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Abstract 

Few research studies have quantitatively analyzed metadata elements associated with scientific 
data reuse. By using metadata and dataset download rates from the National Snow and Ice 
Data Center, we address whether there are key indicators in data repository metadata that show 
a statistically significant correlation with the download count of a dataset and whether we can 
predict data reuse using machine learning techniques. We used the download rate by unique IP 
addresses for individual datasets as our dependent variable and as a proxy for data reuse. Our 
analysis shows that the following metadata elements in NSIDC datasets are positively 
correlated with download rates: year of citation, number of data formats, number of contributors, 
number of platforms, number of  spatial coverage areas, number of locations, and number of 
keywords. Our results are applicable to researchers and professionals working with data and 
add to the small body of work addressing metadata best practices for increasing discovery of 
data. 
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1. Introduction 

The complexity and volume of science data has been increasing at an unprecedented rate, 
enabling numerous opportunities for data to be re-analyzed by others (Hanson, Sugden, & 
Alberts, 2011; Overpeck, Meehl, Bony, & Easterling, 2011). Hey, Tansley, and Tolle contend 
that we are in a new era of research defined by Jim Gray as the “fourth paradigm”: “almost 
everything about science is changing because of the impact of information technology. 
Experimental, theoretical, and computational science are all being affected by the data deluge, 
and a fourth, ‘data-intensive’ science paradigm is emerging. The goal is to have a world in which 
all of the science literature is online, all of the science data is online, and they interoperate with 
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each other” (p. xxx, 2009). Science has become more collaborative and open, with more data 
sharing than ever before. The reuse of data generates new scientific insights, stimulates 
innovations across fields, and allows for the verification of original results (Tenopir et al., 2011).  
 
Researchers such as Tenopir et al. (2011; 2015), Kim et al. (2013), and Uhlir (2010) have 
documented the benefits of data reuse, however there is a dearth of research into what factors 
influence the reuse of scientific data. Zimmerman (2007) conducted an interview-based study 
and found that data quality and availability of certain types of data contribute to greater data 
reuse in the ecology research community. Piwowar and Vision (2013) conducted one of the few 
quantitative assessments of data reuse. They compiled a dataset with 9724 instances of in-text 
citations of GEO or ArrayExpress accession numbers which they used as their independent 
variable. The results of their multivariate regression analysis showed a nine-percent increase in 
citations for publications that deposited data in an open data repository. Belter (2014) used 
citation counts of three datasets from the National Oceanographic Data Center to study the 
impact of data curation and found a relationship between citation rates, the year a dataset was 
versioned, and the discipline that cited the dataset. However, he did not perform in-depth 
quantitative analysis into metadata factors that impact data citation counts or data reuse. 
 
We were specifically interested in how metadata affects data reuse. Metadata has long been 
considered essential for the discovery of resources. Qin, Ball, and Greenberg (2012) state that 
“metadata is the foundation for data discovery, use, and preservation” (p. 62) and “metadata for 
scientific data can be considered as mission-critical in scientific data discovery, use, and 
citation” (p. 64).  However, to our knowledge, there are no published studies that employ 
statistical methods to identify the metadata factors that influence data reuse, or predict future 
data reuse.  
 
By using metadata and dataset download rates (as a proxy for dataset reuse, see section 2.1) 
for several hundred datasets from the National Snow and Ice Data Center (NSIDC) data 
repository, we quantitatively addressed the following: 

1) What are key indicators in data repository metadata that show a statistically 
significant correlation with the download count of a dataset? 

2) Can we predict data reuse via machine learning? 
 
Our results are applicable to the work of data producers, data curators, and data management 
professionals particularly in the tasks of determining metadata best practices and data ingest 
procedures.  

2. Data 
The NSIDC defines the scope of datasets within their repository as “cryospheric data and data 
from programs or instruments deemed of importance to the cryospheric community” (NSIDC, 
n.d.). We used a subset of these datasets and their associated metadata as input to supervised 
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machine learning models. Our dependent variable was the count of downloads per dataset from 
unique IP addresses, which we used as a proxy for potential dataset reuse. The initial phase of 
the research was to gather metadata for each dataset and explore the data. The second phase 
of the research involved identifying potential factors associated with higher download rates 
(potential reuse) using machine learning algorithms. 

2.1 Defining Reuse 
We chose download rates as our measure of reuse, however, (re)usage metrics can vary wildly 
in definition, be it by dataset views, dataset download rates, or citation rates in peer-reviewed 
research. We used a convenience selection of dataset download rates provided by the NSIDC 
for two main reasons: 1) the data was made available to us and 2) we had a limited time period 
in which to conduct our study. Future studies could employ other metrics for data reuse. 
 
It is important to recognize that download rate is not equivalent to reuse rate. However, 
download metrics are often easy to access and we use them as a proxy for indicating the 
potential ​ for reuse. Download rates do not suffer from the time-lag associated with publication, 
and take into account data use that may not lead to publication. Future studies could verify the 
correlation between download rates and published reuse.  
 
Several NSIDC datasets included in our study are dynamic in that they are updated regularly. 
We recognize that these may in fact be downloaded regularly by the same researchers whose 
internet infrastructure includes regular IP address changes. However, we found that by 
removing datasets that are updated daily or yearly, our linear regression results did not 
significantly change, so we felt it safe to leave these datasets in for data analysis (see section 
3.3 for further discussion). 

2.2 Data Gathering and Pre-Processing 
Upon our request, on April 13, 2016, NSIDC User Services kindly provided us with a dataset 
consisting of 820 dataset IDs (unique identifiers) and the number of downloads from unique IP 
addresses associated with each of the dataset IDs. The download rates served as the 
dependent variable in our supervised learning methods. The dataset IDs for each dataset were 
then used to scrape associated metadata provided on the NSIDC’s public website. The 
combination of scraped metadata and the download rates were then used for the core of this 
analysis. 
 
We scraped the following metadata elements from the NSIDC’s publicly available website on 
May 18th, 2016:  

● Data Format 
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● Contributors  1

● Spatial Coverage 
● Spatial Resolution 
● Temporal Coverage 
● Temporal Resolution 
● Parameters, Platforms 
● Sensors 
● Dataset Version 
● Dataset DOI 
● Citation Date (Year) 
● Locations 
● Keywords 
● Creation Date 
● Last Update Date 
● Dataset Title  

On May 22, 2016 we scraped additional data including: 
● Links to NSIDC and external websites 
● Links to other NISDC datasets  
● Dataset IDs referenced in the “See Also” section 
● Links to the given dataset 
● Dataset ID numbers for datasets that link to the given observation 

 
To scrape the elements, we wrote a Python (v. 2.7.11, Python Software Foundation, 2015) 
script which utilized the modules BeautifulSoup (v. 4.4.1, Richardson, 2015), Requests (v. 
2.10.0, Reitz, Benfield, & Cordasco, 2016), Numpy (v. 1.10.2, van der Walt, Colbert, & 
Varoquaux, 2011), Pandas (v. 0.17.1, McKinney, 2010), and Re (RegularExpressions) (v. 2.2.1, 
Python Software Foundation, 2015). We then combined the scraped data into a Pandas 
dataframe with the associated NSIDC dataset IDs and download rates and saved in .csv file 
format for further cleaning, analysis, and to enable us to share the same raw dataset. 
 
While we started with 820 datasets, we subsequently removed all rows in which all scraped 
metadata elements were empty, reducing our dataset to 797 rows. We cleaned the data and 
then separated the following elements into unique dataframes of “dummy” variables (binary 
variables that indicate the presence or absence of a given term): contributors, data formats, 
keywords, locations, sensors, platforms, and update frequency. We also counted the number of 
elements and added new features of counts (see Figure 1). 
 

1 We did scrape contributor names and performed analysis using these names. However, we felt that without 
the permission of the contributors, we could not include names in our analysis paper or in a publicly 
available dataset. The contributor names are publicly available on the NSIDC website, but will not be 
available with this paper or any associated datasets available for public consumption. 
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Figure 1​: Top half of image represents the original scraped data (data_format_original) from the metadata element 
“Data Format,” followed by the cleaned data in string format (data_format_string), and finally the count of data 
formats per dataset (count_data_format). The bottom half of the image represents the sparse dummy-variable 
dataframe created from data_format_string. 

2.3 Summary of Data 
Prior to performing data analysis, we explored in detail the individual variables. The full list of 
variables and variable types are listed in the appendix in Table A1. The specific data types were 
chosen to facilitate modeling and analysis via our planned techniques. Certain variables in our 
dataset, for instance “scrape_date,” and  “doi_address_clean,” were not used directly in data 
analysis, but retained to understand how the data was generated, for record-keeping purposes, 
and to assess the data for accuracy when merging dataframes. 

2.4 Exploratory Analysis 
We performed exploratory data analysis to look for potential patterns in the data, understand 
outliers, identify data for cleaning, formulate hypotheses, and determine whether further data 
collection was necessary. Summary statistics of the dependent variable and the ordinal 
variables in our dataset are shown in Table 1. 

 
Feature (per observation) Min Max Mean Median SD 

Download Rate (Dependent Variable) 1 24447 148.25 37 1196.87 

Version 1 34 2.48 1 6.18 

Count of Data Formats 0 8 1.33 1 0.88 

Count of Sensor Types 1 27 1.78 1 1.8 
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Count of Platform Types 1 17 1.73 1 1.58 

Count of Contributors 1 10 2.6 2 1.65 

Count of Spatial Coverage Areas 0 5 1.13 1 0.43 

Count of Spatial Resolutions 0 3 0.39 0 0.59 

Count of Named Locations 0 10 2.34 2 1.56 

Count of Keywords 0 64 10.12 8 8.11 

Count of Reference Links to NSIDC & External 
Webpages 

0 7 1.63 1 1.48 

Count of Reference Links to Other NSIDC Datasets 0 8 0.25 0 0.89 

Count of Other Datasets that Reference the Given 
Dataset 

0 7 0.27 0 0.87 
  

Table 1​: Central tendency for original features 

2.5 Model Building 
The distribution of download rates per dataset is strongly right-skewed (see Figure 2). While a 
handful of datasets experienced thousands of downloads, the vast majority of datasets were 
downloaded fewer than 100 times. 
 

 
Figure 2​: Distribution of download counts for the full dataset. 
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We employed a logarithmic scale (log natural), as recommended for social science research by 
Gelman and Hill (2007), for the download rate to better approximate a normal distribution. 
Figure 3 clearly shows that the vast majority of datasets fall within the midrange of download 
rates. Because the log​e ​distribution is closer to a normal distribution, we can approximate a more 
linear trend in the data (see Figure 4).  
 
Before modeling, we split the full dataset into training and testing sets using an 80/20 split. Each 
author used their own training and testing sets but set random seeds for reproducibility. All 
models were trained on the training sets and predicted outcomes were tested on the testing 
sets. We describe the modeling process for each technique in detail below.  
 

 
Figure 3​: Log-normal distribution of dataset downloads 
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Figure 4​: Log-normal distribution of dataset as a better fit for linear modeling. 

Decision Trees 
There are several advantages to using decision trees for prediction and for determining feature 
importance, such as their ease of modeling and interpretation, their ability to extract important 
features from data, and their ability to make use of data that may not fit a normal distribution. 
Because our dependent variable was not binary, we chose to use regression trees rather than 
classification trees. 
 
We created one decision tree model using R (version 3.2.4) and the RPart package version 
4.1.10 (Milborrow, 2014). We initially used the following independent variables (before pruning): 
data format count, citation year, spatial coverage count, sensor count, update frequency, and 
keyword count. We pruned the tree using RPart’s cross-validated error rate in the Complexity 
Parameter Table.  
 
Additionally, we created several regression trees using Python (version 2.7.11) and the 
Scikit-learn module version 0.17 (Pedregosa et al., 2011) with a maximum number of leaf nodes 
of 10 (chosen based on ease of reading and RMSE values). In these models we regressed the 
log​e​ of the download counts on our dummy variables (see Section 2.2).  

Linear Regression 
We also employed linear regression modeling since the log​e​ of download count follows a fairly 
linear trend (Figure 4), and linear regression is both simple and easily interpretable. Linear 
regression also indicates which independent variables may be highly correlated with the 
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dependent variable based on p-value results. We used the standard p-value threshold of 
significance (p < 0.05), but we recognize that p-values alone are not always sufficient in drawing 
conclusions about relationships or causality (Wasserstein and Lazar, 2016). 
 
We tested several variations of multivariate linear regression models using combinations of the 
following independent variables: data format count, contributor count, platform count, sensor 
count, spatial coverage count, spatial resolution count, location count, keyword count, and 
citation year (as a categorical variable). We ran linear regression analysis in Python using the 
StatsModels version 0.6.1 (Perktold, Seabold, & Taylor, 2014) module for Ordinary Least 
Squares (OLS). We regressed the log​e​ of the download counts on various combinations of the 
independent variables.  
 
In order to choose independent variables, we took into account the p-values of each variable 
within the OLS linear regression models, used recursive feature elimination, randomized 
LASSO, and normalized linear regression (ridge regression) available as part of the Scikit-Learn 
module. 

3. Results 

3.1 Decision Trees 
Each of our regression tree models used log​e​ of download rate as the dependent variable. The 
regression tree model with the best prediction rate (determined by RMSE, see Table A2 in the 
appendix) used binary variables for: data formats, keywords, locations, sensors, and platforms 
(see Figure A1 in the appendix). The RMSE for this model was 0.978 of log​e​ download count or 
2.66 (e​0.978​) downloads. Items worth noting in this model are the specific metadata elements 
deemed most important based on Gini measures:  

● Keyword: “sea ice pm polar stereo-project”  
● Data Format: hdf-eos  
● Sensor: ssmi  
● Sensor: thir  
● Keyword: “agdc-project”  
● Data Format: png  
● Location: Australia/New Zealand 
● Location: Oklahoma 
● Platform: satellites 

 
However, these variables are discipline specific. We desired a model that used general 
metadata elements that could be of interest to other disciplines. We created a regression tree 
using the following independent variables: citation year, data format count, spatial coverage 
count, sensor count, update frequency, and keyword count. The tree was then pruned using the 
variables determined to be the best predictors of log​e​ download count by the cross-validated 
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error rate in RPart’s Complexity Parameter Table (Milborrow, 2014). The pruned model used the 
following variables: citation year, data format count, keyword count, and sensor count (see 
Figure 5). This regression tree model yielded a prediction RMSE of 1.296 log​e​ download counts 
or 3.655 (e​1.296​) downloads. 
 

 
Figure 5​: Decision tree using training data with log​e​ RMSE (1.296 log​e​). Unlabeled numeric in each box represents 
the mean log​e​ of download rates for the given sample (n) of the data. Created with R package RPart version 4.1.10 
(Milborrow, 2014) using colors from RColorBrewer version 1.1.2 (Neuwirth, 2011). 

3.2 Linear Regression 
As with regression trees, our linear models used the log​e​ of the number of downloads as the 
dependent variable. We began by using all eight of the integer features as the independent 
variables (data format count, contributor count, platform count, sensor count, spatial coverage 
count, spatial resolution count, location count, keyword count). Six of the eight variables had 
statistically significant p-values (< 0.05), indicating positive correlation with the dependent 
variable. The sensor count and spatial resolution count did not correlate with log​e​ of the 
download rate. Removing these two variables resulted in a model with six statistically-significant 
variables and an adjusted R​2​ value of 0.883. We tested predicted outcomes on the testing 
dataset which yielded a RMSE of 1.42 for log​e​ download rate. (For detailed results of each 
regression model see Table A3 in the appendix.) 
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As mentioned in section 2.1, to test the potential effect of regularly updated datasets, we 
removed all datasets that had an update frequency of daily or yearly. We compared the linear 
regression results of this data to the linear regression results of the eight integer features 
discussed above. The R​2​ and adjusted R​2​ values were the same for both models. The same six 
independent variables had p-values < 0.05. We were hesitant to remove observations from our 
dataset and the similarity between the models convinced us to continue using the full dataset for 
the remainder of the modeling. 
 
We then added in the categorical variable of citation year. This addition caused the p-value for 
location count to rise above 0.05. After trying various iterations of the variables, we found the 
linear model with the lowest RMSE (1.22 log​e​ downloads or 3.39 downloads) to include citation 
year, data format count, contributor count, platform count, and keyword count. This is was a 
slight improvement on our general element regression tree. 

4. Discussion 
From the results of our regression trees and linear regression models, we have shown that 
certain general and specific metadata features correlate with download rates of NSIDC 
datasets. Specifically, the general categories of: year of citation, number of data formats, 
number of contributors, number of platforms, number of  spatial coverage areas, number of 
locations, and number of keywords are positively correlated with download rates. Specific 
metadata elements such as the keyword “sea ice pm polar stereo-project,” the data format 
“hdf-eos,” and the sensor type “ssmi,” ranked highly on the Gini criterion of feature importance 
in regression tree models. 
 
Our strongest prediction model was a regression tree using discipline-specific binary variables 
with an RMSE of 2.66 downloads (e​0.978​). Our strongest prediction model with more general 
metadata elements was a linear regression model with and RMSE of 3.39 downloads (e​1.22​). 
However, we cannot infer causality from our modeling. While certain metadata characteristics 
are correlated with download rates, it is entirely possible that high interest in a dataset leads to 
more detailed metadata. Future research could include an analysis of the NSIDC’s data ingest 
process and levels of service to determine whether extant metadata is changed based on the 
level of interest in certain datasets. 
 
While we only studied the NSIDC data repository, and our results should not blindly be 
generalized to other data repositories, especially those outside the earth sciences, they do 
indicate that higher counts of certain metadata elements are associated with higher download 
rates. This suggests that larger research projects that output a wider range of data are 
correlated with higher download rates. 
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Further research could address causality via experimentation, other data repositories, network 
analysis of linked datasets, correlation between download rates and reuse rates, and additional 
machine learning algorithms. As mentioned earlier in the section on definitions of reuse, 
additional research could also use citation linking and citation counts rather than download rates 
as our dependent variable.  

5. Conclusion 
Our recommendation, based on the results of this study, is for both dataset producers and data 
managers to ensure inclusion of comprehensive metadata, with particular emphasis on 
keywords, data formats, data collection locations, and then, of course, any other fields of high 
relevance to the discipline. The Inter-university Consortium for Political and Social Research 
includes the following statement in their Guide to Social Science Data Preparation and 
Archiving:  “as metadata are often the only form of communication between the secondary 
analyst and the data producer, good descriptive metadata are essential for effective data use” 
(p. 11, 2012) and we would add that such metadata are essential for data discovery and reuse. 
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Appendix 
Variable Description Type of 

values 
Scale 

dataset_id Unique identifier assigned to dataset by NSIDC Discrete Nominal 

unique_users_ip The number of downloads from unique IP 
addresses associated with each of the dataset 
IDs 

Continuous Ordinal 
  

scrape_date Date of scraping associated metadata provided 
on the NSIDC’s public website 

Discrete Nominal 

scrape_time Time of scraping associated metadata provided 
on the NSIDC’s public website 

Discrete Nominal 

version_clean Version number of dataset Continuous Ordinal 
  

title_original Original title of dataset Discrete Nominal 

doi_address_clean Digital object identifier for dataset  Discrete Nominal 

citation_date_clean Year included in citation for dataset Discrete Ordinal 

count_data_format Number of data formats available for dataset Continuous Ordinal 
  

data_format_string List of data formats available within the dataset Discrete Nominal 
and 
Binary 

contributors_clean List of contributors for each dataset in “First 
name Last name” format. 

Discrete Nominal 

contributor_list List of contributors for each dataset in “First 
letter of the first name - Last name” format. 

Discrete Nominal 
and 
Binary 

contributor_last_nam
es 

List of last names of contributors for each 
dataset. 

Discrete Nominal 
and 
Binary 

count_contributors Number of contributors for each dataset. Continuous Ordinal 
  

spatial_coverage_cle
an 

Spatial coverage for each dataset Discrete Nominal 
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count_spatial_covera
ge 

Number of locations (spatial coverage) Continuous Ordinal 
  

spatial_resolution_cle
an 

Spatial resolution descriptions Discrete Nominal 

count_spatial_resolut
ion 

Number of spatial resolutions for each dataset Continuous Ordinal 
  

platforms_clean List of platforms for each dataset Discrete Nominal 
and 
Binary 

count_platforms Number of platforms for each dataset Continuous Ordinal 

sensors_clean List of sensors for each dataset. Discrete Nominal 
and 
Binary 

count_sensors Number of sensors for each dataset Continuous Ordinal 

update_frequency How often each dataset is updated Discrete Nominal 
and 
Binary 

location_clean List of location names for each dataset Discrete Nominal 
and 
Binary 

count_locations Number of location (names) for each dataset Continuous Ordinal 

keyword_clean List of keywords for each dataset Discrete Nominal 
and 
Binary 

count_keyword Number of keywords for each dataset Continuous Ordinal 

last_updated The latest date when the dataset was updated 
in mm/dd/yyyy format. 

Discrete Ordinal 

count_page_ref Number of links to web pages in the "See also" 
section​ of the dataset description. 

Continuous Ordinal 
  

count_dataset_ref_o
ut 

Number of links to other datasets in the "See 
also" section of the dataset description. 

Continuous Ordinal 
  

dataset_ref_out Id-s of datasets in the "See also" section of the 
dataset description. 

Discrete Nominal 

count_dataset_ref_in Number of datasets that have references to the 
dataset​. 

Continuous Ordinal 
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dataset_ref_in Id-s of datasets that have references to this 
dataset in their "See also" sections. 

Discrete Nominal 

Table A1​: Full list of variables, data types, and scales included in our dataset. 
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Software/ 
Library of Model 

Generation 

Additional 
Parameters 

Initial Independent 
Variables 

Variables Chosen 
by Model 

Parameters  

RMSE of Log​e 
Predicted Test 

Download Rates vs. 
Log​e​ Actual Test 
Download Rates 

R/RPart Number of Splits = 
lowest 
cross-validated 
error rate, 
method=anova 

count_data_format, 
citation_date_clean, 
count_spatial_cover
age, count_sensors, 
update_frequency, 
count_keyword 

citation_date_clean, 
count_data_format, 
count_keyword, and 
count_sensors. 
 

1.296 

Python/SKLearn Max Nodes = 10 All Dummy 
Variables from Data 
Formats, Keywords, 
Locations, Sensors, 
and Platforms 

“sea ice pm polar 
stereo-project,” 
“hdf-eos,” “ssmi,” 
“thir,” “agdc-project,” 
“png,” 
“australia/new 
zealand,” 
“oklahoma,” 
“satellites” 

0.978 

Python/SKLearn Max Nodes = 10 All Sensors “ssm/i,” “modis,” 
“dslr,” “thir,” 
“amsu-a,” “smmr,” 
“ssmis,” “pals,” 
“amsr-e” 

1.021 

Python/SKLearn Max Nodes = 10 All Keywords “sea ice pm polar 
stereo-project,” 
“agdc-project,” 
“ease-grid-project,” 
“sea ice,” “numerical 
weather prediction,” 
“glacier fluctuation,” 
“modis-project,” 
“smex,” “smap 
validation 
cl07-project” 

1.143 

Python/SKLearn Max Nodes = 10 All Data Formats  png, hdf-eos, 
esri-shapefile, hdf, 
binary, kml, geotiff, 
microsoft-excel 

1.189 

Python/SKLearn Max Nodes = 10 All Locations Baltic Sea, 
Oklahoma, New 
Zealand, Georgia, 
Bering Sea, 
Antarctica, Arctic, 
Mexico, Maryland 

1.19 

Table A2​: Results of regression decision tree models. 
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Decision Tree Using Binary Variables 

 
Figure A1​: Decision tree using dependent variable: log​e​ of download and independent variables: binary (dummy) of 
data formats, keywords, locations, sensors, platforms. Tree built with Python and Scikit-Learn. 
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Independent Variables 
Used in OLS Linear 
Regression Model 

Coefficient 
Value for 

Each 
Variable 

P-Values for 
Each Variable 

* Indicates 
p < 0.05 

RMSE of Log​e 
Predicted Test 

Download 
Rates vs. Log​e 

Actual Test 
Download 

Rates 

Model 
R-squared 

Model 
Adjusted 

R-squared 

count_data_format 
count_contributors 
count_platforms 
count_sensors 
count_spatial_coverage 
count_spatial_resolution 
count_locations 
count_keyword 

0.3693 
0.2391 
0.1894 
0.0101 
1.0941 
0.0269 
0.1870 
0.0350 

4.242556e-10* 
8.105154e-14* 
2.392165e-07* 
7.445888e-01 

2.212030e-24* 
7.818940e-01 

2.990326e-08* 
6.767895e-07* 

1.4201 0.884 0.882 

count_data_format 
count_contributors 
count_platforms 
count_spatial_coverage 
count_spatial_resolution 
count_locations 
count_keyword 

0.3693 
0.2401 
0.1947 
1.0918 
0.0245 
0.1878 
0.0356 

4.098764e-10* 
4.607525e-14* 
3.230500e-09* 
2.002456e-24* 
8.001529e-01 

2.345658e-08* 
1.400702e-07* 

1.4204 0.884 0.882 

count_data_format 
count_contributors 
count_platforms 
count_spatial_coverage 
count_locations 
count_keyword 

0.3710 
0.2417 
0.1962 
1.0958 
0.1864 
0.0356 

2.517681e-10* 
9.482735e-15* 
1.349885e-09* 
4.114819e-25* 
1.875876e-08* 
1.410781e-07* 

1.4208 0.884 0.883 

count_data_format 
count_contributors 
count_platforms 
count_keyword 
citation_date:1983 
citation_date:1984 
citation_date:1988 
citation_date:1991 
citation_date:1992 
citation_date:1994 
citation_date:1995 
citation_date:1996 
citation_date:1997 
citation_date:1998 
citation_date:1999 
citation_date:2000 
citation_date:2001 

0.1754 
0.0740 
0.2063 
0.0175 
2.9411 

-8.367e-14 
4.3765 
4.7402 
3.6468 
4.3283 
3.7574 
4.7225 
2.6259 
3.1623 
3.4871 
3.3666 
3.6542 

4.200681e-04* 
7.935439e-03* 
5.676988e-15* 
1.875624e-03* 
5.180690e-05* 
1.079456e-07* 
1.921379e-05* 
3.428281e-06* 
1.091676e-09* 
2.675702e-05* 
1.587840e-23* 
2.254767e-10* 
8.294835e-10* 
6.210551e-56* 
9.427533e-24* 
1.309116e-14* 
3.097338e-19* 

1.222 0.311 0.277 
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citation_date:2002 
citation_date:2003 
citation_date:2004 
citation_date:2005 
citation_date:2006 
citation_date:2007 
citation_date:2008 
citation_date:2009 
citation_date:2010 
citation_date:2011 
citation_date:2012 
citation_date:2013 
citation_date:2014 
citation_date:2015 
citation_date:2016 

3.5891 
2.9141 
2.8958 
2.4589 
3.4886 
2.8078 
2.6982 
2.6167 
2.7180 
2.5990 
2.9447 
1.9419 

] 2.4009 
1.9928 
2.8574 

2.124825e-48* 
1.932465e-62* 
1.435540e-48* 
2.158359e-16* 
2.790683e-46* 
5.042582e-29* 
1.103739e-28* 
7.260191e-44* 
1.026754e-36* 
1.066909e-27* 
3.062377e-22* 
9.813542e-27* 
4.130774e-38* 
6.921112e-32* 
2.768895e-22* 

Table A3​: Results of multivariate linear regression models using Python (version 2.7.11) and StatsModel (version 
0.6.1) module for Ordinary Least Squares regression. 
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