consistently sensitive to differences in weight, below we discuss broader implications of the 342 
specific BMI dependent between network results.       343 

We observed that the lower BMI twins showed stronger connectivity between a network 344 
centered in the dlPFC and a network comprising the striatum/thalamus relative to their higher 345 
BMI twins. The predominate regions in these networks are present in mesocorticolimbic 346 
dopaminergic circuitry, specifically the mesolimbic (striatum/thalamus) and the mesocortical 347 
(dlPFC) dopaminergic pathways (Le Moal and Simon, 1991). Cortical-striatal connectivity is 348 
thought to integrate behavioral motivation with decision-making and executive control (Di 349 
Martino et al., 2008). Altered cortical-striatal connectivity and decreased dlPFC connectivity has 350 
been observed in obesity (García-García et al., 2013; Kullmann et al., 2013, 2012; Moreno-351 
Lopez et al., 2016; Nummenmaa et al., 2012). Here, increased connectivity between these 352 
regions confers more efficient communication, indicating lower BMI individuals may be more 353 
responsive to changes in reward valuation and present with increased cognitive control during 354 
decision-making (Rangel and Hare, 2010), possibly specific to decisions about food intake. This 355 
interpretation posits that lighter individuals may possess firmer appetite regulation when 356 
presented with highly palatable, energy-dense foods. Previous works supports, the current 357 
findings and reinforce the hypothesis that cortical-striatal-thalamic network connectivity is 358 
involved with weight regulation through mechanisms where stronger connectivity contributes to 359 
better regulation of hedonically motivated food-related behaviors. 360 

Higher BMI twins showed increased connectivity between a network including the insula, 361 
central operculum, anterior cingulate, and precentral gyrus with the right crus I of the 362 
cerebellum. Regions included in the insular network are consistently implicated in encoding 363 
gustatory processing (Veldhuizen et al., 2011), where the right crus I is involved in encoding 364 
motor control and working memory (Habas et al., 2009; Stoodley et al., 2012). Positron 365 
emission tomography in healthy-weight men demonstrated stronger cerebral blood flow in both 366 
the insula and cerebellum when fasted for 36 hours versus a postprandial state (when fed) 367 
(Tataranni et al., 1999), indicating the strength of his dynamic connectivity may be associated 368 
with caloric deprivation. In support, functional connectivity between insular and cerebellar 369 
networks in healthy weight individuals was also elevated following an overnight fast (Wright et 370 
al., 2016). Moreover, insular-cerebellar connectivity is seen in healthy individuals during 371 



hypoglycemia (Bolo et al., 2015), a physiologic characteristic of being fasted for extended time 372 
periods. Taken together, these data provide strong evidence that stronger insula and cerebellar 373 
connectivity is reflective of caloric deprivation/hunger signaling. Interestingly, in obese 374 
individuals, increased insula and cerebellar BOLD response were seen following gastric 375 
distension by balloon, mimicking fullness without a caloric load (Tomasi et al., 2009). This 376 
supports the notion that higher BMI individuals show an insular-cerebellar response that is 377 
thought to encode aspects of being calorically deprived in a time their stomach is ‘full’. This BMI 378 
dependent incongruent valence of insula and cerebellar connectivity could act to perpetuate 379 
food intake in a postprandial state, commonly referred to as eating in the absence of hunger. In 380 
support, behavioral reports demonstrate that obesity is associated with increased appetite and 381 
decreased satiation (Cabanac and Duclaux, 1970; Schachter, 1968). In sum, these data signify 382 
that, unlike being a healthy weight, higher BMI is associated with a stronger insula-cerebellar 383 
connection that is unresponsive to fullness, theoretically, contributing to increased postprandial 384 
food intake.  385 

Elevated BMI was also related to stronger connectivity between the primary visual cortex 386 
and the DMN, which the latter is reflective of internal mental awareness and is diminished 387 
during goal-directed tasks (Buckner et al., 2008). At rest, functional connectivity within the DMN 388 
is positively correlated with BMI (Tregellas et al., 2011), and obesity is associated with 389 
increased connectivity within the salience network, which comprises the visual cortex and 390 
superior parietal lobule (including the precuneus/PCC) (García-García et al., 2013). Moreover, 391 
evoked studies utilizing food stimuli (pictures of foods, cue-elicited anticipation of food receipt) 392 
consistently demonstrate that elevated weight is associated increased BOLD response in these 393 
regions that encode visual and attentional processing. This pattern of higher propensity towards 394 
strong visual response with elevated weight is hypothesized to play a key role forming eating 395 
habits (Gilbert and Burger, 2016).  396 

The general approach used here, i.e., comparison the higher BMI versus lower BMI, does 397 
not directly align with comparisons of ‘standard’ weight status groupings, i.e., obese versus 398 
healthy weight (NIH, 2017). While our study is cross-sectional, the present approach is more 399 
relevant to longitudinal and experimental designs. Prospective designs typically use within-400 
subject continuous BMI change as a sensitive test for weight change, for example a shift from a 401 
‘healthy’ BMI of 24.5 to an ‘overweight’ BMI of 25.3 is clinically insignificant. In the present 402 
sample, there are relatively broad distributions of BMI in both the ‘higher BMI’ and ‘lower BMI’ 403 
groups. Results from these analyses cannot provide valid information regarding the relationship 404 
between functional connectivity and absolute BMI. Due to the analysis used, one cannot infer 405 
that any given BMI is related to a specific connectivity pattern based on solely this data, one can 406 
only interpret the results in terms of relative higher and lower body mass. In support of the 407 
present approach, it has been suggested that absolute BMI is not the best standard of health, 408 
as it does not always align with health and mortality outcomes (Nuttall, 2015). Moreover, when 409 
individuals are at an elevated weight, a 5% weight loss is physiologically beneficial (Douketis et 410 
al., 2005). The present design dovetails with this clinically relevant ‘relative weight difference’ 411 
approach, making results more applicable to prospective and intervention studies. Though, the 412 
approach does require consideration of the magnitude of BMI difference within pairs. Here, BMI-413 
discordant twin pairs had an average BMI difference of 6.7 kg/m2. Although this difference 414 
greater than a full BMI category, within some pairs, the heavy and lighter individuals were in the 415 
same BMI category, or both obese and overweight. As such, we were not surprised that the 416 
patterns of connectivity observed in this study differ somewhat from previous analyses based on 417 
BMI categories (García-García et al., 2013; Kullmann et al., 2012; Park et al., 2016; 418 
Wijngaarden et al., 2015).  419 

No equivalent connectivity was observed between BMI-discordant twins and the unrelated, 420 
BMI-discordant pairs. Twins inherently have shared genetics, likely have a similar food 421 
environment during youth (Barsh et al., 2000; Farooqi and O’rahilly, 2000), demonstrate less 422 



between-subject variability in common fMRI confounds, i.e., head motion (Hodgson et al., 423 
2016), and show similar resting state network connectivity (Fu et al., 2015). By largely 424 
controlling for these possible confounds (Falconer and Mackay, 1996), results from the BMI-425 
discordant twin sample may provide a robust test for BMI-dependent differences in connectivity. 426 
However, this approach cannot completely account for every aspect of heritability and/or shared 427 
early life environment. The remaining possible confounders could be represented in the lack of 428 
consistent results between two BMI-discordant samples. This possibility demonstrates a 429 
decision point in study design, specifically, the comparing relative importance of internal 430 
sensitivity and/or high methodological study control, relative to generalizability of results. Here, 431 
the twin sample approach is more highly controlled, and thus the results are likely to be closer to 432 
true effect of body mass on functional connectivity. However, even if that notion is correct, the 433 
‘true’ results are of limited utility as they only generalize to twins, where a case can be made 434 
that the results from the unrelated sample are more meaningful as they generalize to a larger 435 
population. Ultimately, replication of findings in independent samples, across multiple studies, 436 
utilizing different data acquisition techniques will serve to establish both validity and 437 
generalizability of the results.  438 

We did not find significant within pair differences between BMI-discordant twins or unrelated 439 
BMI-discordant pairs in behavioral (executive functioning, impulsivity, and taste sensitivity) and 440 
physiological measures (hemoglobin A1c and blood pressure) that are thought to be associated 441 
with weight. Eligibility criteria excluded individuals with weight-related diseases, e.g. individuals 442 
with high blood pressure and/or diabetes, thereby reducing the variability in these behavioral 443 
and physiological measures and thus the ability to detect BMI-related differences between 444 
higher BMI and lower BMI twins. Additionally, the differences in functional connectivity observed 445 
may not manifest behaviorally in the measures included in the present sample, specifically given 446 
these generalized tasks, i.e., not food specific. In support, previous weight discordant twin 447 
research, heavier twins reported stronger preference for fat and a greater tendency to overeat, 448 
but no difference on non-food related psychological measures (Rissanen et al., 2002). This 449 
suggests that testing food/eating behaviors specific measures may better identify differences as 450 
a function of weight status, but generalized assessments may have lower sensitivity when 451 
assessing BMI-related differences.  452 

In the primary analysis, we assessed between network connectivity within the 25 networks 453 
identified by ICA parcellation, though it reasonable to hypothesize that additional differences 454 
between weight discordant twins may emerge at a higher dimensionality, as it potentially parses 455 
apart large networks into smaller sub-regions. The exploratory connectivity analysis using a 456 
100-network parcellation attempted to address this limitation, however this did not elicit 457 
identifiable ‘sub’-networks for more specific interpretation. These data indicate that broader 458 
networks that incorporate more regions, may provide more meaningful information relating to 459 
our hypotheses. However, this approach did lend itself to significant connectivity patterns of 460 
networks that are anatomically located next to one another, i.e., (IC 9 with IC 3; IC 4 with IC 12). 461 
As the regions in each network are too similar in function for meaningful interpretation, for the 462 
brevity of this discussion these patterns were not discussed. The present study is restricted by 463 
its cross-sectional design, limiting inferences regarding the temporal precedence of the relations 464 
between functional connectivity and BMI. We are unable to determine a causal nature of the 465 
observed relationships between weight and differential functional connectivity and can only state 466 
that these differences in connectivity may play a role associated with weight regulation.  467 

In sum, this investigation examined functional connectivity between weight discordant twins 468 
and unrelated samples. We observed that, across all of the samples tested, a network 469 
compromised of gustatory processing regions, a visual processing network, and the default 470 
mode network all appear to be highly sensitivity to weight status. Further, reduced weight is 471 
associated with greater integration of regions that encode reward learning and executive control 472 
which underpin hedonically motived behaviors. This, theoretically, may contribute to better 473 



behavioral control when lighter individuals are faced with highly palatable foods. Lastly, higher 474 
weight is associated with functional connectivity pattern that has consistently been reflective of 475 
caloric deprivation/hunger. Here, we demonstrate that unique, distinct connectivity patterns can 476 
represent weight variability adding to the mounting evidence that implicates aberrant brain 477 
functioning with the accumulation and/or maintenance of elevated weight.   478 
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Table 1: Participant Characteristics (n=282a) 492 
 BMI-

discordant 
twins 
(n=94) 

Unrelated, 
BMI-

discordant 
pairs 
(n=94) 

Group 
Difference  

BMI-
discordant 

twins & 
unrelated 

pairs 

BMI- 
similar 
twins 
(n=94) 

Group 
Difference  

BMI-
discordant 

twins & BMI- 
similar twins 

Age 
(mean ± SD; years) 29.4 ± 3.5 28.5 ± 3.6 p = 0.08 29.3 ± 3.5 p = 0.71 

Body Mass Index  
(kg/m2) 28.1 ± 5.6 28.1 ± 5.7 p = 0.95 25.6 ± 4.1 p < 0.001 
BMI Discordancy  
(kg/m2) 6.7 ± 3.1 6.7 ± 3.1 p = 0.98 0.7 ± 0.5 p < 0.001 
Race (percent)   

p = 0.002 

 

p = 0.02 

Asian/Pacific 
Islander 0 9 (10%) 7 (7%) 

African American 14 (15%) 21 (22%) 10 (11%) 
Caucasian 78 (83%) 58 (62%) 77 (82%) 
Multiracial 0 3 (3%) 0 

Not Reported 2 (2%) 3 (3%) 0 
Ethnicity (percent)   

p = 0.003 

 

p = 0.51 
Hispanic/Latino 1 (1%) 12 (13%) 0 

Non-
Hispanic/Latino 91 (97%) 82 (87%) 93 (99%) 

Not Reported 2 (2%) 0 1 (1%) 
Zygosity (percent)   

N/A 
 

p = 1.0 Monozygotic 44 (47%) N/A 44 (47%) 
Dizygotic 50 (53%) N/A 50 (53%) 

Gender (percent)   
p =1.0 

 
p = 0.05 Male 32 (34%) 32 (34%) 46 (49%) 

Female 62 (66%) 62 (66%) 48 (51%) 
a Total unique subjects across the three samples included in analyses  
* Significant group difference between the BMI-discordant twin sample and the unrelated, BMI-discordant pair 
sample or BMI-similar twin sample, as determined by t-test (age, BMI, BMI discordancy) or χ2 test (race, ethnicity, 
zygosity, gender) (p < 0.05) 
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Table 2: Significant Between Network Connectivity in BMI-discordant Twins (n=94) and 494 
Unrelated, BMI-Discordant Pairs (n=94)  495 
BMI-Discordant Twins 

Contrast IC  Network T-value pFWE 

Higher BMI > 
Lower BMI 

9 Occipital pole 
4.30 0.004 2 

 

Default Mode Network 
16 Right crus I 

3.64 0.037 7 Insula, central operculum, precentral gyrus, and anterior 
cingulate 

10 Dorsolateral prefrontal cortex, ventrolateral prefrontal 
cortex 4.57 0.001 

22 Left crus II 

Lower BMI > 
Higher BMI 

9 Occipital pole 
4.04 0.003 3 Occipital pole, intracalcarine cortex, and lingual gyrus 

9 Occipital pole 
4.19 0.005 7 Insula, central operculum, precentral gyrus, and anterior 

cingulate 

10 Dorsolateral prefrontal cortex, ventrolateral prefrontal 
cortex 3.70 0.035 

25 Dorsal striatum, ventral striatum, insula 
Unrelated, BMI-Discordant Pairs 

Contrast IC  Network T-value pFWE 

Higher BMI > 
Lower BMI 

2 Default Mode Network 
4.71 0.002 7 Insula, parietal operculum, and dorsal anterior cingulate 

cortex 
4 Lateral occipital cortex 4.62 0.003 12 Lingual gyrus, occipital cortex 

  496 
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