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ABSTRACT 
 

Non-invasive neuroimaging methods, including magnetoencephalography and      
electroencephalography (MEEG), have been critical in advancing the understanding         
of brain function in healthy people and in individuals with neurological or psychiatric             
disorders. Currently, scientific practice is undergoing a tremendous change, aiming          
to improve both research reproducibility and transparency in data collection,          
documentation and analysis, and in manuscript review. To advance the practice of            
open science, the Organization for Human Brain Mapping created the Committee on            
Best Practice in Data Analysis and Sharing (COBIDAS), which produced a report for             
MRI-based data in 2016. This effort continues with the OHBM’s COBIDAS MEEG            
committee whose task was to create a similar document that describes best practice             
recommendations for MEEG data. The document was drafted by OHBM experts in            
MEEG, with input from the world-wide brain imaging community, including OHBM           
members who volunteered to help with this effort, as well as Executive Committee             
members of the International Federation for Clinical Neurophysiology. This document          
outlines the principles of performing open and reproducible research in MEEG. Not            
all MEEG data practices are described in this document. Instead, we propose            
principles that we believe are current best practice for most recordings and common             
analyses. Furthermore, we suggest reporting guidelines for Authors that will enable           
others in the field to fully understand and potentially replicate any study. This             
document should be helpful to Authors, Reviewers of manuscripts, as well as Editors             
of neuroscience journals. 
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Preamble 
 
Similar to the COBIDAS MRI version of the document (preprint ​Nichols et al., 2016​;              
published paper ​Nichols et al., 2017​), we also provide a tabular listing of items for               
planning, executing, reporting or sharing research in a transparent manner. In so            
doing, this document is responsive to the replication crisis in neuroscience,           
neurology and psychology and aligns with the aims of the ​Open Science            
Collaboration (2015)​. We hope that these guidelines will be used by individual            
scientists, in their roles as Authors, Editors and Reviewers, to raise the standards of              
practice and reporting of neuroimaging MEEG data. Versions of this document have            
been, and will continue to be, available at ​https://cobidasmeeg.wordpress.com/         
allowing anyone to leave public comments. 

 
1.​  ​Introduction 

1.1 Approach 
1.2 Scope 

2.​  ​Experimental Design 
      ​2.1.  Lexicon of MEEG Design 
      ​2.2.  Statistical Power  
      ​2.3.  Participants 
      ​2.4.  Task and stimulation parameters 
      ​2.5.  Behavioural measures collected during an EEG session 
3.​  ​Data Acquisition  

3.1.  MEEG Device 
3.2.  Acquisition parameters 
3.3.  Stimulus presentation and recording of peripheral signals 
3.4.  Vendor specific information and format 

4.​  ​Data Preprocessing  
4.1.  Software issues 
4.2.  Defining workflows 
4.3.  Artifacts and filtering 
4.4.  Re-referencing 

      ​4.6.  Source modelling 
      ​4.7.  Connectivity analyses 

4.7.1. Making Networks 
4.7.2. Sensor vs. Source connectivity 
4.7.3. Computing metrics 

 
5.  Biophysical and Statistical analyses 

5.1.  Properties of the data submitted to statistical analysis 
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1. Introduction 
 
Over the last decade or so, more and more discussion has been focused on              
concerns regarding reproducibility of scientific findings and a potential lack of           
transparency in data analysis – prompted in large part by the ​Open Science             
Collaboration (2015)​, which could only replicate 39 out of 100 previously published            
psychological studies. Since then, there has been an ongoing discussion about           
these issues in the wider scientific community, including the neuroimaging field.           
There has also been a push to implement the practice of ‘open science’, which              
among other things promotes: (1) transparency in reporting data acquisition and           
analysis parameters, (2) sharing of analysis code and the data itself with other             
scientists, as well as (3) implementing an open peer review of scientific manuscripts.             
Within the Organization for Human Brain Mapping (OHBM) community, there have           
been ongoing discussions both at OHBM Council level as well as at the grassroots              
level regarding how the neuroimaging community can improve its standards for           
performing and reporting research studies. In June 2014, OHBM Council created a            
“​Statement on Neuroimaging Research and Data Integrity​”, and in a practical move            
created a ​Committee on Best Practices in Data Analysis and Sharing (COBIDAS).            
The COBIDAS committee’s brief was to create a white paper based on best             
practices in ​MRI-based data analysis and sharing in the neuroimaging community.           
The COBIDAS MRI report was completed and made available to the ​OHBM            
community on its website​, as well as in a preprint that was submitted in 2016 and                
published in 2017 (preprint ​Nichols et al., 2016​; published paper ​Nichols et al.,             
2017​). 
 
At the OHBM “Town Hall” or General Assembly and Feedback Forum in 2017, the              
issue of an additional COBIDAS initiative – this time focused on EEG and MEG data               
(or MEEG for short) – was suggested by Aina Puce and Cyril Pernet. Over the               
remaining time of the OHBM 2017 scientific meeting, discussions with the OHBM            
Council Chair and Chair-Elect involved making plans to organize and constitute a            
COBIDAS MEEG committee, made up of OHBM members with varying expertise in            
electroencephalography (EEG) and magnetoencephalography (MEG), with Puce and        
Pernet as Co-Chairs. A general email call for volunteers to serve on the committee              
was made in August 2017, and 115 OHBM members signalled their interest in             
working on the committee. In October 2017, an 11 member COBIDAS MEEG            
committee was formed. Contact with members of the International Federation for           
Clinical Neurophysiology (IFCN) was also made, as the IFCN is involved in            
generating guideline documents for best practices in clinical neurophysiology. A draft           
of the COBIDAS MEEG document was shared with the IFCN Executive prior to             
Pernet speaking on the topic of data sharing at their annual scientific meeting in              
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Washington DC in May, as well as with the remaining 104 OHBM members who had               
answered the original call to help with drafting the COBIDAS MEEG document.            
Close to 300 comments and edits were made on the initial document. Edits on the               
first complete draft of the document were completed before sharing the white paper             
with OHBM Council in early June 2018. The draft of the white paper was discussed               
by OHBM Council and Puce made a progress report to OHBM Members at the              
OHBM General Assembly and Feedback Forum in Singapore in June 2018.           
Subsequently collected feedback from these two OHBM sources was incorporated          
into the draft before re-circulation to the COBIDAS MEEG Committee in July 2018.             
At the end of July 2018, Puce and Pernet incorporated new edits from the              
Committee and created a blog [​https://cobidasmeeg.wordpress.com​] for sharing the         
second draft of the document and soliciting comments/queries from the OHBM           
membership and assorted editors of relevant neuroscience journals during         
August-September 2018. During October 2018-March 2019, Puce and Pernet         
incorporated the feedback from the OHBM membership into the document to           
generate a third draft to circulate to OHBM Council and the IFCN Executive. In              
April-May 2019, final editing of the third draft was performed, updating the preprint             
and website and making this available to OHBM Council before the annual meeting.             
A progress report on the COBIDAS MEEG process was presented at the OHBM             
General Assembly and Feedback Forum at the Rome OHBM meeting in June 2019             
by Pernet. The ​https://cobidasmeeg.wordpress.com/ ​blog will be maintained, so that          
the COBIDAS MEEG document can remain as a living entity that can be responsive              
to future changes in hardware, software as well as scientific practice. 
 

1.1 Approach 
 
The approach taken in this document parallels that for COBIDAS MRI. Our aim is to               
generate a set of best practice guidelines for research methods, data analysis and             
data sharing in the MEEG discipline. Tables with recommendations and checklists           
(see Appendix) may seem very detailed, but we recommend these as a reference             
source for essential details that should be reported in any MEEG study, in order to               
ensure its reproducibility/replicability. The replication of MEEG studies is currently a           
challenge, as many reported studies continue to omit basic and important           
methodological details. These details should also assist those who are new to the             
area in considering what is important in designing an experiment, collecting and            
analysing data, as well as reporting the study. Additionally, we hope that the             
COBIDAS MEEG document will be useful for Authors, Editors and Reviewers of            
scientific manuscripts employing MEEG – in the same way that the COBIDAS MRI             
document has been used by the MRI community.  
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1.2 Scope 
 
The COBIDAS MEEG document focuses on best practices in non-invasively          
recorded MEG and EEG data. The practices are broken down into six components             
for reporting: (1) experimental design, (2) data acquisition, (3) preprocessing and           
processing, (4) biophysical and statistical modelling, (5) results, as well as (6) data             
sharing and reproducibility. 
 
Similar to the COBIDAS MRI document, we also make a clear distinction between             
reproducibility and replicability (see definitions in ​Barba, 2018​). ​Reproducibility         
relates to working with (possibly) the same data and analysis methods to reproduce             
the same final observations/results. ​Replicability relates to using different data (and           
potentially different methods) to demonstrate similar findings across laboratories.         
Replication internally, i.e., across experiments within the laboratory, is a practice that            
might be considered by investigators as a means of validation and mitigation of             
exploratory induced biases. 
 
It should be also said at the outset that the MEEG community has always been               
exceptionally proactive in the discussion of good experimental practice and          
reporting, as evidenced by a long history of published guidelines (e.g., Donchin et             
al., 1977; ​Pivik et al., 1993​; ​Picton et al., 2000​; ​Duncan et al., 2009​; ​Gross et al.,                 
2013​; ​Keil et al., 2014​; ​Kane et al., 2017​; ​Hari et al., 2018​). The continual update of                 
guidelines has been necessitated by rapidly changing developments in hardware          
and software and has come from various parts of the MEEG community (​Hansen et              
al., 2010​) - including both the research and clinical areas. The OHBM endorsed             
COBIDAS MEEG recommendations follow this tradition, while also highlighting         
practices that aid with reproducibility, something that has not been a focus of             
previous guidelines. For instance, Section 2 deals with issues pertaining to           
experimental design: explaining the use of common and desirable terminology,          
criteria for participant selection and statistical power, most of these topics which            
have not previously been addressed at length. Some of the best basic practices             
proposed to date have unfortunately remained confined to the earlier MEEG           
literature and have not easily made the transition to the general neuroimaging            
community. This is largely because the MEEG field has now grown to include new              
neuroimaging researchers, who are beginning to work with these established          
methods, may not be familiar with the earlier literature, and may not have contact              
with established investigators in the field. Hence, we have extended and updated            
these guidelines to also tackle known common pitfalls in data recording and analysis.             
This problem will continue to grow in the MEEG field with recent and new              
developments in e.g., increasingly high-density recordings, portable EEG systems,         
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non-helium based MEG systems, and data analysis and modelling approaches          
including estimates of functional and effective connectivity.  

2.       Experimental Design  
 
With respect to experimental design, the goal of replicable research requires the            
reporting of how the participants were screened and selected, as well as what type              
of experimental paradigm was employed. This enables a critical Reader to evaluate,            
for instance, whether the findings will generalize to other populations. In case there             
was an experimental manipulation that included a task, a specification of the            
instructions given to the participant is very important. All pertinent information           
regarding the experiment and the recording environment (cf. Section 3) should be            
noted to facilitate the efforts of others wishing to replicate the work (e.g., stimuli,              
timing, apparatus, sessions, runs, trial numbers, conditions, randomization or other          
condition-ordering procedures, periods of rest, or other intervals etc.). Ideally, the           
scripts and stimuli used (when not collecting resting state data) are shared together             
with the manuscript, thus making exact experimental reproduction possible. 
 

2.1  Lexicon of MEEG design 
 
Below is a list of MEEG terminology commonly used to describe stimulation and task              
parameters and protocols. Although we recognize that some wording is used more            
often than others (e.g., a block versus a run, and a trial versus an event), the list                 
follows the terminology used by the Brain Imaging Data Structure (BIDS –            
http://bids.neuroimaging.io/​) for MEG (​Galan et al., 2017​), EEG (​Pernet et al., 2019​)            
and intracranial EEG (​Holdgraf et al., 2019​). Because some terms are used            
interchangeably in the literature, this can add to the confusion in trying to replicate              
experiments or analyses, hence this effort in standardizing the nomenclature across           
all areas of human brain imaging. Where applicable, we highlight distinctions           
between the COBIDAS MEEG and COBIDAS MRI documents. 

Session​. A logical grouping of neuroimaging and behavioural data collected          
consistently across participants. A session includes the time involved in completing           
all experimental tasks. This begins when a participant enters the research           
environment until he/she leaves it. This would typically start with informed consent            
procedures followed by participant preparation (i.e., electrode placement and         
impedance check for EEG; fiducial and other sensor placement for MEG) and ends             
when the electrodes are removed (for EEG) or the participant exits the MEG room,              
but could potentially also include a number of pre- or post- MEEG observations and              
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measurements (e.g., anatomical MRI, additional behavioural or clinical testing,         
questionnaires), even on different days. Defining multiple sessions is appropriate          
when several identical or similar data acquisitions are planned and performed on all             
(or most) participants, often in the case of some intervention between sessions (e.g.,             
training or therapeutics) or for longitudinal studies. 

Run​. An uninterrupted period of continuous data acquisition without operator          
involvement. Note that continuous data need not be saved continuously; in some            
paradigms, especially with long inter-trial intervals, only a segment of the data            
(before and after the stimulus of interest) are saved. In the MEEG literature, this is               
also sometimes referred to as a block. (Note the difference with the ‘block’ term in               
COBIDAS MRI, where multiple stimuli in one condition can be presented over a             
prolonged and continuous period of time.) 

Event​. An isolated occurrence of a presented stimulus, or a subject response            
recorded during a task. It is essential to have exact timing information in addition to               
the identity of the events, synchronized to the MEEG signals. For this, a digital              
trigger channel with specific marker values, or a text file with marker values and              
timing information can be used. (This term has been defined here in a more narrow               
and explicit sense than that for COBIDAS MRI, mainly because of the specialized             
requirements surrounding the high temporal resolution acquisition of MEEG data.)  

Trial​. A period of time that includes a sequence of one or more events with a                
prescribed order and timing, which is the basic, repeating element of an experiment.             
For example, a trial may consist of a cue followed after some time by a stimulus,                
followed by a response, followed by feedback. An ​experimental condition is a            
functional unit defined by the design and usually includes many trials of the same              
type. Critical events within trials are usually represented as time-stamps or “triggers”            
stored in the MEEG data file, or documented in a marker file. 

Epoch​. In the MEEG literature, the term ​epoch designates the outcome of a data              
segmentation process. Typically, epochs in event-related designs (for analysis of          
event related potentials or event related spectral perturbations) are time-locked to a            
particular event (such as a stimulus or a response). Epochs can also include an              
entire trial, made up of multiple events, if the data analysis plan calls for it. (This                
terminology is not used in the COBIDAS MRI specification.) 

Sensors​. Sensors are the physical objects or transducers that are used to perform             
the analogue recording, i.e., EEG electrodes and MEG magnetometers/         
gradiometers. Sensors are connected to amplifiers, which not only amplify, but also            
filter the MEEG activity. 
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Channels​. Channels refer to the digital signals that have been recorded by the             
amplifiers. It is thus important to distinguish them from sensors. A ‘bad channel’             
refers to a channel that is producing a consistently artifactual or low-quality signal. 

Fiducials​. Fiducials are markers placed within a well-defined location, which are used            
to facilitate the localization and co-registration of sensors with other geometric data            
(e.g., the participant’s own anatomical MRI image, an anatomical MRI template or a             
spherical model). Some examples are ​vitamin-E markers​, reflective disks, felt-tip          
marker dots placed on the face, or sometimes even the EEG electrodes themselves             
etc. Fiducials are typically placed at a known location relative to, or overlying,             
anatomical landmarks. 

Anatomical landmarks. These are well-known, easily identifiable physical locations         
on the head (e.g., nasion at the bridge of the nose; inion at the bony protrusion on                 
the midline occipital scalp) that have been acknowledged to be of practical use in the               
field. Fiducials are typically placed at anatomical landmarks to aid localization of            
sensors relative to geometric data. 

Sensor space. Sensor space refers to a representation of the MEEG data at the level               
of the original sensors, where each of the signals maps onto the spatial location of               
one of the sensors. 

Source space​. Source space refers to MEEG data reconstructed at the level of             
potential neural sources that presumably gave rise to the measured signals           
(according to an assumed biophysical model). Each signal maps onto a spatial            
location that is readily interpretable in relation to individual or template-based brain            
anatomy. 

2.2.  Statistical power  
 
There is currently no agreed-upon single method for computing statistical power for            
MEEG data. The committee recommendations are: 1 – that all decisions related to             
computing statistical power be made ​prior to starting the experiment​; 2 – to define              
from the literature (if available) the main data feature(s) of interest; and 3 – to               
estimate the minimal effect size of interest to determine power. A minimal effect size              
is the smallest effect considered as relevant for a given hypothesis. An effect size              
should be determined using estimates from independent data, existing literature          
and/or pilot data that should not be included in the final sample (e.g. if the hypothesis                
states a modulation of a given spectral band, estimate from the literature or pilot data               
the amount of change expected and compute the required statistical power). It is,             
however, important to keep in mind that errors in effect size calculations and             
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subsequent power calculations can be introduced by small sample sizes when using            
pilot data (​e.g., see Albers & Lakens, 2018​). 

Statistical power determines the researcher’s ability to observe an experimental          
effect. Under the assumption that the effect exists, and along with the quality of the               
experiment, statistical power thus determines the replicability of a study and is,            
therefore, an important factor to consider. For instance, in order to observe a             
behavioural effect in terms of response times, an estimated number of at least 1600              
observations (e.g., 40 participants with 40 trials each for a given condition) has been              
suggested when using a mixed model analysis approach (​Brysbaert & Stevens,           
2018​). As the neural effects in MEEG studies likely have a lower signal-to-noise ratio              
than response time effects, and some trials/epochs will be rejected due to artifacts,             
thus diminishing the number of trials/epochs included in statistical analyses, there is            
a need for more events and/or participants than has been used in current common              
practice. However, there is a complex balance between the number of trials and the              
number of participants that depends, on one hand on the experimental design (within             
versus between participants e.g. see ​Boudewyn et al., 2017​) and the statistical            
method to be used, and on the other hand the MEEG feature of interest, its location,                
orientation and distance to the detectors. 

2.3.  Participants 
 
The population from which the participants are sampled is critical to any experiment,             
not just to those from clinical samples. The method of participant selection            
(​Martínez-Mesa et al., 2016​), the population from which they were selected (e.g.,            
laboratory members, university undergraduates, hospital community, general       
population), recruitment method (e.g., direct mailing, advertisements), specific        
inclusion and exclusion criteria, and compensation (financial or other type) should be            
described clearly. Any specific sampling strategies that constrain inclusion to a           
particular group should be reported. 

One should take special care with defining a “typical” versus “healthy” sample.            
Screening for lifetime neurological or psychiatric illness (e.g., as opposed to “current”            
ones) could have unintended consequences. For example, in older individuals this           
could exclude up to 50% of the population (​Kessler, 2005​) and this restriction could              
induce a bias towards a “super-healthy” atypical participant sample, thus limiting the            
generalization to the population as a whole. The use of inclusive language when             
recruiting participants is also recommended (e.g., using gender-neutral pronouns in          
recruiting materials). 

Participant demographic information such as age, gender, handedness and         
education (total years of education) and highest qualification should be included in            
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the experimental description at a minimum, as these variables have been associated            
with changes in brain structure and function (​BRAINS, 2017​). Medications that affect            
the central nervous system should be reported (unless these were part of the             
exclusion criteria). Additional ancillary investigations (e.g., questionnaires,       
psychological assessments etc.) should also be reported. Finally, it is important to            
include information related to obtaining written informed consent for adult          
participants (or parental informed consent/informed assent in minors), with a specific           
mention of the institutional review board that approved the study. 

2.4.  Task and stimulation parameters 
 
It is helpful to describe the characteristics of the overall testing environment,            
task-related instructions and number of experimenters. In task-free recordings of          
resting state activity, while there are no stimulation parameters, it is important to             
report the instructions given to the participant. As a minimum, even in resting state              
studies, whether the eyes were open or closed needs to be noted, and for studies               
with eyes open whether there was a fixation point or not. Participant position (e.g.,              
seated or lying down) should also be noted. 

If there is a task with stimuli, stimulus properties need to be described in sufficient               
detail to allow replication, and this includes standardization procedures used in           
stimulus creation. The means of producing the stimuli should be reported: for            
example, whether stimuli from existing stimulus sets or databases are used, the            
name/website of the database (or subset of stimuli used) should be provided. If             
stimuli are created or manipulated, specific software or algorithms (and their           
versions) need to be identified. 

It is important to note that the high time resolution of MEEG signals makes them               
highly sensitive to stimulus properties and stimulus/task timing. For visual          
presentation, stimulus size in degrees of visual angle, viewing distance, clarity (i.e.,            
visual contrast, intensity, etc.), colour, site of stimulation (i.e., monocular versus           
binocular, full-field versus hemifield/quadrant), position in the visual field, as well as            
the display device and method of projection (including refresh rate or response time             
of the monitors) should be reported. Any differences in intensity or contrast between             
different stimulus conditions should be noted. For auditory presentation, stimulus          
properties (e.g., frequency content, duration, onset/offset envelope, etc.), intensity         
(e.g., relative to the subject’s individual hearing threshold, or as Sound Pressure            
Level [dB SPL]), ear of stimulation, and the type, manufacturer and model of the              
delivery device (e.g., ear inserts, panel speakers, etc.) are important to include.            
Further, the presence of contralateral ear masking stimulation, and its intensity,           
should be noted. For somatosensory stimulation, stimulus type (e.g., electrical, air           
puff) and characteristics (e.g., duration, frequency), manufacturer and model of          
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delivery device, location on the body with reference to anatomical landmarks, and            
strength (ideally with respect to some sensory or motor threshold) should be            
reported. The distance between the site of peripheral stimulation and brain, and skin             
temperature are also important as they will affect response latency independent of            
the experimental manipulation. For other modalities of stimulation, providing         
sufficient details regarding stimulus properties, timing and intensity will be critical for            
replicability. Calibration procedures, including software (type, version and operating         
system) and hardware used, should also be described. Where relevant, the rationale            
for selecting a specific parameter (e.g., contrast, harmonic content) should be           
indicated. If features were determined individually for each participant, the criteria           
and the psychophysical method used should be detailed. 

For tasks that are self-paced and not explicitly driven by stimuli, e.g., voluntary             
movements in readiness potential (Bereitschafts Potential) experiments, the        
instructions given for each run or block of the experiment, and how the task-relevant              
events (e.g., movement onset or offset) are determined, quantified and stored need            
to reported. 

For all tasks, it is essential to describe the overall structure and timing of the task                
including practice sessions, number of trials per condition, the interstimulus (offset to            
onset) or stimulus-onset-asynchrony (SOA, onset-to-onset) intervals and any        
temporal jitter in these intervals between sequential events (whether intended or           
not), the order of stimulus presentation, feedback or handling of errors, and whether             
conditions were counterbalanced. Storage of stimulus and response triggers in the           
datafile should also be mentioned (discussed in more detail in Section 3). 

2.5.  Behavioural measures collected during an MEEG session 
 
A number of behavioural measures can be acquired during an MEEG experiment.            
The most common measures are obtained via a button press on a response pad or               
keyboard, mouse or joystick; however, many other response types are possible.           
These can include responses by voice, movements of the hands, fingers, feet (most             
typically assessed via accelerometry recordings), eyes (assessed via        
electroculography (EOG), infra-red video recordings or eye tracker), or specific          
contractions of muscles (most typically assessed via electromyographic (EMG)         
recordings). In case accelerometry or EMG is used, the positioning of           
accelerometers or recording electrodes for EMG and data acquisition parameters          
should be described (see Section 3 and 6, BIDS standards). The same applies to              
EOG recordings, where ideally, separate recordings of horizontal and vertical eye           
movements should be captured. 
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Regardless of the actual type of response, it is imperative to describe the exact              
nature of the response acquisition device, including product name, model numbers,           
manufacturer, as well as any pertinent recording parameters. Further, the method by            
which the device interfaces with the MEEG data needs to be described, as well as               
any modifications made to the off-the-shelf product. If devices are built in-house, the             
components and basic function of the device need to be well described (ideally             
providing a schematic diagram of the device or a description of the basic circuit              
might be helpful). 

In addition to response devices, appropriate descriptions of the assessment of           
behavioural response metrics (e.g., central measures like mean or median as well as             
measures of variability) and performance (e.g., response time, accuracy, false          
alarms, etc.) should be provided in the Results section. 

3.     Data Acquisition 

3.1. MEEG device 
  
MEEG studies should report basic information on the type of acquisition system            
being used (including the manufacturer and model), the number of sensors and their             
spatial layout. For example, for EEG studies spatial layout will most likely correspond             
to the International 10-20 (Jasper, 1985; Klem et al., 1999), International 10-10            
(Chatrian et al., 1985), International 10-5 (Oostenveld & Praamstra, 2001), or           
geodesic systems (Tucker, 1993). Additionally, the sensor material should be          
specified (e.g., Ag/AgCl electrodes) and whether the electrodes are active or           
passive. 

For MEG studies, the type of sensors should also be specified (e.g., planar or axial               
gradiometers, or magnetometers; cryogenic or room-temperature), as well as the          
location and type of any reference sensors. Means of determining the position of the              
participant’s head with respect to the MEG sensor array should be reported, and also              
when this operation was performed (e.g., continuously, or at the start of each             
session). The type of shielded room (when used) should also be specified. 

Additionally, for MEG studies, it is advisable to include “empty room” recordings            
using the same experimental set-up as during the experiment (but without the            
participant present) to characterize any participant-unrelated artifacts. For EEG         
studies, ideally access to the data in the calibration procedure (which has been             
carried out on the amplifiers prior to each recording session) would allow the             
variations in channel gains to be documented. In a similar fashion, it would be              
desirable to also be able to store/report electrode impedances that have been            
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measured in each subject. This information would allow to compare raw effect sizes             
(in fT, uV) between studies and potentially harmonizing data across laboratories. 

3.2. Acquisition parameters 
 
For MEEG studies it is mandatory to specify basic parameters such as acquisition             
type (continuous, epoched), sampling rate and analogue filter bandwidth (including          
the parameters of the low pass anti-aliasing filter—an obligatory part of the recording             
system—as well as any high pass filtering). Notch filtering (to eliminate line noise), if              
used during recording, should also be reported. The inclusion of digitisation           
resolution (e.g., 16-bit or 24-bit) is also helpful. It should be noted that during data               
acquisition ​all MEEG recording systems will use some filter bandpass potentially as            
a default that may not be altered by the user. The inclusion of parameters related to                
filter type and roll-offs is essential in some situations (e.g., when discussing the             
timing of ERP components or spectral components). Note that the filter bandpass            
may also be adjusted ​post hoc ​for analysis, and this should also be reported when               
describing analysis procedures (see Section 4.3). 

For EEG recordings, the location of reference and ground electrodes used in data             
acquisition should be specified. Similarly, reference electrode(s) used in data          
analysis should also be reported (see Section 4.4). For data acquisition, physically            
linked earlobe/mastoid electrodes should not be used, as they are not actually a             
neutral reference and make further modelling intractable (see also Katznelson,          
1981). Further, distortions in EEG activity can occur as a result of relative differences              
in impedances between two earlobe electrodes. While it has been recommended by            
various investigators that the left earlobe/mastoid be used as acquisition reference, it            
should be noted that cardiac artifacts could be exaggerated for a left earlobe/mastoid             
reference. An alternative would be to use the right earlobe instead. 

Sensor position digitization procedures, if performed, should be described. For EEG,           
the type of approach used, and the manufacturer and model of the device should be               
specified, as well as the time in relation to the experiment that this procedure was               
performed. In MEG studies, when determining the position of the head with respect             
to the sensor array, the locations of EEG, other electrodes, or head localisation coils              
may be digitized at the same time. If high-resolution anatomical MRI scans of             
participants’ heads are acquired for the purposes of source localization, details of            
MRI scanning protocol, as well as fiducial types, their locations relative to anatomical             
landmarks, and the native coordinate system, should be described. If less commonly            
used fiducial positions are adopted, example photographs of fiducial placement          
might be helpful. Methods for co-registering MEEG sensors and fiducials to           
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individual anatomical MRI scans or templates (including software name and version)           
should be reported (see also Sections 2.1 and 4.6). 

Skin preparation methods used during electrode application, as well as the electrode            
material and the conducting gels or saline solutions (if used) should be described.             
The procedure used to measure impedances should be reported, especially for           
passive electrode systems. For systems using active electrodes it is not required nor             
always possible to record impedances, but nevertheless recommended if possible to           
report the impedance measurement procedure and values. ​Note that ​acceptable          
levels for electrode impedances vary relative to the ambient noise levels (e.g.            
whether recordings are done in a Faraday cage), the amplifier’s input impedance,            
and the type of electrodes being used (passive or active). Therefore it is advisable to               
include a statement on what the acceptable electrode impedances are for the            
specific setup (as suggested by the manufacturers), as well as what the actual             
values were (on average, or an upper bound). The time(s) at which impedances             
were measured during the course of the experiment e.g., start, middle, end, should             
also be noted. It is advisable to store the impedance measurements digitally,            
together with the EEG data, if at all possible. 

Additional electrodes may be applied to the scalp/face to measure          
electro-oculographic (EOG) signals in either EEG or MEG studies. Additionally, EMG           
activity may be recorded from any part of the body. For EOG and EMG electrodes,               
their exact spatial locations should be specified, preferably relative to well-known           
anatomical landmarks (e.g., outer canthus of the eye). It should be specified if these              
data are collected with the same or different filter and gain settings to the MEEG               
data. 

In MEEG recordings the position of the participant (e.g. sitting, lying supine) should             
be clearly documented. Head position is known to affect the strength of different             
EEG rhythms as it produces displacements of brain compartments and therefore has            
an appreciable effect on source modelling (​Rice et al., 2013​). This is likely to be an                
issue for MEG recordings also, as well as being an additional source of variance in               
comparison to fMRI data in the same participants where in one session the             
participant sits upright (in EEG or MEG) and in another (fMRI) the participant lies              
supine. 

In some clinically based studies, some participants may be studied under sedation or             
anaesthesia. The anaesthetic agents may affect the MEEG data significantly, hence           
the agent, dosage and administration method (intravenous, intramuscular, etc)         
should be reported. 

3.3. Stimulus presentation and recording of peripheral signals 
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Information on the type of stimulator (including manufacturer and model) should be            
provided (see Section 2). If being digitally controlled, the type and version of the              
software should also be reported. Calibration procedures for stimulators, if          
applicable, should be described. Similarly, manufacturer and model of devices used           
for collecting peripheral signals, such as a microphone to record speech output            
should be reported. 

As MEEG methods have a very high temporal resolution, it is also essential to              
measure and report any time delays between stimulus timing or recording of            
peripheral signals with respect to the time course of the MEEG signals. For example,              
a visual or auditory stimulus setup may include a systematic delay from the trigger              
sent by the stimulus software to the actual arrival of the stimulus at the sensory               
organs. While a fixed delay is common and easy to fix a posteriori during analysis,               
randomness in temporal jitter can be highly problematic. Any information that may            
influence the interpretation of the results, such as stimulus strength or timing, visual             
angle, microphone placement etc should be reported. For studies involving          
hyperscanning, a description of the synchronization of multiple data acquisition          
systems (e.g. EEG-EEG, MEG-EEG, EEG-fMRI) should be provided. 

3.4. Vendor specific information  
 
When providing acquisition information in a manuscript keep in mind that Readers            
may use a different manufacturer of EEG or MEG device, and thus one should              
minimize the use of vendor-specific terminology. To provide comprehensive         
acquisition detail we recommend reporting vendor-specific information in particular         
regarding hardware parameters, but with generic and agreed terminology (see e.g.           
the brain imaging data structure, or BIDS). If space constraints are a problem in              
manuscript preparation, these details could be provided as supplementary material. 
 

4.     Preprocessing and processing reporting 

4.1. Software-related issues 
 
Many of the available EEG and MEG systems come with analysis software packages             
with varying levels of detailed descriptions of how the different preprocessing tools            
are implemented. In addition, several freely available software packages that run on            
MATLAB/Python/R platforms, or commercial data analysis packages offer alternative         
implementations of data analysis tools. In addition, custom-written software can be           
used. The software that has been used for the preprocessing and subsequent            
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analysis must be indicated (including the version). In-house software should be           
described in explicit detail with reference to the peer-reviewed or pre-print materials.            
The source code should be publicly released and access links should be provided             
(e.g., GitHub or another readily accessible internet-based location). 

4.2.  Defining workflows 
 
Preprocessing is a crucial step in MEEG signal analysis as data can be typically              
distorted due to various factors. The sequence of steps in the preprocessing pipeline             
and their order influences the data to be used for subsequent analysis. The             
workflow, therefore, has to be described step-by-step and with such a level of detail              
that it could be exactly reproduced by another researcher. For most studies,            
recommended steps after general visual data inspection include: 1) Identification and           
removal of electrodes/sensors with poor signal quality i.e. identification of bad           
channels. It is essential to clearly describe the methodology and the criteria used,             
particularly if interpolation is used. 2) Artifact identification and removal. State the            
method and criteria used to identify artifacts. If a tool is used to automate this step,                
details on its implementation and parameters used should be provided. 3)           
Detrending (when and if appropriate) 4) Downsampling (if performed). 5) Digital low-            
and high-pass filtering with filter-type characteristics (see below). 6) Data          
segmentation (if performed). 7) Additional identification/elimination of physiological        
artifacts (blinks, cardiac activity, muscle activity etc.). 8) Baseline correction (when,           
and if, appropriate). 8) Re-referencing for EEG (e.g., earlobe/mastoid-reference,         
common-average reference, bipolar) and expression of the data in another form (e.g.            
surface Laplacian; when and if desired). 

The steps and sequence described above are appropriate for most basic analyses of             
data. That said, for specific analyses, or due to specific data characteristics, the             
order of processing may vary for scientific reasons. For example, data segmentation            
could occur at different points in the pipeline, depending in part on the specific              
artifact removal methods used. Note, however, that filtering should be performed           
before data segmentation to avoid edge effects, or alternatively sufficient data           
padding should be used. Data re-referencing could also theoretically be performed at            
various points in the pipeline, but it is important to note that re-referencing can              
introduce a spatial spread of artifacts. The committee recognizes that investigators           
require a pipeline where the order of steps is taken for specific reasons, and hence               
we are not prescriptive about a particular order of data analysis. That said, for each               
study, the order of the steps in the preprocessing pipeline should be motivated and              
made explicit, so that other investigators can replicate the study. 

Visual inspection of the spatiotemporal structure in the signals after each step is             
recommended and, if needed, remaining segments of poor data quality should be            
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marked and excluded from further analysis. When such epochs are additionally           
rejected, a record should be provided such that the same analysis could be             
reproduced from the raw data. Ideally, storing it in samples relative to the onset of               
the data record, would be desirable to avoid the potential ambiguity which can arise              
when reporting more or less arbitrary ordinal epoch numbers. During preprocessing,           
topographic maps of the distribution of the means and variances of scalp voltages             
(for EEG) and magnetic fields (for MEG) can serve as an additional tool for spotting               
channels with poor data quality that might escape detection in waveform displays            
(​Michel et al., 2009​). 

4.3. Artifacts and filtering 
 
Artifacts from many different sources can contaminate MEEG data and must be            
identified and/or removed. Artifacts can be of non-physiological (bad electrode          
contact, power line noise, flat MEG or EEG channel etc.) or physiological (pulse,             
muscle activity, sweating, movement, ocular blinks etc.) origin. The data should first            
be visually inspected to assess what types of artifact are actually present in the data.               
This evaluation should not be biased by the knowledge of the experimental            
conditions. Subsequently, established artifact identification/removal pipelines can be        
run, or an alternative motivated cleaning procedure can be implemented. Artifacts           
can be dealt with in different ways, from simply removing artifact-contaminated           
segments or channels from the data, to separating signal from noise using e.g. linear              
projection/spatial filtering techniques.  

If automatic artifact detection methods are used, they should be followed up by             
visual inspection of the data. Any operations performed on the data (see Section 4.1              
workflow) should therefore be described, specifying the parameters of the algorithm           
used. It is recommended to describe in detail the type of detrending performed and              
the algorithm order (e.g., linear 1st order, piecewise, etc). When automatic artifact            
rejection/correction is performed, which method was used and what was the range of             
parameters (e.g., EEG data with a range larger than 75 microV, epoch rejected             
based on 3 standard deviations from the mean kurtosis). Similarly for channel            
interpolation, it is essential to specify the interpolation method and additional           
parameters (e.g., trilinear, spline order). For example, when independent component          
analysis (ICA, ​Brown et al., 2001​, ​Jung et al., 2001​, ​Onton et al., 2006​) is used,                
describe the algorithm and parameters used, including the number of ICs that were             
obtained. If artifacts are rejected using ICA or other signal space separation            
methods, it is important to report how these were identified and how back projection              
was performed. For instance, ICA can be performed in combination with a high-pass             
filter, the back projected data without the artefact component can then be obtained             
with or without that filter. Such level of details are necessary if one wants Readers to                
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reproduce the method used. It is worthwhile to also consider including topographies            
of components in the Supplementary Materials section of manuscripts (when          
available). If interactive artifact rejection procedures are used, it is essential to            
describe what types of features in the MEEG signal were identified and define the              
criteria used to reject segments of data. This also allows the Reader to reproduce              
the results, as well as to be able to compare results between studies (see above on                
reporting visually removed trials, or epochs, for instance). Once artifacts have been            
removed, the average number of remaining trials per condition should be reported. 

In addition to removing artifact-contaminated segments or using ICA as a popular            
linear projection technique, MEG allows for the application of specialized linear           
projection techniques, which in some situations can be used in isolation. For            
example, signal-space projection methods (SSP, Uusitalo & Ilmoniemi, 1997) use          
“empty room” measurements to estimate the topographic properties of the sensor           
noise and project it out from recordings containing brain activity. Related tools with a              
similar purpose include signal space separation (SSS) methods and their temporally           
extended variants (tSSS, Taulu et al., 2004; ​Taulu & Simola, 2006​) that rely on the               
geometric separation of brain activity from noise signals in MEG data. SSS methods             
have been recommended as being superior to SSP (​Haumann et al., 2016​). The             
ordering of preprocessing steps for cleaning MEG data is particularly important, due            
to potential data transformation – for some caveats see ​Gross et al., 2013​. 

For both MEG and EEG data, particular attention must be taken to describe temporal              
filtering, both for data acquisition and post-processing, as this can have dramatic            
consequences on estimating time-courses and phases (​Rousselet, 2012​; ​Widmann         
et al 2015​), with no effect on scalp topography (although possibly shifted) but             
possible effect on the topography on non-stationary dynamic signals (e.g.          
components). Some investigators have advocated the use of an acquisition sampling           
rate that is 4 times above the intended cut-off frequency of the low pass filter (​Luck                
et al., 2014 and latest IFCN guidelines). That said, the roll-off rate/slope of the filter               
should also be taken into consideration, because there will still be some signal that is               
present above the filter cut-off frequency. Therefore specifying the type and           
parameters of any applied post-hoc filter and re-computed references (for EEG,           
EOG and EMG) has to be specified: filter type (high-pass, low-pass, band-pass,            
band-stop; FIR: e.g., windowed sinc incl. window type and parameters,          
ParksMcClellan, etc.; IIR: e.g., Butterworth, Chebyshev, etc.), cutoff frequency         
(including definition: e.g., -3 dB/half-energy, -6 dB/half-amplitude, etc.), filter order (or           
length), roll-off or transition bandwidth, passband ripple and stopband attenuation,          
filter delay (zero-phase, linear-phase, non-linear phase) and causality, and direction          
of computation (one-pass forward/reverse, or two-pass forward and reverse). In the           
case of two-pass filtering it must be specified whether reported cutoff frequencies            
and filter order apply to the one-pass or the final two-pass filter. 
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Data preprocessing also forms an essential part of multivariate techniques, and can            
dramatically affect decoding performance (​Guggenmos et al., 2018​). We recommend          
to carefully describe the method used, in particular, if noise normalization is            
performed channel wise (univariate normalization) or for all channels together          
(multivariate normalization, or whitening). For the latter, the covariance estimation          
procedure must be specified (based on baseline, epochs, or for each time point) as              
its strong impact on results (​Engemann & Gramfort, 2015​) can hinder any attempt to              
reproduce the analyses. 

4.4. Re-referencing 
 
EEG is a differential measure and in non-clinical EEG is usually recorded relative to              
a fixed reference (in contrast to clinical practice, which usually uses bipolar            
montages). While EEG is always recorded relative to some reference, it can later be              
re-referenced by subtracting the values of another channel or weighted sum of            
channels from all channels. The need for re-referencing depends on the goals of the              
analysis and EEG measures used (e.g., common average reference, see below) and            
can be beneficial for evaluation of connectivity and for source modelling. However,            
note that, independently of the actual re-referencing scheme, sensor level          
interpretation of connectivity is invariably confounded by spatial leakage of source           
signals (​Schoffelen & Gross, 2009​). Re-referencing does not change the contours of            
the overall scalp topography since relative amplitude differences are maintained.          
This can, however, cause issues when working on single channels or clusters,            
because amplitudes do change locally with referencing (​Hari & Puce, 2017​).           
Specifically, the shape of the recorded waveforms at specific electrodes can be            
altered and this will also affect the degree of distortion of waveforms by artifacts.              
Hence, when comparing across experiments, the references used should be taken           
into account, and if unusual, the reference choice should be justified. For EEG, the              
channel(s) or method used for re-referencing must be specified. MEG is essentially            
reference free, but some systems may allow for “re-referencing” of the signals            
recorded close to the brain, using signals recorded at a set of reference coils far               
away from the brain. If these types of balancing techniques are used, they should be               
adequately described. 

Re-referencing relative to the average of all channels (common average reference,           
CAR) is most common for high-density recordings as the first step in current             
practice. The main assumption behind the CAR is that the summed potentials from             
electrodes ​spaced evenly across the entire head should be zero (​Bertrand et al.,             
1985​, ​Yao, 2017​). ​Although it is generally admitted that this is a good approximation              
for EEG data sets of 128 channels or more (​Srinivasan et al., 1998​; ​Nunez &               
Srinivasan, 2006​), ​the effect of re-referencing to a CAR has been found to be of no                

22 

https://www.sciencedirect.com/science/article/pii/S1053811918301411
https://www.ncbi.nlm.nih.gov/pubmed/25541187
https://doi.org/10.1002/hbm.20745
https://global.oup.com/academic/product/meg-eeg-primer-9780190497774?cc=fr&lang=en&
https://www.sciencedirect.com/science/article/pii/0168559785900589
https://www.sciencedirect.com/science/article/pii/0168559785900589
https://link.springer.com/article/10.1007/s10548-016-0543-x
https://link.springer.com/article/10.3758/BF03209412
https://global.oup.com/academic/product/electric-fields-of-the-brain-9780195050387?cc=fr&lang=en&
https://global.oup.com/academic/product/electric-fields-of-the-brain-9780195050387?cc=fr&lang=en&


close relation to the electrode density. The sum of the potential is mainly affected by               
the coverage area and the neural source activating orientation (​Hu et al., 2018a​). F​or              
low density recordings and ROI-based analyses in sensor space, there is a serious             
risk of violating the assumptions for the average reference and the possibility of             
introducing shifts in potentials (​Hari & Puce, 2017​) and thus CAR should be avoided              
in low-density recordings (<128 channels). 

An alternative to the CAR approach is the “infinite reference” one, also known as              
Reference Electrode Standardization Technique (REST and regularized REST)        
(​Yao, 2001​). Both the CAR and REST have been shown to be the extremes of a                
family of Bayesian reference estimators (​Hu et al., 2018​b). ​REST utilizes the prior             
that EEG signals are correlated across electrodes due to volume conduction, while            
CAR takes the prior that EEG signals are independent over electrodes (for reviews             
see ​Yao et al., 2019​; ​Hu et al., 2019​)​. ​If the focus of the data analysis is on source                   
space inference (see Section 4.6), re-referencing is, in theory, not necessary but            
may be useful for comparisons to existing literature. Of note, any linear transform             
applied to the data (e.g. CAR) should also be applied to the forward matrix used for                
source space analysis. Such important details are generally taken care of by            
software tools in the field (and some require data to be in CAR form), but it is                 
worthwhile ensuring that this is done. Finally, it should also be noted that there are               
so-called “reference-free” methods, the most common one being the current source           
density (CSD) transformation, that usually relies on the spatial Laplacian of the scalp             
potential i.e. the second spatial derivative of the scalp voltage topography (​Tenke &             
Kayser, 2005​). Such techniques attempt to compensate, in EEG, for the signal            
smoothing due to the low electrical conductivity of the scalp and skull. When this is               
used, the software and parameter settings (interpolation method at the channel level            
and algorithm of the transform) must be specified.  

4.5.  Spectral and time-frequency analysis 

A common approach for the analysis of MEEG data is to examine the data in terms                
of its frequency content, and these analyses are applicable for both task-related as             
well as resting state designs. One important caveat for these types of analyses is              
that the highest frequencies that could occur in the data be first considered. The              
selected data acquisition rate must be at least 2 times (Nyquist theorem) the highest              
frequency in the data, but is often higher because of the filter roll-off (see Section               
4.3) – underscoring the importance of planning all data analyses ​prior to data             
acquisition, ideally during the design of the study. Similarly, the lowest frequencies of             
interest should also be considered, as in this case an adequate pre-stimulus            
baseline should be specified for evoked MEEG data i.e. the baseline duration should             
be equal to at least 3 cycles of the slowest frequency to be examined (Cohen, 2014). 
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In task-related designs, MEEG activity can be classified as evoked (i.e., be            
phase-locked to task events/stimulus presentation) or induced (i.e., related to the           
event, but not exactly phase-locked to it). Hence, it is important to specify what type               
of activity is being studied. The domain in which the analysis proceeds (time and              
frequency or frequency alone) should be specified, as should the spectral           
decomposition method used (see below), and whether the data are expressed in            
sensor or source space. These methods can be the precursor to the assessment of              
functional connectivity (see Section 4.6). 

The spectral decomposition algorithm, as well as parameters used, should be           
specified in sufficient detail since these crucially affect the outcome. Therefore,           
depending on the decomposition method used (e.g., wavelet convolution, Fourier          
decomposition, Hilbert transformation of bandpass-filtered signals, or parametric        
spectral estimation), one should describe the type of wavelet (including the tuning            
parameters), the exact frequency or time-frequency parameters (frequency and time          
resolutions), exact frequency bands, number of data points, zero padding, windowing           
(e.g., a Hann or Hanning window), and spectral smoothing (​Cohen, 2018​). It is             
relevant to note that the required frequency resolution is defined as the minimum             
frequency interval that two distinct underlying oscillatory components need to have in            
order to be dissociated in the analysis (​Bloomfield, 2004​; ​Boashash, 2003​). This            
should not be mistaken with the increments at which the frequency values are             
reported (e.g., when smoothing or oversampling is used in the analyses). When            
using overlapping windows (e.g., in Welch’s method) or using Multi-taper windows           
for robust estimation, the potential spectral smoothing may lead to closely spaced            
narrow frequency bands to blend. This should be carefully considered and reported. 

4.6.  Source modelling 
 
MEEG data are recorded from outside the head. Source modelling is an attempt to              
explain the spatio-temporal pattern of the recorded data in sensor space as resulting             
from the activity of specific neural sources within the brain (in source space), a              
process known as solving the ​inverse problem​. Since there is no unique solution to              
the inverse problem (i.e. it is mathematically ill-posed), additional assumptions are           
needed to constrain the solution. Source modelling requires a ​forward model​, which            
models the sensor level distribution of the EEG potential or MEG magnetic field for a               
(set of) known source(s), modelling the effect of the tissues in the head on the               
propagation of activity to MEEG sensors. Forward and inverse modelling require a            
volume conduction model of the head and a source model, both of which can              
crucially influence the accuracy and reliability of the results (​Baillet et al., 2001​;             
Michel & He, 2018​). Practically, the forward model (or lead field matrix) describes the              
magnetic field or potential distributions in sensor space that result from a predefined             
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set of (unit amplitude) sources. The sources are typically defined either in a             
volumetric grid, or on a cortically constrained sheet. Information from the forward            
model is then used to estimate the solution of the inverse problem, in which the               
measured MEEG signals are attributed to active sources within the brain. It is             
important to note that source modelling procedures essentially provide         
approximations of the inverse solution as solved under very specific assumptions or            
constraints. 

In addition to the MEEG data itself, forward and inverse modelling requires a             
specification of the spatial locations of the sensors relative to the head (Section 3.2),              
a specification of the candidate source locations, the source model, and geometric            
data that are used as a volume conduction model of the head, e.g., a spherical head                
model, or a more anatomically realistic model, based on an individual anatomical            
MRI ​of the entire head ​(i.e. including the scalp and face). Note that this may have                
implications for subject privacy when sharing data (see Section 7.2). The procedure            
used to coregister the locations of measurement sensors and fiducials with           
geometric data must be described (see Section 2.1 for definitions; Section 3.2 for             
sensor digitization methods). If using anatomical MRI data, it should be made clear if              
a normalized anatomical MRI volume such as the MNI152 template, or individual            
participant MRIs have been used for data analysis. If individual MRIs have been             
used, the data acquisition parameters should be described.  

It is essential that all details of the head model and the source model are given. The                 
numerical method used for the forward model (e.g., boundary element modelling           
(BEM), finite element modelling (FEM)) must be reported, and the values of electrical             
conductivity of the different tissues that were used in the calculations must be             
specified. This is less of a problem for MEG where magnetic fields are not greatly               
distorted by passing through different tissue types (​Baillet, 2017). The procedure for            
the segmentation of the anatomical MRI into the different tissue types should be             
described. For the source model, the number of dipole locations should be reported,             
as well as their average positions. Moreover, it should be specified how the source              
model was constructed, whether it describes a volumetric 3D-grid, or a cortically            
constrained mesh. When using cortically constrained (surface-based or volumetric)         
source models, these should ideally be based on an individual MRI of the             
participant’s head, especially in clinical studies where brain lesions or malformations           
may be involved, or in pediatric studies where the status of the fontanelles can vary               
across individuals of the same young age. That said, it has been argued that in               
certain clinical settings, approximate head models might be adequate, although their           
limitations should be explicitly acknowledged (​Valdés-Hernández et al., 2009​). The          
source localization method (e.g., equivalent current dipole fitting, distributed model,          
dipole scanning), software and its version (e.g., BESA, Brainstorm (​Tadel et al.,            
2011​), Fieldtrip (​Oostenveld et al., 2011​), EEGLAB (​Delorme & Makeig, 2004​),           
LORETA, MNE (​Gramfort et al., 2013​), Nutmeg (​Dalal et al., 2004​), SPM (​Litvak et              
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al., 2011​), etc.) must be reported, with inclusion of parameters used (e.g., the             
regularization parameter) and appropriate reference to the technical paper         
describing the method in detail. Finally, it should be noted that ​the original mixing              
from the neural sources to the scalp/sensors signals cannot be completely undone            
with even perfect source reconstruction, and this is specifically an important           
confounder for connectivity analyses (​Schoffelen & Gross, 2009​, ​Palva et al., 2018​,            
Pascual-Marqui et al., 2018​). 

4.7.  Connectivity analysis 
 
We refer here to connectivity analyses as any method that aims to detect the              
coupling between two or more channels or sources, and re-emphasise that the            
distinction between functional (correlational) and effective (causal) connectivity        
should be respected (​Friston 1994​). It is also important to report and justify the use               
of either sensor, or source space for the calculation of derived metrics of coupling              
(e.g., network measures such as centrality or complexity).  

4.7.1. Making Networks 

Networks are typically derived in one of two ways: data driven (e.g. clustering of              
correlations, ICA) or model driven. For MEEG, temporal ICA is typically used to             
partition the data into separate networks of maximally independent temporal          
dynamics (​Onton & Makeig, 2006​, ​Eichele et al., 2011​) from which metrics are             
derived. For anatomically/model driven networks, particular attention should be given          
to the parcellation scheme, explaining how this was performed (see e.g. ​Douw et al.,              
2017​). Recent results have also shown strong differences for connectivity computed           
in subject spaces vs. template space (​Farahibozorg et al., 2018​, ​Mahjoory et al.,             
2017​) and choices must be explained.  

4.7.2. Sensor vs. Source connectivity 

While the committee agrees that statistical metrics of dependency can be obtained at             
the channel level, it should be clear that these are not per se ​measures of neural                
connectivity (​Haufe et al., 2012​). The latter can only be obtained by an inferential              
process that compensates for volume conduction and spurious connections due to           
unobserved common sources or cascade effects. In spite of that, dependency           
measures can be useful for e.g., biomarking. Connectivity from ICA falls in between             
these two approaches, as ICA acts as a spatial filter separating out neural sources              
(see e.g. ​Brookes et al., 2012​) but does not reconstruct them per se, nor accounts               
volume conduction, common sources, etc. The possible insight into brain function           
derived from these measures should be critically discussed. This is particularly           
important since the interpretation of MEEG-based connectivity metrics may be          
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confounded by aspects of the data that do not directly reflect true neural events              
(​Schoffelen & Gross J, 2009​; ​Valdes Sosa et al., 2011​). Inference about connectivity             
between neural masses can only be performed with dependency measures at the            
source level and correct inferential procedures. For potential issues in dealing with            
connectivity analyses across channels versus sources, see ​Lai et al., 2018. 

4.7.3. Computing metrics 

We refer the reader to recent general references on connectivity measures (​Bastos            
& Schoffelen, 2016​; ​O’Neill et al., 2018​; ​He et al., 2019​).  

Special care must be taken when describing the metric used. E​poch length must be              
reported as it influences greatly connectivity values especially considering sensor vs           
source space (​Fraschini et al., 2016​) and ​if dynamic connectivity is computed,            
measures must be described by including temporal parameters (window size,          
overlap, wavelet frequency, etc - see ​Tewarie et al., 2019 for an overview). When              
computing measures of data-driven spectral coherence or synchrony (Halliday et al.,           
1995) the following aspects should be considered and reported: the exact           
formulation (or reference), whether the measure has been debiased, any subtraction           
or normalisation with respect to an experimental condition or a mathematical           
criterion. When using multivariate measures (either data-driven or model-based)         
such as partial coherence and multiple coherence, all of the variables used must be              
described. Importantly, it must be described which variables with respect to which,            
the data are partialised, marginalised, or conditioned, or orthogonalized (e.g.          
Brookes et al., 2012​, ​Colclough et al., 2015​). In case of Auto-Regressive (AR)-based             
multivariate modelling (e.g., in the Partial Directed Coherence group of measures;           
Baccala & Sameshima, 2001​), the exact model parameters (number of variables,           
data points and window lengths, as well as the estimation methods and fitting             
criteria) should be reported. 

 

5. Biophysical and statistical analyses 

5.1. Properties of the data submitted to statistical analysis 
 
When analysis focuses on specific channels, source-level regions of interest, peaks,           
components (see also Section 6.1.1 on nomenclature related to this term), time            
and/or frequency windows, it is essential to report how these were determined, and             
where appropriate, why this mode of selection is unbiased. One should also report             
whether specific data were left out and how much of the total data this represents.               
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Special care must be taken to avoid circular analyses, also known as “double             
dipping” e.g., by selecting for analysis specific channels on the grounds that they             
show grand average differences and then performing statistical testing with the same            
data on those channels (​Kriegeskorte et al., 2009​; ​Kriegeskorte et al., 2010​). In other              
words, the criteria for selecting a given channel or component must be independent             
from the statistical test of interest (e.g., based on an orthogonal contrast or the              
adequacy of the component to reflect the data, independently of the effect), or on a               
priori​ ​assumptions derived from previous studies/independent data). 

5.1.1 Region-of-interest analyses 

There are many ways MEEG data can be analyzed. The committee does not make              
any recommendations regarding which features in the data are best, or which            
statistical method is best. Indeed, the most important aspect is that the feature             
selection and the statistical method best answer the particular scientific question           
being asked (​Kass et al., 2016​). 

Region-of-interest (ROI) analysis in time, frequency or space (peak analysis, window           
average, etc) is as legitimate as any other analysis approach, but it should be used               
with caution. Unless justified ​a priori ​or via independent data (session or run), it is               
better accompanied by an analysis incorporating the full data space, as post-hoc            
selection (e.g. using the grand average) increases largely the false positive rate (see             
Luck & Gaspelin, 2017​). For time/frequency ROIs, defining how peaks, components,           
latencies were measured (e.g., manually or automatically) and whether peak          
amplitude (or peak-to-peak amplitude), averages around the peak or area under the            
curve measures were used is paramount, both ensuring no bias was introduced            
during feature selection and because this is a key element to reproduce the analysis.              
When peaks are the object of analysis, the following items should be specified:             
whether the peak latency was determined on the group average and then the             
amplitude was measured at or around this latency for every participant, or whether             
the peak latency was determined individually for each participant and by which            
criterion (e.g., the most negative value within a given window). If automated methods             
were used, report which criteria/parameters were applied or if applicable, which peak            
detection method (and software) was used. Reporting this information is especially           
pertinent in ERP studies because of the specification of the “baseline” period relative             
to which sensory, cognitive or motor activity is referenced. For spatial ROIs, because             
of the smooth spatial distribution of MEEG data, focus on isolated regions of interest,              
without consideration of spatial distribution of signal strength in their wider           
neighbourhood, may yield incorrect estimates of activation and connectivity patterns.          
The dimensionality of source-level descriptions may be reduced by merging neural           
signals for a reasonable number of cortical parcels; the parcellation scheme must be             
defined. 
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Regardless of the statistical framework employed to analyse ROI data, it is            
recommended that assumptions used in the model be checked (e.g., normality of            
residuals) and appropriate corrections be performed to make the statistical tests           
more conservative and maintain the false positive rate at the nominal level. 

5.2. Mass univariate statistical modelling 
 
Mass-univariate statistics can be performed at the participant level, group level, or            
both, using a hierarchical or mixed model approach, and for the whole data volume              
(3D space for source analysis), and/or the spatio-temporal space for channel           
analysis over time (​Kilner et al., 2005​; ​Pernet et al., 2011​). It is essential to report the                 
detail of each design, including the software (and its version), as well as its functions.               
For instance, all regressors included at the participant level should be described, as             
well as which ones were used at the group level. When stimuli or participant              
parameters are regressed, describe how the regressors (predictors and interactions)          
in the final model were selected and which model selection procedures were used, if              
any. If only group-level analyses are performed on averages, specify if weighting has             
been performed and/or if a pooling of channels was implemented. Compared to            
tomographic methods, MEEG can have missing data (e.g., bad channels, or           
transient intervals with artifacts). It is essential to report whether missing data have             
been dealt within the dataset itself, e.g., replacement of bad channels by means of              
interpolation (see Section 4), or if missing data have been handled in statistical             
analyses. 

Since many statistical tests are typically performed on MEEG datasets, results must            
be corrected for multiple testing/comparisons (e.g., full brain analyses or multiple           
feature/component maxima). The method used (e.g., Bonferroni, false discovery         
rate, empirical Baye, random field theory, maximum statistics based on permutation           
or bootstrap (max value, max cluster, max threshold-free cluster enhancement))          
must be reported together with the adopted threshold. Note that both ​a priori and ​a               
posteriori (i.e., derived from autocorrelation on observed data) thresholds based on           
successive data points (​Guthrie & Buchwald, 1991​) do not provide adequate           
techniques to control for Type 1 family-wise error and should, therefore, be avoided             
(​Piai et al., 2015​)​. ​Special attention must also be given to the data smoothness when               
using random field theory (​Eklund et al., 2016​). This is in contrast to ​a posteriori               
thresholds using null distributions (bootstrap and permutations), which have been          
shown to control well for the family-wise Type 1 error rate (​Maris & Oostenveld,              
2007​; ​Pernet et al., 2015​). When used, report which technique and software (and             
version) were used. 
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5.3. Multivariate modelling and predictive models 

5.3.1. Multivariate statistical inference 
 
Multivariate statistical tests (e.g. MANOVA, Linear Discriminant Analysis) can be          
performed on MEEG data and often proceed using one data dimension, leading to             
many statistical tests. For example, a linear discriminant analysis (LDA) can be            
performed over sensor space repeatedly over time and/or frequencies. Conversely,          
multiple predetermined time/frequency points for each channel (or source location)          
can be used, and the classification can be performed per channel. In any case, this               
results in a multiple comparisons problem that needs to be properly addressed,            
typically incorporated into a resampling scheme (bootstrap or permutation) (​Pantazis          
et al., 2005​). 

5.3.2. Multivariate pattern classification 
 
When a decoding approach is used, one must describe: (i) the classifier used (e.g.,              
LDA, Support Vector Machine (SVM), Naive Bayes, Elastic Net, etc.) and its            
implementation/software; (ii) the distance metric (e.g., Euclidean distance, Pearson         
correlation, Spearman correlation); (iii) whether there was any parameter selection          
for the classifier (e.g., by optimizing parameters within a grid of possible values, in a               
subset of trials/participants, keeping the default options of some software); (iv) how            
chance performance was computed (e.g., empirically, with random permutations,         
etc.); (v) the validation scheme (e.g., leave one/two out, N-fold cross-validation) in            
which the test set is independent of the training set, minimising bias and             
unrealistically high classification rates, commonly referred to as “overfitting”. To          
avoid overfitting while setting model parameters, a nested cross-validation should be           
employed. It consists in optimizing parameters on a “validation set” different from the             
left-out “test set” used to report prediction performances. ​It is also important to             
motivate the data-split choice, with leave-one-out approaches likely to give bias           
estimates (​Varoquaux et al., 2017​). ​Finally, if surrogate data creation is part of the              
analysis, then the technique and also details of parameters used to generate            
surrogate data to evaluate the chance performance of the decoder should be            
recorded. 

5.4. Source modelling 
 
Source modelling and reconstruction can be regarded as a step in the processing             
pipeline (see Section 4.4.) that is used to obtain a dependent variable (e.g., amount              
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of power in a particular frequency band at location X), which can subsequently be              
subjected to a univariate statistical test. However, before analyzing the source           
activity, it is essential to provide readers with information on the quality of the              
reconstruction. 

For EEG, source reconstruction based on low-density electrode coverage should be           
justified given that the number of electrodes impact the accuracy of localization            
(​Michel et al., 2004​; ​Michel & Brunet, 2019​) and connectivity (​Hassan et al., 2014​).              
While it has been suggested that > 64 EEG electrodes were needed to avoid              
mislocalisations in source modelling, more recently it is believed that between           
128-256 EEG electrodes are needed to effectively model oscillatory EEG activity           
(​Michel & Brunet, 2019​). For both MEG and EEG, since there are multiple methods              
available to estimate sources, the expected accuracy, errors and robustness of the            
method should be ideally described. For instance, one could report the           
point-spread-function and localization error for sources (i.e., spatial confidence         
bounds of dipoles, ​Fuchs et al., 2004​). In addition, where estimates are performed             
on multiple participants, error measures (variance) captured by the model should be            
reported. In general, it is critical to report all parameters used in the modelling              
procedure, so that the analysis can be reproduced by other investigators.  

5.5. Biophysical modelling and connectivity analyses 

Functional and effective connectivity metrics need to be clearly stated and justified.            
The type of statistical dependence measure in either sensor or source space used             
should be specified (e.g., correlation, phase coupling, amplitude coupling, spectral          
coherence, entropy, DCM, Granger causality), as well as the assumptions underlying           
the analysis (e.g., linear versus unspecified; directional versus non-directional). The          
calculation of specific graph theoretical measures on the basis of dependency           
measures should be motivated and correctly associated to the data (e.g., the            
interpretation of shorter path length is often used, but in the context of functional              
adjacency matrices, its meaning has been questioned, see ​Sporns, 2014​). It should            
be clearly stated whether a generative model is used (and what data types form              
inputs for it), or whether the measure makes specific assumptions about the data             
distribution (e.g., one versus two different populations of participants). It is necessary            
to state the nodes used for the connectivity matrix (e.g., channels, sources), the             
function used for the time-frequency decomposition (e.g., Morlet, Hilbert, Fourier,          
etc.) and the type of statistics used. 

For biophysical methods such as Dynamic Causal Modelling (​Kiebel et al., 2008​),            
details should be given of the neural model employed (e.g., ​event-related potential,            
canonical microcircuit), the full space of functional architectures considered and          
connectivity matrices present/modulated (forward, backward, lateral, if intrinsic), the         
vector of between-trial effects, the number of modes, the temporal window modelled,            
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and the priors on source locations. Finally, information should be provided on the             
statistical approach used for inference at the level of models or the family of models               
(Fixed- or Random-effects, FFX or RFX) as well as at the level of connectivity              
parameters (Frequentist versus Bayesian, Bayesian Model Averaging (BMA) over all          
models or conditioned on the winning family/model etc. (see ​Kiebel et al., 2010​). 

 

6.     Results reporting 
  
Recorded MEEG data contains rich spatial, temporal and oscillatory information.          
Analysis of these spatiotemporal data matrices typically leads to results that may be             
described across different dimensions. Signals vary in frequency, time and space.           
Moreover, relationships between signals (connectivity) and different signal        
components (e.g., cross-frequency interactions) may further increase the        
dimensionality of the results. Depending on the study’s scientific question, results are            
reported in one or several of these dimensions. Different conventions and           
requirements exist for the reporting of results in time, space, or frequency, and for              
the reporting of connectivity results. Thus, in this section we consider these            
dimensions separately. 

6.1. Time-domain analysis 

6.1.1. Naming conventions 
In the current MEEG literature there is quite a bit of variability in component              
nomenclature. The word “component” traditionally referred to a functional brain          
process that has a characteristic spatial distribution (Donchin et al., 1978). Because            
of the loaded meaning of the term “component”, the use of the term “deflection” is a                
potentially useful alternative. 

Traditionally, event-related response components have been named using an         
established nomenclature, where the polarity of the (EEG) response and its ​nominal            
latency form the elements of the name (e.g., N100, N170, P300, N400, etc.). This              
convention appears in guidelines first published by the International Federation for           
Clinical Neurophysiology (IFCN) in 1983, and those updated in 1999          
(​http://www.clinph-journal.com/content/guidelinesIFCN​). This convention was also     
advocated for reporting of data in clinical populations (​Duncan et al., 2009​), based             
on original guidelines (Donchin et al., 1977). For MEG data, two conventions are             
used to refer to these analogous components. One can add an “m” to the name               
(e.g., N100m, N170m), or simply refer to them as M100, M170 etc. It should be               
noted that in MEEG there are also other names for certain event-related responses             
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such as the mismatch negativity (MMN), contingent negative variation (CNV),          
error-related negativity (ERN), that refer to a specific neurophysiological response          
that is elicited under a particular type of paradigm or which refers to a presumed               
mental state (e.g., error detection). Some early investigators have referred to           
event-related components by successive deflections in the EEG waveform (e.g., P1,           
N1, P2, N2 etc.), however, this system of nomenclature is not generally            
recommended. Following the IFCN guidelines would, for example, ensure parity          
across the clinical and healthy participant literature. This applies particularly to neural            
responses that occur early in time e.g., the somatosensory N20, the auditory N100,             
the visual N170 etc. That said, there is an established literature on some later ERP               
components such as P3a and P3b (also known as P300 or the late positive              
component (LPC)), as well as the MMN, CNV etc. In these cases, referring to their               
well-established names could be more appropriate (or adapted e.g., P300a, P300b),           
ideally citing the original article describing the component. 

To achieve transparency in results reporting, it is important to explicitly mention the             
latency window that was used to quantify the amplitude components, especially           
when the results are subjected to subsequent statistical evaluation. Additionally, for           
EEG results being reported in sensor space, the recording site(s) should be noted             
(e.g., vertex N100) to alleviate confusion in the literature, as the polarity of the              
response can vary as a function of the reference electrode position on the scalp and               
the underlying cortical folding. 

6.1.2 Statistical results 

A. Regions of interest  
Results of event-related paradigms are often reported as averaged event-related          
potentials/fields either in sensor space, or as time courses of activation at the source              
level. For group or experimental condition differences, the description of the           
difference test statistic (e.g., F-values or t-values with degrees of freedom and            
p-values, or Bayes Factor) should be reported along with model assumptions, for            
instance in linear models this would be the Gaussianity of residuals. Any statistics             
should be complemented by a description of the effect size (e.g., Cohen’s d,             
percentage difference and/or raw magnitude) and its variability (e.g., confidence          
intervals). Each effect should also be reported, significant or not, allowing readers to             
evaluate the dataset. This does not only facilitate the comparison with other similar             
studies, but it also facilitates an informed power analysis in planning future studies             
and allows building a quantitative, more reproducible view, on brain dynamics           
(​Rousselet & Pernet, 2011​). 
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B. Mass univariate statistical modelling 
Unless event-related data analyses in sensor or source space are based on a priori              
hypotheses drawn from independent data, it is recommended to perform statistical           
analyses in the full data space (all channels, all independent components, all            
sources) and across the entire epoch. Reporting must indicate what method (and            
software) was used to account for multiple testing/comparisons of temporally and           
spatially uncorrelated values (see Section 5) and indicate the statistical threshold           
that defines significance. In general, it is good practice to report the explained model              
variance and data fit (both R-squared and RMSE        
http://data.library.virginia.edu/is-r-squared-useless/​), while parameters deriving from     
the model(s) (e.g., weight estimates, maximum statistical values) can be reported in            
tables. Each effect should be reported (significant or not), along with details such as              
the onset, duration, and amplitude of the responses, thereby allowing readers to            
evaluate the dataset. 

C. Multivariate modelling and predictive models 
For classical multivariate analysis, as for univariate analysis, reporting the quality of            
the data fit is recommended, along with a description of all the effects (significant or               
not). 

For predictive models, decoding accuracy (classification), ​R-squared or RMSE         
(regression) are the measures of choice. Because these computations in MEEG are            
typically performed in space, it is essential to specify how accuracy is computed             
(e.g., over a specified time and/or frequency windows, for entire epochs, for            
individual participants or groups). It is also important to report how input data were              
preprocessed, e.g., if some scaling or standardization of features was performed.           
Accuracy scores with respect to chance level will depend in part on the type of               
experimental design used (e.g., balanced vs unbalanced). Chance level should be if            
possible illustrated in figures and mentioned in the text (​Jas et al. 2018​). In addition               
to decoding accuracy, the time course of the measure of classification accuracy is             
also useful to report. The display of confusion matrices can also be helpful to reveal               
the structure of the errors made by the model. If permutation tests are used,              
associated p-values should be reported. It is commonly recommended to use a large             
number of random splits in the cross-validation to better evaluate variance in scores             
due to the choices of the data partitions between train and test (​Varoquaux et al.               
2017​). The area under a ROC curve can also be used when doing binary              
classification. 

6.1.3 Figures 
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When displaying MEEG waveforms, it is important to make explicit whether these            
waveforms represent sensor space (e.g., single channel data, averaged waveforms          
across a set of channels) or source space, and whether they represent single             
participant or group data. For evoked activity, a marker indicating stimulus           
onset/offset on the time-frequency plot is recommended. Similarly, if motor activity is            
studied, a marker depicting (the onset of) the motor response is suggested. When             
waveforms are presented in different figures and are compared, they should be            
presented with identical x- and y- scales and units should be noted. When difference              
waves (subtraction of one condition from another) are presented, the waveforms of            
the two conditions compared should also be depicted, to allow the reader to evaluate              
the nature of the difference (​Rousselet & Pernet, 2011​; ​Jas et al. 2018​). If any form                
of averaging is performed, the variability should also be depicted and the figure             
caption should explicitly state the nature of the variability measure being depicted            
(e.g., confidence interval or standard deviation of the mean around the waveform).            
Moreover, since MEEG deflections are not only defined by their latency, but also by              
their topography across the head, it is recommended that the waveforms of the full              
set of channels be shown. If this is impractical due to the number of channels, a                
relevant sample of channels should be depicted. In addition, for time windows of             
interest, not only the peak latency should be reported, but also the associated             
topographic maps or source locations in the brain should be shown. This is             
particularly important when reporting amplitude differences between conditions or         
groups at certain channels, as the differences could be due to changes in the              
topography of the potential or magnetic field. 

When topographical distributions of activation (maps) are shown, it is important to            
make explicit what is being displayed (e.g., magnetic field strength, power, mean            
voltages, voltage difference, Laplacians, etc.), as well as the time point (or window)             
that was used to create the topographical display. The number of participants used             
to generate the topographical plot should be specified, and displays of selected            
channels of interest on the maps themselves can also be helpful. If multiple             
topographies are presented (e.g., of different conditions at a given window), they            
should be presented with the same scale to allow comparison. However, it may also              
be appropriate to scale each topography to its own range to highlight the pattern              
more clearly over a smaller range of amplitude. In such cases, the caption of the               
figure should clearly highlight the different amplitude scales. Colour scales should be            
chosen to reflect the nature of the data (linear vs diverging color scales) and be               
linear in luminance to aid with inference (​Pernet & Madan, 2019​). Colour legends             
(bars) are also essential.  

For mass-univariate and multivariate analyses, statistical maps of the space tested           
should be displayed, along with the corresponding waveforms and topographic          
maps. While statistical significance matters, showing only thresholded maps hinders          
reproducibility. We thus recommend displaying thresholded maps in manuscripts         

35 

https://www.frontiersin.org/articles/10.3389/fpsyg.2011.00107/full#h7
https://www.frontiersin.org/articles/10.3389/fnins.2018.00530/full
https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14430


(along with an adequate description of the thresholding method), while providing raw            
maps for all channels and time/frequency frames in supplementary materials (ideally           
as a data matrix in a repository and not just a figure). To allow the reader to evaluate                  
the observed effect, both the time course of the model parameters and of the              
underlying data should be presented. Make sure to label axes appropriately (e.g.,            
average microV, fT, average parameter estimates, T-, F- or p-values) with units of             
the quantities clearly specified. As for statistical maps, consideration should be given            
to what figures should appear in the main manuscript versus those that should             
appear in a Supplementary Materials section. 

6.2. Frequency-domain analysis 

6.2.1. Naming conventions  
When reporting spectral analysis results in specific frequency bands, it is           
recommended to explicitly report the boundaries of the different bands. This is            
important because the designation of canonical frequency bands (e.g., delta, theta,           
alpha, beta, gamma) has been subject to considerable variability (e.g., compare           
Kane, 2017​, to ​Jobert, 2012​). We recommend the IFCN guidelines (​Kane, 2017​) for             
the delineation of frequency bands, as these remain close to the original frequency             
bands proposed by Berger in the late 1920s, Walter, and Jasper and Andrews in the               
1930s (​Hari & Puce, 2017​), and are consistent with those recommended in the main              
clinical textbook in the field (​Krishnan et al., 2018​). That said, because of an              
inconsistency across the literature, we have made a slight adjustment to the            
transition between the alpha and beta ranges to aid the description of results from              
time-frequency analyses. 
 
These are: 
                      ​infra-slow : < 0.1 

delta: 0.1 to < 4 Hz; 
theta: 4 to < 8 Hz; 
alpha: 8 to < 13 Hz; 
beta: 13 to 30 Hz; 
gamma: > 30 to 80 Hz. 
 

It should be noted that gamma band signals can be recorded at frequencies higher              
than 80 Hz for MEEG (​Amzica & Lopes da Silva, 2018​), but that the majority of                
MEEG studies tend to use the lower values of the gamma range – as originally               
postulated in the canonical frequency ranges above. Indeed, for MEG the gamma            
band can extend out to 1 KHz (​Baillet, 2017​). Similarly, for field potentials recorded              
from intracranial electrodes, the gamma band also can be extended to 600 Hz and              
gamma sub-bands also have their own nomenclature (e.g., see ​Uhlhaas et al.,            
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2011​). The majority of MEEG studies tends to use the lower values of gamma.              
Statistical analysis of gamma activity may identify ranges of activity within this very             
broad frequency band. Therefore, in some cases, reporting the specific values of the             
frequencies of interest may be more useful than referring to the canonical frequency             
band. 

It is important to be able to distinguish gamma activity from physiological activity             
elicited to willful saccades – an artifact that is particularly problematic in EEG studies              
(​Yuval-Greenberg et al., 2008​). Methods used to separate saccadic potentials          
(different from eye movement artifacts discussed in pre-processing) from gamma          
activity need to be clearly described, particularly for studies where gamma activity is             
the focus of the investigation. Similarly, muscle activity can also contaminate MEEG            
data. Although the gamma range is the most susceptible, the power spectrum of             
muscle activity varies according to the muscle involved – and can also invade MEEG              
beta and alpha ranges [see ​Goncharova et al., 2003​]. 

The mu rhythm is a complex sensorimotor arc-shaped rhythm that occurs in the             
healthy brain with two main frequency components – one at ~10 Hz and the other at                
~20 Hz (​Hari, 2006​). Source localization indicates that these two frequency           
components have separate sources – the 10 Hz mu component tends to be posterior              
(relative to the central sulcus), whereas the 20 Hz mu component is anterior,             
suggesting different functional roles in sensory versus motor cortex, respectively          
(​Salmelin & Hari, 1994​). There has been a tendency in the mu rhythm literature to               
examine only one of these components, and also label this activity as “alpha” or              
“beta” – creating confusion for those running literature searches. We recommend to            
specify the actual frequencies and to refer to the different “mu rhythm components”             
as a means to reduce confusion in the literature. 

It should be noted that cortical rhythms such as the posterior alpha rhythm change              
throughout the lifespan in healthy brains. In young infants (3-4 months of age) a              
reactive posterior rhythm first appears at ~4 Hz, increasing to ~6 Hz at 12 months of                
age and to ~8 Hz at 36 months, and reaching adult frequencies of ~10 Hz by 6 to 12                   
years (​Pearl et al., 2018​). With normal ageing in a healthy elderly individual, the              
posterior alpha rhythm will slow (​Krishnan et al., 2018​). There has been some             
confusion in the literature regarding this posterior reactive rhythm that we know as             
alpha in the normal adult brain. When studying infants and children, it would be              
preferable to specify the frequency and distribution of the activity and comment on its              
reactivity. It is best to avoid using terms such as “baby alpha”, as this creates               
ambiguity in the literature. (One reason is that central/rolandic (“mu”) rhythms can            
actually appear in infants ​before the manifestation of the posterior reactive rhythm            
that will become fully-fledged “alpha” activity (​Krishnan et al., 2018​)). 
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6.2.2 Frequency and time-frequency decomposition 
 
Point estimates of time-frequency resolved activity (both for measures of power and            
phase) always reflect integration across a frequency range and time window. Since            
different methods for time-frequency analysis exist, it is important to report the            
method and associated parameters (i.e., type of filtering) that have been used.            
Reporting the referencing scheme is crucial for EEG, since the results of            
time-frequency analysis depend on this, as in the case of the analysis of             
event-related activity. 

A point needs to be made regarding the use of the term “​oscillation​“, which is               
specifically used to describe a spectral peak within a frequency band of interest, ​and              
not a general increase in MEEG power within a canonical frequency band (​Lopes da              
Silva, 2013​). The oscillation can then be exactly defined by its peak frequency,             
bandwidth and power. Note that ​a simple (isolated) spectral peak may be a damped              
linear resonance giving more energy to that frequency band, but this is not of itself               
evidence for a self sustained oscillation, which is usually characterised by a strong             
fundamental frequency, but also (sub-)harmonics at integer multiples of the          
fundamental frequency. 

MEEG activity at lower frequencies (e.g. theta, alpha) can modulate the amplitude            
(power), frequency or phase of activity at higher frequencies (e.g. gamma) – a             
phenomenon known as cross-frequency coupling (CFC). When describing CFC         
analyses, the type of coupling (​Jensen & Colgin, 2007​) and overall analysis method             
should be explicitly noted (including keywords regarding the method used may also            
be helpful for future meta-analyses). Given that even one type of CFC can be              
extracted using multiple methods (e.g. phase-amplitude coupling, ​Tort et al., 2010​,           
van Wijk et al., 2015​, ​Dupré la Tour et al., 2017​), the analysis methods and all                
associated parameters, such as filtering parameters, must be specified in detail (as            
should software used be identified). Finally, quality checks (e.g. ​Lozano-Soldevilla et           
al., 2016​) and dedicated statistical methods should be used to avoid estimation            
biases (​van Driel et al., 2015​). 

6.2.3. Statistical results 
Results reporting should follow the same principles as already described for the time             
domain (see Section 6.1.2). 

6.2.4. Figures 
As for all other figures, when displaying frequency spectra, all axes should be clearly              
labelled and units should be shown. For data with a large range in power/amplitude,              
a logarithmic scale might be considered as it may be better suited to displaying              
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important features in the data. In time-frequency plots, care should be taken to not              
only label and display all axes clearly but to also include a calibration bar to show the                 
range of power/amplitude values (or statistical values). For evoked sensory activity,           
a marker indicating stimulus onset/offset on the time-frequency plot is          
recommended. Similarly, if motor activity is studied, a marker depicting (the onset of)             
the motor response is suggested.  

Other considerations regarding mass-univariate and multivariate modelling follow the         
same recommendations that were made for time-domain analyses (see Section          
6.1.2). 

6.3. Spatial and source analyses  
 
Spatial analysis can be restricted to the topographical distribution of potential           
differences or magnetic fields, or can include source localization and reports of            
estimated activity in source space. As already described in Section 6.1.3, it is             
recommended that topographic maps are shown together with the time- or frequency            
analysis results so that the reader can appreciate both the spatial distribution of the              
effects reported and their temporal evolution. When maps are displayed, a layout of             
the electrodes/sensors on the head surface should be shown. Since the topography            
of the maps in the time domain are independent of the reference in EEG recording, it                
is recommended that maps displayed against the average reference are centred at            
zero, so as to optimally and meaningfully exploit the colour scale. If sequential maps              
are presented, in most cases they should be presented with the same colour scale              
and if not, this point should be made explicit in the caption and justified.              
Two-dimensional projections of the sensor layout (seen from the top) are commonly            
used for display, mainly because activity from the entire set of electrodes can be              
easily seen at one time. If it is necessary to display 3D maps, different views should                
be shown, or a cross-sectional cut given, so that no activity is hidden. Ideally, EOG               
electrodes should also be included in the topographic maps. It is recommended that             
the amount of extrapolation in the maps be reduced to a minimum, outside the part               
of the scalp covered by the electrodes as some algorithms do by default. The              
inclusion of contour lines in topographic maps can also be helpful for showing             
differences between experimental conditions. 

Results of source reconstructions with distributed models (e.g., minimum-norm         
estimates, dSPM, LORETA, sLORETA) or beamformers (LCMV, DICS, SAM) are          
often displayed as thresholded (contrast) maps. In this case, the thresholding has to             
be reported and clearly stated whether it is based on statistical analysis (in which              
case, a p-value or a q-value (false discovery rate) should also be provided, as well               
as the method used for correction of multiple comparisons) or what exact criteria for              
the cutoff were used. Ideally, the non-thresholded maps could also be displayed (in             
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the form of selected orthogonal 2D slices, perhaps as supplementary materials), in            
order to give an impression of the amount of spatial blur of the reconstruction. If               
results are based on ROIs or virtual channels, specify whether or not the ROI was               
identified prior to any data analysis and how it was defined. If brain areas are               
masked in the display or excluded in the source reconstruction or the ROI definition,              
this has to be clearly stated, and preferably immediately apparent on the image. If              
individual head models are used for source reconstruction and then co-registered to            
a template head model (e.g., MNI 152) for group averages and statistical            
comparisons, the co-registration procedure (and parameters) has to be specified. 

If 3D coordinates for source analysis are reported in tables, each table should be              
clearly labeled as to which contrast/effect it refers to (nature and direction of the              
contrast, individual versus group result, group size), and should have columns for:            
Anatomical region, X-Y-Z coordinate, t/Z/F statistic, and the p-value or Bayes factor            
on which the inference is based. The table caption should clearly state (even if              
repeated in the body of the text) the significance criterion used to obtain these              
coordinates, and whether they represent a subset of all such significant results (e.g.,             
all findings from whole-brain significance, or just those in a selected anatomical            
region). 

6.4. Connectivity analysis 
The Committee acknowledges that the term “connectivity” has been somewhat          
problematic since it is often loosely used and is an umbrella term to refer to multiple                
methods, creating some confusion in the literature (see ​O’Neill et al., 2018​; ​He et al.,               
2019​). We thus recommend (i) to always explicitly refer to effective (i.e. causal) or              
functional (i.e. correlational) connectivity and ii) have a more informative approach in            
which one specifies the exact method used e.g. effective Granger connectivity,           
functional partial coherence connectivity, functional power envelope correlation        
connectivity, etc. Depending on the exact analytic details, connectivity analysis may           
lead to results that contain very large amounts of data, for instance with all pairwise               
connectivity estimates in source space, resolved in time and frequency. If data            
reduction approaches are applied (e.g., the use of descriptive metrics from graph            
theory) to describe and display general patterns in the data, these approaches            
should be fully documented. Alternatively, a priori ​selection of connections-of-interest          
could limit the number of data points in the solution space. Either way, it needs to be                 
clearly stated and justified how the results that are subjected to subsequent            
statistical evaluation have been derived. 

For effective connectivity methods (generative/model based), such as Dynamic         
Causal Modelling (​Kiebel et al., 2008​; ​Danizeau et al., 2011​), details should be given              
on the neural model employed (e.g., Event Related Potential, canonical microcircuit),           
the full space of functional architectures considered and connectivity matrices          
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present/modulated (forward, backward, lateral, if intrinsic), the vector of between-trial          
effects, the number of modes, the temporal window modelled, and the priors on             
source locations. A display for the distribution of the probability (expected and/or            
exceedance, if using RFX), or log likelihood ratios (when using FFX) over all models              
considered should be provided. Information about the connectivity parameters         
estimated and their variability should be noted (e.g., confidence intervals, p-values if            
comparing groups, etc.). Also, information regarding how parameters were computed          
at the group level (e.g., Bayesian Model Averaging (BMA) over all models versus             
conditioning on the winning family/model) should be provided. When several models           
are compared, it is essential to ensure that the selected model not only performs              
better than the other alternatives but also adequately explains (fits) the experimental            
data. 

7.  Replicability and Data sharing  

7.1. Replicable MEEG 
  
The recommendations made in Sections 2 to 6 correspond to current best practice             
as in 2019. Reporting the data using these criteria should allow the derivation of              
reproducible results, as well as allowing any studies to be replicated. As more and              
more complex analysis pipelines are being used, the more details need to be             
reported. This often contradicts good writing recommendations (e.g. be concise) and           
journal policies (limited number of words or pages). Our recommendation is thus (i)             
to use the COBIDAS (MRI and MEEG alike) tables in the Appendices to prepare              
supplementary materials where details of methods with parameters are described;          
and (ii) to share the analysis code using dedicated repositories such as GitHub (see              
Eglen et al, 2017 ​for simple steps to follow). 
 
In addition to these recommendations, we encourage the MEEG community to share            
the raw and derived data (see Section 7.2) together with the scripts used to process               
the data. Sharing of the data and scripts foster reproducibility, and re-usage of             
scripts allows replicability across laboratories. One of the challenges in replicability           
for MEEG studies is the large data space and variety of methods. In that respect,               
sharing of derived data is essential as it allows the comparison of effect sizes rather               
than binary results, very much akin to fMRI data where statistical maps are shared,              
allowing direct comparisons of results. In an era of electronic journal articles, it is              
relatively easy to share the data that generated figures. For instance, grand average             
ERP data between two conditions consist of a file of a few kilobytes that can easily                
be added as supplementary material or posted in a data repository. While we             
appreciate the complexity of sharing raw data (see below), sharing data behind            

41 

https://www.nature.com/articles/nn.4550


figures will allow more direct comparisons, replications and aggregations of results           
across studies (e.g., meta-analysis).  
 
Sharing data may not always feasible since it requires having obtained consent from             
participants to do so. This can be particularly problematic for clinical samples where             
issues of confidentiality may be a concern. Along these lines, datasets containing            
whole head anatomical MRI data have implications for both subject privacy and            
reproducibility (e.g. the head model cannot be reconstructed if the T1-weighted           
image is defaced and skull stripped). Issues of confidentiality are currently handled            
or are being evaluated by various countries, so cross-continental data-sharing          
initiatives may encounter some challenges (​Open brain consent working group​).          
Hence, it is critical to seek ethical clearance from subjects regarding data sharing             
before embarking on the study; initiatives like the ​open brain consent provide easy to              
follow templates. 

7.2. BIDS MEG and EEG 
 
The brain imaging data structure (BIDS) is a "simple" way to share neuroimaging             
data using generally agreed standards in the neuroimaging community. The BIDS           
initiative started with a meeting at Stanford in Spring 2015, followed by follow-up             
meetings at respective OHBM and INCF annual meetings in the same year, with a              
first release candidate and public call for comments in September 2015. Initially,            
BIDS focused on MRI data (anatomical, diffusion and functional, see ​Gorgolewski et            
al., 2016​), but now encompasses many modalities including MEEG. BIDS offers a            
systematic way to organize data into folders using dedicated names, in association            
with text files, either as tabulated separated value file (.tsv) or ​JavaScript Object             
Notation file (.json)) to store metadata. MEG BIDS was created first (​Niso et al.,              
2018​) and EEG BIDS mostly follows the same structure, with differences mainly            
relating to meta-data (​Pernet et al., 2019​). We encourage the MEEG community to             
share their data using this data structure as it facilitates communications, increases            
reproducibility and makes easier to develop data analysis pipelines. The validity of a             
dataset according to the standard can be checked with an online validator            
(​http://incf.github.io/bids-validator/​). 
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 8. Appendix 
 
Table 1. Design Reporting 
 

Terminology and 
experimental breakdown  

 - Are all experimental events described 
consistently using COBIDAS lexicon? 
- Number of sessions, runs per session and 
trials/events per experimental conditions. 
- Detail how data were epoched. 
- Were analyses done in sensor or source space 
(or both)  

Statistical Power - Detail any analysis performed a priori  to justify 
the number of trials / participants. 

Participants - Recruitment, selection and sampling strategy. 
- Inclusion and exclusion criteria. 
- Demographics (gender, age, handedness, 
education, medication, and other relevant). 
- Information about written informed consent (or 
informed assent for pediatric participants) and the 
name of Institutional Review Board.  

Stimulation/task parameters - Characteristics of the overall testing environment 
and number of experimenters. 
- Instructions (Task-related or not). 
- Stimulus properties.  
- Calibration procedures.  
- Structure and timing of the task (number of trials, 
ISI/SOA, temporal jitter, order of stimuli/conditions, 
counterbalance, etc). 

Behavioural data  - What was collected (motor responses, eye 
tracking)? 
- How was it collected (hardware/software)? 
- errors, outlier trial detection - analysis details and 
how this ties up with the MEEG analyses 
- For resting state data, indicate if the participant’s 
eyes are open or closed. If open, indicate whether 
a fixation point was used. 
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Table 2. Data Acquisition Reporting 
 

Device - MEG or EEG manufacturer, model, 
sensor specifications. 
- Details on additional devices used 
(manufacturer and make) for additional 
measures (behaviour or other). 

Sensor type and spatial layout - MEG: planar/axial gradiometers and/or 
magnetometers, and their number and 
locations. 
- Electrodes for EEG, EOG, ECG, EMG, 
skin conductance (electrode material, 
passive/active, other). 
- EEG spatial layout: 10-20, 10-10 
system, Geodesic, other. Document 
number of electrodes. If layout is not 
conventional, show a 2D map of 
electrode positions. 

Participant preparation and test room - Ambient characteristics and lighting 
(and if appropriate, empty room 
recording for MEG), detail if the 
recording room was shielded for EEG. 
- Participant preparation (EEG: skin 
preparation prior to electrode 
application, electrode application; MEG: 
participant degaussing, special 
clothing). 

Impedance measurement - Report impedances for 
EEG/EOG/ECG/EMG electrodes, 
preferably digitally storing impedance 
values to the datafile, indicate timing of 
impedance measurement(s) relative to 
the experiment. 

Data acquisition parameters 
 

- Software system used for acquisition. 
- Low- and high-pass filter 
characteristics and sampling frequency. 
- Continuous versus epoched 
acquisition? 
- For EEG/EOG/ECG/EMG/skin 
conductance: report reference and 
ground electrode positions. 
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Sensor position digitization - EEG/EOG: method (magnetic, optical, 
other), manufacturer and model of the 
device used. 
- MEG: monitoring of head position 
relative to the sensor array, the use of 
head movement detection coils and 
their placement. 
- In both MEG and EEG, report the time 
of digitization in relation to the 
experiment, and describe the 3D 
coordinate system. 

Synchronization of stimulation devices 
with MEG and/or EEG amplifiers 

- Report either accuracy or error in 
synchronization. 
- Describe synchronization between 
hyperscanning MEG or EEG amplifiers / 
MRI clock and EEG amplifiers. 
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Table 3. Data Pre-processing and processing 
 

Workflow - Indicate in detail the exact order in which 
preprocessing steps took place. 

Software - Which software and version was/were used for 
preprocessing and processing, and analysis 
platform? 
- In-house code? should be shared/made public. 

Generic preprocessing - Indicate any downsampling of the data. 
- If electrodes/sensors were removed, which 
identification method was used, which ones were 
deleted, if missing channel interpolation is 
performed indicate which method. 
- Specify detrending method (typically polynomial 
order) for baseline correction. 
- Specify noise normalization method (typically 
used in multivariate analyses). 
- If data segmentation is performed, indicate the 
number of epochs per subject per condition. 
- Indicate the spectral decomposition algorithm 
and parameters, and if applied before/after 
segmentation. 

Detection/rejection/correction 
of artifacts 

- Indicate what types of artifact are present in the 
data. 
- For automatic artifact detection, describe 
algorithms used and their respective parameters 
(e.g., amplitude thresholds). 
- For manual detection, indicate the criteria used 
with as much detail as needed for reproducibility. 
- Indicate if trials with artifacts were rejected or 
corrected. If using correction, indicate method(s) 
and parameters. 
- If trials/segments of data with artifacts have been 
removed, indicate the average number of 
remaining trials per condition across participants 
(include minimum and maximum number of trials 
across participants). 
- For resting state data, specify the length of time 
of the artifact-free data. 

Correction of artifacts using 
BSS/ICA 

- Indicate how many total components were 
generated, what type of artifact was identified and 
how, and how many components were removed 
(on average across participants). 
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- Display example topographies of the ICs that 
were removed. 

Filtering - filter type (high-pass, low-pass, band-pass, 
band-stop, FIR, IIR) 
- filter parameters: cutoff frequency (including 
definition: e.g., -3 dB/half-energy, -6 
dB/half-amplitude, etc.), filter order (or length), 
roll-off or transition bandwidth, passband ripple 
and stopband attenuation, filter delay (zero-phase, 
linear-phase, non-linear phase) 
- causality and direction of computation (one-pass 
forward/reverse, or two-pass forward and reverse) 

Re-referencing (for EEG) - Report the digital reference and how this was 
computed. 
- Justify choice of the re-reference scheme. 

Source modelling - Method of co-registration of measurement 
sensors to anatomical MRI scan of the 
participant’s head or MRI template (for EEG in 
particular)? 
- Volume conductor model (e.g., BEM/FEM) and 
tissue conductivity values (for EEG), procedure for 
anatomical image segmentation? 
- Source model details (e.g., dipole, distributed, 
dipole scanning, volumetric or surface based), 
number of source points and their average 
distance? 
- Report parameters used for source estimation 
(i.e., regularization of the data covariance matrix; 
constraints used for source model). 

Connectivity - Sensor or source space? 
- Anatomical p​arcellation scheme (source space). 
- Detail exact variables that have been analysed 
(which of the data was partialised, marginalised, 
or conditioned). 
- For model based approach, indicate model 
parameters. 
- Specify metrics of coupling. 
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Table 4. Statistical analyses 
 

ROIs - ​How were these were determined, i.e. what was 
the mode of selection (e.g., a priori from literature 
or independent data)? 
- Report specific sensors/regions of interest, 
peaks, components, time and/or frequency 
window, source. 

Summary measures - Report how these were obtained. 
- Justify how the selection of dependent variables 
is unbiased (especially how the temporal and 
spatial ROIs were chosen). 
- Describe how peaks, components, latencies 
were measured. 

Statistical analysis/modelling - Software and version used, and analysis 
platform? 

- Report model used including all regressors (and 
covariates of no interest). 

- Check and report statistical assumptions (e.g., 
normality, sphericity). 
- Provide model details when complex designed 

are used. 
- Provide details on classification method and 

validation procedure. 
- Note method used for multiple comparisons 

correction and chosen level of statistical 
significance. 

- Report classifier used, the distance metric used 
and the parameters. 

- How was chance level determined? 
- Detail cross-validation scheme. 
- Report/justify data reduction method and 

parameters if used (PCA, SVD, etc.). 

Source modeling - Indicate quality of the model (goodness of fit, 
percentage of variance explained, residual 
mean squares). 

- Report spatial uncertainty for sources. 

Connectivity analyses - Sensor or source space? 
- Report epoch length. 
- Software and version, and analysis platform? 
- Domain, type of connectivity and measure(s) 
used? 
- Definitions of nodes/regions of interest. 
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DCM - Specify type of neuronal model. 
- Ensure fit of model to data before comparing 
different models. 
- Describe modulatory effects, confounds and 
mitigating procedures. 
- Define all connectivity architectures tested and 
connectivity matrices present and modulated. 
- Describe statistics used for model/family 
inference (Random vs. Fixed effects) and 
parameter inference (Frequentist vs. Bayesian). 
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Table 5. Reporting 
 

Nomenclature - Use IFCN-sanctioned nomenclature 

Time and frequency windows - Explicitly note these 

Statistical results - Report the statistical values of 
analyses performed. For 
mass-univariate and multivariate 
approaches, report minima and maxima 
of R-squared, z/t/F values 
- Report raw effects (onset/offset in 
time, frequency, amplitude, power) and 
standardized effect sizes 

Figures - Show waveforms or spectra of each 
condition and differences of interest 
(indicate clearly whether individual 
participant or group data are displayed) 
- Display waveforms with measures of 
error (confidence intervals / standard 
deviation over participants for the grand 
average, or over trials for individual 
participants)  
- Associate waveforms and spectra with 
topographic representations 
- Label all axes, report units and if 
needed display calibration bars (i.e., 
colorbar) with units 
- Mass-univariate and multivariate 
analysis should show the full space of 
statistical results along with significant 
results 

Spatial analyses - Show all source results, including time 
courses. For distributed models, show 
the full non-thresholded map along with 
the thresholded one 
- Topography: include information 
related to the spatial layout of sensors 
- Tables: present contrast/effect tested, 
anatomical region, X-Y-Z coordinate, 
T/Z/F statistic, and the P-value (or 
Bayes Factor) on which inference is 
based 

Connectivity analysis - Explicitly report type of data reduction 
performed and/or space selection 
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- Report all metrics tested and 
associated values 
- If using a null model for statistical 
comparison, report how this was 
generated 
- For DCM, report the distribution of 
probability (expected or/and 
exceedance) over models considered 
and the statistics on the connectivity 
parameters 
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