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Introduction 

In 2015, a research poster presentation titled ‘Deep Knowledge Tracing’ featured in the twenty-ninth 

conference on neural information processing systems (Piech et al. 2015). The research was a collab- 

oration between Stanford University, Google Brain (Google’s research unit on artificial intelligence), 

and Khan Academy (the popular online learning platform combining video lectures and algorithmic 

personalisation). 

This study saw the authors apply a state-of-the-art ‘deep learning’ approach to two ‘educational’ 

datasets. One of these datasets derived from Kahn Academy, and another originated from an Intel- 

ligent Tutoring System used widely in the US secondary school sector called ASSISTments. Deep 

learning is a specific method of predictive modelling where computers are able to discover patterns 

in data using complex recursive operations which, through the use of artificial neural networks, 

loosely mimic how a biological brain works. Once a deep learning application has learnt how to pre- 

dict patterns in a ‘training dataset’, it can be used subsequently to predict the same patterns when it 

encounters new instances of the same sort of data. Piech and colleagues’ proposal for deep knowledge 

tracing (DKT) revolved around the claim that neural networks can be used to discover unexpected 

(‘deep’) features of the data arising from students’ use of online learning environments. 

While deep learning had been applied before to educational data, the Deep Knowledge Tracing 

study caused considerable interest among the data science community due to the authors’ claims of 

achieving 85 percent predictive efficiency. Crucially, the authors reasoned that their work could be 

generalised to other learning environments, this potentially having great implications for anyone 

working in the areas of personalised learning and adaptive learning. The finding even prompted 

favourable news media coverage, with headlines such as ‘RoboTutor is a Class Act’ (Macdonald 

2016; Rutkin 2015). Nevertheless, these initial reports also acknowledged doubts over the applica- 

bility of the original study’s findings for actual educational practice. Neil Heffernan, a computer 

scientist from Worcester Polytechnic Institute in Massachusetts involved in the original design of 

the ASSISTments system, put it bluntly: ‘What does that mean, to be able to do a much better     job 

at predicting stuff? I wish we could turn that into something that’s  meaningful.’ 

 
ABSTRACT 

In Applied AI, or ‘machine learning’, methods such as neural networks are used to train computers to 
perform tasks without human intervention. In this article, we question the applicability of these 
methods to education.    In particular, we consider a case of recent attempts from data scientists     to 
add AI elements to a handful of online learning environments, such as Khan Academy and the 
ASSISTments intelligent  tutoring  system. Drawing on Science and Technology Studies (STS), we 
provide a detailed examination of the scholarly work carried out by several data scientists around the 
use of ‘deep learning’ to predict aspects of educational performance. This approach  draws  attention  
to  relations  between various (problematic) units of analysis: flawed data, partially incomprehensible 
computational methods, narrow forms of educational knowledge baked into the online environments, 
and a reductionist discourse of data science with evident economic ramifications. These relations can 
be framed ethnographically as a ‘controversy’ that casts doubts on AI as an objective scientific 
endeavour, whilst illuminating the confusions,  the disagreements and the economic interests that 
surround  its implementations. 
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This statement was intended not so much as an expression of total disapproval as an invitation to 

caution. Nevertheless, it began to expose interesting fault-lines in the debate on automation in edu- 

cation. Going back a few years to an interview with the New York Times Magazine, also titled ‘The 

machines are taking over’ (Murphy Paul 2012), we learn of the existence of two ‘camps’ in the edu- 

cational data mining and Intelligent Tutoring System communities – one (represented in the article 

by Heffernan) that sees humans and computers interacting in an organic manner, and another that 

pursues automation in a much more vigorous fashion (reportedly championed by Ken Koedinger, a 

professor of human–computer interaction and psychology at Carnegie Mellon University). Heffer- 

nan is again quoted as saying ‘Let computers do what computers are good at, and people do what 

people are good at.’ These excerpts of voice from the mainstream media are valuable in illustrating 

how scholarly divergences encroach into larger public controversies around automation and human- 

machine cohabitation. They also point to the distinct ethos of development that underpins the non- 

for-profit ASSISTments platform, based on open research principles and supported by substantial 

public funding (https://www.neilheffernan.net/bio/grants). This sets it apart from more corporate 

educational platforms like Khan Academy or Knewton, which do not tend to share datasets and 

confidential information about their underlying analytical  models. 

Against this lively background, the claim for a huge improvement in predictive efficacy made in 

the DKT study sparked a period of intense research activity amongst a small group of particularly 

interested data scientists and, within a few years, a number of more formal responses had been pub- 

lished. These follow-up studies introduced other computational methods and, in some cases, other 

datasets on which the deep learning techniques were trained. In total, six educational datasets (only 

the ASSISTments one being open) were used during this period of replication and further testing of 

the original claims. These studies challenged the original result on the basis of several arguments. 

Most were simply interested in the computational aspects or sought to show that pre-existing 

methods could perform just as well with careful adjustments (Lalwani and Agrawal 2017; Yeung 

and Yeung 2018; Wilson et al. 2016; Wang et al. 2017; Zhang et al. 2017). One study developed a 

theoretical argument against the applicability of automated knowledge discovery to educational data 

(Khajah, Lindsey, and Mozer 2016), and another identified problems of data integrity in the original 

2015 study which, it was argued, contributed to inflated results (Xiong et al. 2016). 

By the standards of academic controversies, this sequence of claims and counterclaims was of 

minor significance – prompting little excitement beyond the confines of the educational data science 

community. Research on deep learning in education neither ‘took off’ nor ceased altogether as a 

result of these contestations, although a more refined consensus was reached about the uses and 

misuses of neural networks. Instead, the DKT debate is perhaps most significant in highlighting 

issues that extend beyond the relatively straightforward aspects of empirical replication and scholarly 

discussion. In one sense, the DKT case is indicative of a cycle of particularly exaggerated initial hype 

and ensuing backlash that AI seems to attract (Elish and Boyd 2017). Another significant aspect of 

the DKT episode was the central involvement of for-profit actors (such as Google, Khan Academy, 

Knewton and Funtoot). These organisations all share considerable economic interests in the edu- 

cational take-up of AI-powered predictive modelling. Indeed, in general terms outside of education, 

neural networks are poised to become a mainstream tool through the development of off-the-shelf AI 

frameworks such as Google’s TensorFlow. Without doubt, there is much commercial interest in 

http://www.neilheffernan.net/bio/grants)
http://www.neilheffernan.net/bio/grants)
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applying these developments to educational contexts. In view of this, the present paper explores the 

‘minor’ DKT controversy as a significant bellwether for the likely future of AI in education. Drawing 

on ideas and methods from the field of Science and Technology Studies (STS), we examine the eight 

main empirical studies that made up the central sequential ‘back and forth’ of the controversy. These 

are approached in an interpretative manner – that is, not simply as empirical reports but as evidence 

of relationships between key sociotechnical elements. The remainder of this paper therefore 

approaches the DKT case in terms of three research questions relevant to any application of AI in 

education: 

 

(a) How does educational AI (AIED) operationally ‘act’ on datasets? Or, more specifically, how can 

we gain a sense of (a particular brand of) AIED’s underlying logics of knowledge modelling and 

learning progression? 

(b) Why do educational data scientists claim that new forms of learning can be ‘discovered’ and pre- 

dicted by machines, without human  intervention? 

(c) If we explore the cultural assumptions operationalised in AIED in the context of commercial 

competitive relations, what would this tell us about how these assumptions were  formed? 

 
Before exploring questions, we first outline some basic conceptual assumptions and identify con- 

tributions from the STS literature that helped us operationalise our   approach. 

 
STS and artificial intelligence 

While the subject of much discussion, in general terms Science & Technology Studies (STS) is a 

broad collection of theoretical orientations and empirical approaches that share one overarching 

goal: to deconstruct ‘objective’ endeavours in technological and scientific domains, and reconstruct 

them as complex entanglements of humanity, discourse and materiality. In this sense, STS research 

sets out to challenge the workings and the assumptions of techno-scientific knowledge and recast 

them as the result of multiple social influences. 

Various strands of STS prioritise different influences, such as the traditional forces of sociological 

structuration (Winner 1980), gender biases and engrained forms of bodily and social oppression 

(Haraway 1988), or more fluid and dialectic forms of social construction (Law 2010). Running 

throughout these different theoretical concerns is a recurrent emphasis on the notion of relation. This 

refers to the explicit and implicit linkages, tensions and dependencies that work to order things in 

conditions of uncertainty. Through the detailed description of these relational processes of order- ing 

and stabilisation – what Annamarie Mol called ‘ontological politics’ (1999) – STS researchers have 

produced case studies of how material technologies and forms of elite scientific knowledge are done 

and redone through practices and human/non-human alliances. We therefore seek to pos- ition the 

present paper within this   tradition. 

The implicit aim of this type of work is to highlight the plurality and uncertainty that undergird 

‘objective’ techno-scientific facts, and to study how scientific things become real (i.e., are ‘materi- 

alised’) differently through enactments and practices. As Law (2010, 184) puts it, ‘reality is not des- 

tiny … if we attend consistently to practices, then we start to discover alternative forms of 

materialisation’. One specific STS tradition that the specific paper pursues is the interrogation of 

specialised epistemic communities through engagement with technical aspects of their practical and 

discursive conventions, including their interactions in advanced laboratories and through scho- larly 

outputs (Latour and Woolgar 2013). Often leaning towards the sociology of knowledge, and inspired 

by diverse thinkers such as Foucault, Bourdieu and Kuhn, this approach has generated a wealth of 

case studies into the workings of various groups of scientists and engineers such as grav- itational 

wave physics (Collins 2010), high energy physics (Knorr-Cetina 1995), geneticists (Mack- enzie et 

al. 2013), statisticians (MacKenzie 1978) and so on. The present paper therefore attempts something 

similar in terms of unpacking the epistemological work of ‘educational data  scientists’. 
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More specifically, then, our study is aligned with recent STS-inflected research on algorithms and 

data. Indeed, this ‘algorithmic turn’ in the social sciences, spurred by a wave of public and economic 

interest in big data, automation and Artificial Intelligence, has reinvigorated interest in STS 

approaches. STS therefore offers a ready means of unpacking the claimed objectivity and operational 

complexity of algorithmic technologies of enumeration, classification and prediction (e.g., Crawford 

and Joler 2018; Dourish 2016; Kitchin 2014; Mackenzie 2017; Selbst et al. 2018). This recent work 

makes use of earlier STS authors like Collins (1993), Agre (1997), Forsythe (2002) and Suchman 

(1987) who problematised the development of AI and computer science from the 1960s onwards. 

Thus over the past 30 years, these authors have detailed key controversies about human reason   and 

machine intelligence that now have great bearing on recent developments  in the area of AI  and 

education. 

The key argument that we develop in this paper is that attempts to predict and automate aspects 

of educational performance through the application of AI technologies is party to complex forms of 

reductionism. While this is not in itself an original claim, there is something novel in the way com- 

putational methods like neural networks, ‘owned’ by a small elite of data experts driven by technical 

mindsets and commercial incentives, superimpose multiple layers of algorithmic complexity on 

stripped-down (and highly contentious) understandings of human learning. In this sense, we follow 

on from the work of Harry Collins (1993) who – drawing in turn on Dreyfus (1979) and Wittgen- 

stein (1953) – observed that data representation in AI and computer science begets a paradox: as 

reality is gradually reduced to its commensurable constituents, the need for complex logical and 

mathematical abstraction grows stronger. In other words, the  more  things  are  simplified,  the more 

complexity they require to remain real. This paradox comes about because expressing social life and 

culture in terms of algorithmic and statistical rules assumes a ‘ceteris paribus’ condition, i.e., that 

everything must stay the same for a computational system to remain internally coherent and capable 

to operate mechanically. However, this condition can only be upheld through an ‘infinite regress’ to 

underlying rules and requirements, in turn suffering from a tendency towards mathematical 

abstraction. 

This point is reprised and further clarified in more recent work (Collins 2018), where Collins 

critiques bottom-up pattern recognition as the epistemological paradigm that underpins most cur- 

rent forms of applied AI. This paradigm is grounded in an inductivist logic – a distinctive mode of 

knowing – where predictions and generalisations are derived from past observations. It is also a very 

reductive paradigm because it relies, as suggested before, on a regressive modus operandi where 

patterns are assumed to be interpretable in the same standardised way across all cultures  and 

contexts. There exists a different mode of knowing: the ‘top-down model of interpretative soci- 

ology’ (Collins 2018, 111) where knowledge depends on a productive engagement with ‘forms of 

life’ (Wittgenstein 1953). If we choose to operate in this mode, we no longer can interrogate mech- 

anical induction (bottom-up pattern recognition in AI), without entertaining a different perspective 

on how knowledge is first developed and then endowed with cultural relevance. That is, without 

trying to understand ‘how people live their lives in different societies’ (Wittgenstein 1953). This 

alternative epistemic position allowed our empirical framework to emerge as we followed a specific 

predictive algorithm down the potentially infinite regress of neural activations and ‘weightings’, to 

arrive at a point where technical interrogation – a necessary but insufficient first step – became 

exhausted. In this sense, our falling short in this task is not an indication of limited technical 

knowledge, but evidence that the only productive way to investigate algorithms and AI is by look- 

ing around, rather than inside, increasingly opaque and unknowable black boxes. Hence, our focus 

shifted towards the analysis of ‘forms of life’: a range of sociological categories such as the cultural 

meanings hidden in digital materialisations of student learning (a specific dataset from a person- 

alised learning platform), the economic interests of the predictive industry, and the disciplinary  and 

professional entanglements of data science as a domain replete with controversies and uncertainties. 
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Methodology 

Methodologically, the paper draws on the case study approach favoured in Science and Technology 

Studies (STS) where particular attention is paid to epistemic ‘controversies’. These controversies take 

the form of disagreements and debates that illustrate how social aspects influence the otherwise see- 

mingly ‘objective’ process of knowledge production in science and engineering domains (Law 2016). 

In this paper, we treat the academic debate around the DKT case as a minor controversy that can 

illuminate the sociotechnical factors involved in the production of knowledge about data science and 

AI techniques in education. In particular, our paper presents an interpretative analysis of the 

disciplinary debate itself. This approach therefore follows the work of Kelty and Landecker (2009) 

by focusing on a corpus of formal knowledge analysed as an ethnographic informant: ‘something  to 

be observed and engaged as something alive with concepts and practices not necessarily visible 

through the lens of single actors’ (177). In terms of conventional educational research, this consti- 

tutes a relatively experimental and unconventional method. However, we argue that complex 

phenomena like ‘algorithmic education’ can only be studied by focusing on their digital and episte- 

mic manifestations, and (it follows) through a pragmatic yet careful use of multiple methods that 

stretch well beyond a traditional reliance on interviews and other qualitative self-report  methods. 

In the remainder of the paper, we therefore take the eight articles that comprise the DKT contro- 

versy to develop an ethnographic understanding of the following three elements of a ‘relational 

framework’: 

 

(1) The educational data-set and broader digital ‘learning’ platform. The first focus is on one of the 

specific ‘educational’ datasets involved in the DKT controversy. As mentioned earlier, the DKT 

debate considered six datasets in total. In this paper, we focus on the most prevalent dataset in 

the controversy that featured in six of the eight articles. This dataset is from a US-based Intel- 

ligent Tutoring system called ASSISTments, designed to teach (mostly) the topic of algebra. For 

this element of our analysis we examine the technical documentation relating to ASSISTments 

and treat the actual dataset as a digital-ethnographic  artefact. 

(2) The AI method. Second, we focus on the specific machine learning method implicit in the DKT 

debate: recurrent neural networks (RNNs). Here we attempt an interpretative reading of the 

papers, looking beyond their face value as ‘objective’ empirical reports. The interpretation 

focuses on tension between the ‘new knowledge’ that RNNs tried to discover in the data, and 

the ‘existing knowledge’ codified in the data environment as a result of an epistemic consensus 

amongst the educationalists that created it (i.e., pedagogic consensus about how the topic of 

algebra is learnt, and a pedagogic consensus about learning progression). 

(3) The cultural, discursive and economic aspects of data science in education. Third, we examine the 

DKT debate as a specific instance of epistemic discourse. In particular, this involves analysing 

the patterning of a specific learning-related keyword (‘performance’) across the papers as indica- 

tive of problematic cultural assumptions. We then place this discursive contestation in the con- 

text of competitive relations that the DKT studies mediated between universities, corporate 

entities and the six digital educational datasets. 

 
 

Weak AI: hype, backlash and the complexities of ‘learning from data’ 

Before examining each of these three elements, it is important to develop a good working under- 

standing of the AI method that is under scrutiny here. In particular, we outline the specific  machine 

learning method implicit in the DKT debate: recurrent neural networks (RNNs), which    is one of 

many  methods  that  can be used  in AI. As  shall be clear  when we  go on to consider  the three 

elements, understanding the logic of this method and the way it differs from other machine learning 

approaches is an important pre-requisite to making sense of the DKT controversy. 
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In order to understand RNNs, it helps to examine what preceded them. The 60 year old field of AI 

is characterised by periods of hype followed by backlash, which involved two well-documented ‘AI 

winters’ following spells of enthusiasm and vigorous research activity. The first backlash of the 1970s 

resulted from the failures of so-called ‘Good Old Fashioned AI’ (GOFAI), also known as ‘symbolic 

AI’, which emerged from work in mathematical logic where a number of principles derived from 

human reasoning were theorised and formalised. During the 1950s and 1960s, many researchers 

attempted (with limited success) to encode these principles in computational systems to simulate 

autonomous intelligence. This led to reduced funding and a subsequent sharp decline in research 

activity. However, the subsequent development of ‘expert systems’ in the 1980s was seen to herald 

a resurgence of AI research. These systems aimed to emulate the decisional processes of experts  by 

applying procedural (IF/THEN) logic methods to defined knowledge bases that had been devel- oped 

through consultation with human domain   experts. 

While innovative, the field of expert systems stalled after a decade or so, prompting the second AI 

winter which lasted well into the early 1990s. However, this was followed by a resurgent phase of 

radically different AI that abandoned the previous emphasis placed on abstract formal logic prin- 

ciples and began instead to rely on methods of statistical inference as well as inductive and abductive 

reasoning. This phase of so-called ‘weak AI’ is exemplified by developments in the field of machine 

learning, where computational methods are used to automate specific tasks of classification and pre- 

diction. The societal application of machine learning over the past 20 years have proven numerous – 

as reflected in developments in online shopping, face recognition, self-driving cars and cancer diag- 

nosis. In terms of the specific focus in the present paper, there has been growing educational interest 

in the use of machine learning to model student performance and   behaviour. 

Broadly speaking, machine learning approaches follow a relatively straightforward ‘function 

fitting paradigm’ (Hastie, Tibshirani, and Friedman 2009): 
 

Y = f (X) + ε. 

Described in plain English, this equation posits how an outcome variable ‘Y’ (e.g., in terms of the 

DKT controversy, a prediction of student success in completing an algebra problem) is the result of a 

function ‘f’ (i.e., a specific type of mathematical operation such as addition or division) applied to a 

predictor variable ‘X’ (e.g., the number of times the student seeks help while trying to solve the 

algebra problem). The equation takes also into account the likelihood that the model will have errors 

(‘ε’). 
In terms of this function fitting paradigm, then, the purpose of machine ‘learning’ is to figure out 

what f actually does. This can be a complex process that stretches well beyond simple arithmetic. In 

order to learn f, a human agent must assemble a ‘training set’ of observations. In so-called supervised 

learning, the data scientist will use a pre-defined system to label (and therefore categorise) the inputs 

and the outputs associated with the phenomenon that is being modelled. For example, the process of 

learning algebra can be modelled according to the established consensus in maths education and psy- 

chology. This model can be broken down in various codified steps which refer to specific inputs and 

outputs. Once created, this training set can be fed to an algorithm (a computer program) which 

‘learns’ the various interactions and permutations between the inputs and outputs included in the 

data set. If the approach succeeds, the algorithm will figure out what f does, and will then be able 

to predict an outcome whenever new, unseen instances of the same types of data are   encountered. 

In unsupervised machine learning, algorithms operate without pre-defined labels and, according 

to one of the most popular technical textbooks currently available, ‘experience a dataset containing 

many features, then learn useful properties of the structure of this dataset’ (Goodfellow, Bengio, and 

Courville 2016, 105). The notion of an algorithm ‘experiencing’ something is an anthropomorphism 

not uncommon in the machine learning literature; it evokes a process of independent knowledge dis- 

covery whereby meaningful categories can be constructed in an ‘agentic’ fashion. It is precisely in this 

arena  – unsupervised  knowledge  discovery  – that  neural  networks  began  outperforming other 
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machine learning methods. Indeed, unsupervised learning played a key role in the ‘renaissance’ of 

deep learning in the mid-2000s, when data scientists discovered that neural networks could be pre-

trained in an unsupervised fashion, thus making them more effective in supervised tasks (Good- 

fellow, Bengio, and Courville 2016, 528). 

The operational aspects of neural networks are loosely based on an abstracted understanding of 

human learning as a bottom-up (inductive) process that relies on observation, experimentation and 

the dynamic adaptation to the new information extracted from the data. This process aims to 

approximate a model of the biological brain, where signals from multiple inputs are combined, 

‘weighted’ and then trigger parallel neural activations once they pass a certain threshold. Following 

this approximate model, the standard deep learning model involves the construction of artificial 

neural networks that consist of layers of sparsely connected units through which data and the associ- 

ated errors circulate, while the predictive or classificatory task is learnt. These can be seen in terms of 

three distinct layers: (i) an input layer, (ii) a middle hidden layer where intermediate computations 

take place, and (iii) an output layer (see Figure 1). 

At this point, many readers’ attention might understandably be piqued by the notion of the 

‘middle hidden layer’. In brief, the hidden layer provides a buffer where the errors that inevitably 

emerge during the training process can be sent back and propagated through the network. Hastie, 

Tibshirani, and Friedman (2009, 395) describe this as a ‘forward and backward sweep over the net- 

work’ in which errors are first spread out and then recombined to compute the output layer. This 

optimisation technique is known as ‘Stochastic Gradient Descent’, essentially showing how the pat- 

terning of these errors change in tandem with changes to the weighting in the network. This is an 

incremental process that minimises ‘loss’, i.e., a measure of how effective the model is at predicting 

a single case (e.g., an input-output pairing). The aim of the optimisation technique is therefore to 

stabilise on a set of weights that, on average, have low levels of loss across the entire dataset. The 

process concludes when a human agent decides that satisfactory results have been  obtained. 

One particular type of neural network used in the DKT controversy is the ‘recurrent neural net- 

work’ (RNN). This extends even further the functionalities of other so-called vanilla networks by 

allowing algorithms to operate with entire sequences of observations (rather than individual obser- 

vations) that are mapped over long periods across the input and output layers. The recursive, tem- 

poral nature of this procedure aims to capture the regularities through which past observations shape 

 

 

Figure 1. An artificial neural network. Source: wikipedia.org 
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the likelihood of future events. Recurrent Neural Networks are therefore described in the original 

DKT study as ‘a family of flexible dynamic models which connect artificial neurons over time’ 

(Piech et al. 2015, 3). In the context of the example used before of learning algebra, the advantage 

of a RNN is the ability to ‘remember’ past performance from a student and use this information    to 

produce predictions at a ‘much later point in time’ (Piech et al.  2015). 

Recurrent neural networks (RNNs) have generated a significant amount of interest amongst the 

AI community in recent years. Formalised decades ago to assist complex computational tasks such as 

speech recognition (e.g., Rumelhart, Hinton, and Williams 1986), they have gained popularity as 

appropriately large datasets became readily available alongside powerful computational resources. 

In particular, RNNs have been extensively researched within DeepMind: the flagship Google 

research program on AI (Graves and Jaitly 2014). 

One final point to make before we go on to consider the development of RNNs in the context of 

the DKT controversy relates to explainability (or lack of it). Like vanilla networks, RNNs achieve 

their outcomes through the back-propagation of errors – i.e., updating the values in the model as 

new observations come in. However, unlike vanilla networks, RNNs can ‘remember’ past infor- 

mation given the fact that connections between hidden units often exhibit a time delay. This enables 

RNNs to ‘discover temporal correlations between events that are far away from each other in the 

data’ (Pascanu, Mikolov, and Bengio 2013, 1310). For non-experts, the recursive and temporal 

nature of the process is difficult to grasp, and it remains largely opaque even in the specialist litera- 

ture (Zeiler and Fergus 2014), where it is generally accepted that it is nigh-on impossible to interpret 

weights and neural activations. As a result, RNNs are deemed capable of discovering unexpected fea- 

tures of the data that appear confusing, other-worldly and/or ‘hallucinatory’ (Perez 2018), given the 

approximate understanding of how they were achieved. 

 
The disagreements and confusions of educational data science 

Having provided a broad introduction of the AI method and RNNs, we will now examine relationally 

its implication in the DKT case study, starting by the relations between the online tutoring system, its 

underlying assumptions about knowledge modelling in algebra, and the resulting  data. 

 
(i) the digital environment and its  dataset 

 
Intelligent Tutoring Systems (ITSs) have a long history as educational technologies, with the first 

developments dating back to the 1960s and 1970s (e.g., Carbonell, Michalski, and Mitchell 1983). 

ITSs have evolved significantly over the past decades and, nowadays, they resemble online software 

platforms that collect large amounts of student data. One of the most successful ITSs in recent years, 

widely adopted in the US education sector, is called ASSISTments. This system was developed by the 

Worcester Polytechnic Institute and is available to teachers free of charge. It is officially described as 

a ‘collaborative ecosystem’ (Heffernan and Heffernan 2014) which has involved teachers, researchers 

and computer scientists working together to produce collections of problem sets and scaffolding 

materials to teach high school level maths, alongside the modelling of other subject domains such 

as physics, chemistry and English grammar. 

ASSISTments was launched in 2003 in order to automate the remedial instruction for middle and 

high school students preparing for high-stakes State examinations. The developers wanted to build 

‘an online system where students would practice the released MCAS (Massachusetts Comprehensive 

Assessment System) items, with tutoring on how to work out problems offered to students who got 

the problem wrong’ (Heffernan and Heffernan 2014, 475). This emphasis on the ‘Pass/Fail’ binary 

typical of high-stake exams is computationally reinforced by ASSISTment’s underlying model 

which is termed ‘knowledge tracing’ (Corbett and Anderson 1994). This approach assumes a simple 

two-state model of human knowledge, where student performance is observed in order to estimate 

(in a binary fashion) the presence or absence of knowledge on a predefined skill. Students are deemed 



1
0 

 

 

to have learnt a skill (such as adding and subtracting integers) when they get three answers right in a 

row with no help and no mistakes. The exercises and the supporting materials are presented to stu- 

dents through a traditional software interface (see Figure 2), as they progress along a pre-defined 

trajectory towards increased mastery of a range of skills. 

Data gathered from ASSISTments in the school year 2009–2010 has been made available online on a 

free-to-use basis (https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data). 

Crucially, this dataset was used as a train/test split in the DKT studies (i.e., one half was used to train 

the algorithms, the other half for testing purposes). It is downloadable as a CSV file and can be 

imported in various analysis tools and programming environments for statistical computing, such as 

Microsoft Excel, SPSS and R. Once opened (Figure 3), the dataset exhibits the typical charac- teristics 

of statistical tabulation with a total of 401,756 rows, each indicating an assignment done by a student, 

with all assignments in chronological order and each student tagged with a specific ID. 

This dataset is an insightful digital materialisation in its own right, demonstrating the extent of 

data capture performed in ASSISTments and other similar systems. It contains detailed information 

about the school in which the task was performed, the ID of the teacher who assigned the problem, 

the skills associated with each problem, the number of student attempts on a problem, the number of 

times help was accessed and several other rows about individual performance aspects. 

When examined closely, there are numerous learning-related ‘stories’ in these data: trajectories of 

educational achievement and struggle, signs of student fragility and maths-related anxiety, as well as 

school-level factors relating to the cultural contexts where these exercises were performed. We can 

see for example, student #70363 attempting 14 times to complete an exercise about box and whisker 

plotting in descriptive statistics. We can also see student #79781 making 66 attempts to answer the 

same task and then eventually answer ‘I have no idea’. Then again, are students #78897, #88129, 

#78415, #88127 and #88129 – all tackling various exercises ranging from fraction conversion to 

 

 

 

Figure 2. The ASSISTments user interface. 
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Figure 3. A digital-ethnographic materialisation: the ASSISTments dataset. 

 

the addition and subtraction of decimals, and eventually all independently agreeing on the same final 

response: ‘Your Mom’. 

In contrast, the work of abstraction carried out by predictive modelling and data science is not 

interested in these cultural and emotional aspects of the dataset, dismissing them as background 

noise interfering with the primary task of predicting ‘knowledge states’, following an underpinning 

model that relies on the involvement of human experts who manually label the skills required for a 

given exercise. Thus, in terms of how the ASSISTments dataset is used in the DKT study, the label- 

ling of skills and their encoding into the model preceded the algorithmic process of machine learn- 

ing, while the role of human agency in this process reminds us how machine learning   is: 

Both a form of automated knowledge production and also one shaped by people working in specific labour 

conditions, within institutional frameworks, according to professional commitments, worldviews and disciplin- 

ary theories about the ways in which the world works. (Williamson 2017, 116) 

Aside from these issues of the human labour that underpins these seemingly automated processes, 

the knowledge model that frames (and curtails) the ASSISTments dataset is also notable in its rep- 

resentation of ‘learning’. In particular, the roots of ASSISTments as a tool designed with summative 

testing in mind become visible in this entanglement between automation and human agency. This 

results in a problematic educational assumption ‘baked’ into the data: knowledge about algebra is 

based on a ‘all or none’ (Lindsey, Khajah, and Mozer 2014) learning binary. The key point is that 

this binary construction of knowledge is a distinct design choice which reinforces a pre-existing edu- 

cational philosophy that can be traced back to the tool’s origins in the pass/fail mentality of high 

stakes testing. Crucially, this design choice also results from a process of computational performance 

enacted by knowledge tracing’s method of choice: hidden Markov model, a probabilistic approach 

that predicts knowledge states according to a base-2 logic of 0 (knowledge is present) or 1 (knowl- 

edge is absent). It is important to consider the compromised and partial nature of this entanglement, 

which creates the very conditions in which ‘traditional’ knowledge tracing can successfully model 

progression in closed software environments. At least, this was the case until the ‘mini-debate in the 

educational data-mining world’ (private communication with one of the authors involved the DKT 

studies) that followed the application of recurrent neural  networks. 

 
(ii) The AI method meets the data: black boxes, tensions and  glitches 
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The distinctive accomplishment of RNNs applied to ASSISTment data is that they deal with skills 

that have been simultaneously organised in temporal sequences, rather than individual skills. The 

process in figure 4 is a simplified visual representation of the RNN architecture applied to the 

ASSISTments data, based on the original 2015 study, as well as the subsequent ones which provided 

counterevidence and responses. The most crucial part of the process is the hidden layer where one is, 

quite literally, forced to imagine the existence of a transformative process through which the tabu- 

lated data in Figure 3 is ‘exploded in a multidimensional vector-space, to the point that is no longer 

representable diagrammatically’ (Mackenzie 2017, 73) (Figure 4). 

 

 
Figure 4. What the RNN did to the ASSISTments data. 

 

 

The hidden neurons in the middle layer are connected in a recursive manner, that is, information is 

propagated over time in such a way that each hidden unit connects back to all other hidden units. 

Such process does not require pre-existing data representations, since the algorithm is able to 

discover patterns through recombination and optimisation. As mentioned earlier, this discovery pro- 

cess is the most distinctive element of deep learning, unsurprisingly generating a great deal of dis- 
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cussion in academia and the public sphere. While it may appear ‘magical’ and it  is  often  described 

as such in the mainstream media (Naughton 2018), this mechanism relies in fact on a probabilistic 

logic that targets increasing degrees of plausibility. Plausibility is a domain-dependent concept that 

may be beneficial in areas like image processing and recognition, where ‘hallucinated outcomes’ are 

expected by-products of the iterative approximation process of deep learning, but it is more 

problematic when educational constructs are  involved. 

In this sense, an important tension at the heart of the DKT controversy became manifest in one of 

the response papers (Khajah, Lindsey, and Mozer 2016), when the authors noted that the application 

of deep learning to the ASSISTments knowledge model discounts the hand-crafted features defined 

by human experts on the basis of domain expertise, to favour instead the discovery  of  unintelligible 

(but ‘plausible’, not unlike hallucinations) representations through the recursive propagation of 

information in the hidden layer of a neural   network. 

The features discovered by deep learning exhibit a complexity and subtlety that make them difficult to analyze 

and understand (…) no human engineer could wire up a solution as thorough and accurate as solutions dis- 

covered by deep learning. (…) (it) discards hand-crafted features in favor of representation learning, and often 

ignores domain knowledge and structure in favor of massive data sets and general architectural constraints on 

models. (Khajah, Lindsey, and Mozer 2016: 94) 

This observation signals another instance of the DKT scholarly discussion overflowing into the broader 

public controversy about automation and human-machine equilibrium that was mentioned in the 

introduction, thus bringing into view the fundamentally non-human nature of automated mechanical 

induction. Indeed, representation discovery makes sense in a perceptual, sub-symbolic image classifi- 

cation task where the relationships between the foundational elements of a digital image (pixels) can be 

decomposed, learnt and then recombined in manifold ways without human intervention. RNNs have 

proved quite capable to discover the underlying principles that govern this re-combinatorial flexibility. 

The academic discipline and the educational practice of human learning do not exhibit the same degree 

of flexibility, as their constructs are largely symbolic abstractions that reflect an empirical and discur- 

sive consensus among human experts about cognition and domain knowledge. 

We are dealing here with a crucial tension between theoretical and operational ‘versions’ of learn- 

ing, both problematic from an educational point of view. On one side, the representation discovery of 

neural networks wants to proceed inductively from the data, leading to the paradoxical conclusion 

that deep learning might discover ‘unknown’, yet plausible, algebra skills that, presumably, might 

even surprise mathematicians and maths educators. On the other side, we have a highly structured 

process of learning and mastering a form of knowledge, which wants to proceed deductively from a 

binary and narrow knowledge model inspired by a desire to help students succeed in high stakes 

tests. Unfortunately, not much was made of this ‘philosophical’ tension between two forms of reduc- 

tionism, as the DKT debate became absorbed in the infinite regress of challenging prediction scores 

and tweaking computational models. In fact, the main ‘plot twist’ in the debate could not be any 

further removed from these theoretical and philosophical considerations. In 2016, Xiong et al. (2016) 

discovered that the original study’s inflated prediction scores were, in part at least, the result of flaws 

in the ASSISTments open data, determined by the ‘unclear transformational rules’ (Xiong et al. 

2016, 550) of RNNs, which exhibited a strange tendency to randomly duplicate rows of data as part 

of its recursive, unintelligible work of ‘discovery’. While this dealt a serious blow to the orig- inal 

85% claim, it also prompted the authors to issue a reminder about the importance of basic data 

hygiene when using such increasingly opaque methods: ‘while we advance new algorithms and fine 

tune their parameters, we should also consider (and, if possible, report on) the robustness of the 

algorithms to common data glitches’ (Xiong et al. 2016, 550). 

 

(iii) Cultural, discursive and economic aspects of data science in education 
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Thirdly, then, we consider the cultural and economic underpinnings of the educational data science 

community involved in the DKT controversy and the field of predictive AI research and develop- 

ment in general. These are areas where methodological proficiency and analytic power have great 

currency, and where professional reputations and careers are founded on the capacity to subject radi- 

cally different forms of data to comparable and scalable forms of computational analysis. As Adrian 

Mackenzie notes, the career trajectories of ‘machine learners’ regularly imbue a cultural motif of data 

as a computational challenge (Mackenzie 2013). In this sense, online education is just one domain 

among many where this challenge can be engaged with. Here we can see, then, how the DKT con- 

troversy was driven (in part) by data scientists seeking a fertile context where they might successfully 

apply general principles of predictive modelling. As they moved into the DKT controversy, the data 

scientists who deployed RNNs onto educational datasets brought two qualities into the work that are 

distinct from what might be conventionally considered ‘educational’ concerns. First was a functional 

reliance on a ‘black box’ approach to mathematical modelling that treats prediction as an optimis- 

ation task based on opaque (deep) recursive mechanics. Second was a preoccupation with predictive 

performance as an indicator of their own professional  accomplishment. 

These underpinning qualities are exemplified by one of the papers written in response to Piech et 

al. (2015), where the authors stated that they were ‘driven by both noble goals (testing the repro- 

ducibility of scientific findings) and some selfish ones (how did they [Piech and colleagues] do so 

much better at predicting student performance)?!’ (Xiong et al. 2016, 545). Indeed, if we trace the 

use of this key word (‘performance’) across all eight published studies then some important cultural 

assumptions implicit in the DKT debate are highlighted. For example, the term ‘performance’ 

(alongside various stemmed words: perform, performed, outperform, performing, performs) appears 

213 times in the texts across the eight empirical articles. Examining the use of these words across the 

eight DKT articles reveals a rhetorical relationship between two themes: ‘performance’ of the algo- 

rithmic model (how good it is at predicting) and the ‘performance’ of students (what is being con- 

stantly monitored and automatically predicted). This is apparent in the following  examples: 

In Deep Knowledge Tracing a recurrent neural network was trained to predict student responses and was shown 

to outperform the best published results (…) We found that IRT-based methods consistently matched or 

outperformed DKT. (Wilson et al. 2016, 539) 

Recently, with a surge of interest in deep learning models, DKT [12], which models student’s knowledge state 

based on an RNN, has been shown to outperform the traditional models, such as BKT and PFA. (Yeung and 

Yeung 2018, 1) 

When we replicated simulations (… .) we obtained significantly better performance: an AUC of 0.73 versus 0.67 

on ASSISTments. (Khajah, Lindsey, and Mozer 2016, 98) 

A student who performed poorly on the last trial because they were distracted is likely to perform poorly on the 

current trial. (Khajah, Lindsey, and Mozer 2016, 97). 

The system continuously monitors the student’s performance, updates the knowledge states and based on that 

takes further decisions. (Lalwani and Agrawal 2017, 448) 

As these excerpts illustrate, the eight DKT articles exhibit a tendency to extend the instrumental 

notion of predictive ‘performance’ as computational challenge into an associated  understanding   of 

the educational ‘performance’ of students. In other words, student ‘learning’ quickly gets conflated 

with student ‘performance’, which itself is positioned as a matter of algorithmic tractability based on 

temporal sequences of inputs and outputs. This discursive entanglement of predictive performance 

as an attribute of the model, and learning performance as an attribute of the students eventually 

stabilises around a ‘granular’ view of education as a score-driven dynamic and collection of 

machine-readable signals: 

Given three exercises each of skills A and B, presenting the exercises in the interleaved order A1–B1–A2–B2– 

A3–B3 yields superior performance relative to presenting the exercises in the blocked order A1–A2–A3–B1– 

B2–B3. (Khajah et al: 97). 
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The task of knowledge tracing can be formalized as: given observations of interactions x0 … xt taken by a stu- 

dent on a particular learning task, predict aspects of their next interaction xt+1 [5] (…). The authors found that 
RNNs can robustly predict whether or not a student will solve a particular problem correctly given their per- 
formance on prior problems (Wang et al. 2017, 325). 

This distinctive motif of learner performance as computational performance can be considered as the 

main ‘discursive work’ enacted across the DKT studies, as their authors competed over prediction 

scores and contested the ‘stunning performance advantage’ (Khajah et al: 94) of deep learning. As 

such, the theme of performance was an important linguistic/ideological device of ‘translation’ that 

created competitive convergences (Callon 1980, 211) between the following actors: 

 
 

(a) the datasets from a handful of online learning environments: ASSISTments (open), Khan Acad- 

emy (proprietary), Knewton (proprietary), Funtoot (proprietary), Hour of Code (open) and the 

Carnegie Tutor Geometry dataset (open). 

(b) a small group of academic institutions: Stanford University, University of Colorado Boulder, 

Hong Kong UST, Worcester Polytechnic Institute; 

(c) the corporate entities who directly employed some of the data scientists involved in the debate: 

Knewton, Funtoot, Google. 

 
 

The relationships between these analytic entities/actors as evident from the eight DKT articles is 

illustrated in Figure 5. In this visualisation, the ASSISTments dataset and the study that ‘triggered’ 

the discussion (Piech et al. 2015) occupy a central position due to having the largest number of con- 

nections. The study from Lalwani and Agrawal (2017) is also distinct as the sole study that relied 

exclusively on a proprietary dataset from Funtoot, a popular Bangalore-based education technology 

company. Figure 5 therefore illustrates how applied AI became an ‘educational thing’. This occurred 

through the competitive relations that the eight DKT studies mediated between academia, the cor- 

porate sector and, crucially, a handful of digital educational datasets that shared similar assumptions 

about knowledge modelling and originated from platforms competing for market share in the K-12 

EdTech sector. 

The ability to map these mediated relations in this manner therefore adds depth to our under- 

standing of the DKT controversy. While ASSISTments and Khan Academy are classified as non- 

for-profit entities, the involvement of large, for profit companies like Knewton and Funtoot points 

to their strategic research interests in predictive modelling, as a potentially integral part of their port- 

folios of personalised, adaptive and ‘intelligent’ educational products. The involvement of Google 

Brain (a leading deep learning research unit) is also significant in flagging Google’s intention to 

shape the deployment of applied AI in education as one of its various domains of competitive 

activity. 

Of course, these relations evident within the DKT articles are only the ‘tip of the iceberg’ of deep 

learning as a much larger phenomenon shaped by market forces. The techniques developed through 

the DKT studies are highly portable and scalable across various domains of society. Thus this map of 

educational AI is likely to be replicated in health, criminal justice, and multiple similar cases where 

the same deep learning methods act as connective tissue between ensembles of academia and econ- 

omic interests. Indeed, the past few years have witnessed the rise of general-purpose predictive infra- 

structures with large technology companies developing various cloud-based or distributed AI/deep 

learning frameworks. The most notable development in this regard is Google’s Tensorflow – released 

under an Open Source licence in 2015 and rapidly established as a market leader. Indeed, the DKT 

case study suggests that Google’s expertise was instrumental in enabling their particular brand of 

deep learning into the education domain, with Tensorflow chosen as the framework to build and train 

the models in two of the papers involved in the DKT controversy (Xiong et al. 2016; Zhang  et al. 

2017). 
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Figure 5. Mapping the Deep Knowledge Tracing controversy – relations between datasets, data scientists, academia and corporate 
tech. The main ‘nodes’ are the individual studies and the datasets used as part of the experiments. 

 

Conclusion 

While an initial broad-brush encounter with deep learning techniques in education, this article brings 

a number of different perspectives and points of analysis to the study of AI in education.     In 

particular, our descriptions highlight a series of important relations. This includes relations    (and 

tensions) between ‘versions’ of learning, relations between models and datasets, relations between 

academic and corporate entities, and relations between epistemic cultures and economic interests. 

The analysis of these relations suggests that the trajectory of this particular predictive mod- elling 

approach in education was a complex sociotechnical affair. This is consistent with the STS approach 

that informed the  study. 

In the spirit of this research tradition, the paper has raised the following observations about the 

DKT controversy: 

● Some aspects of this DKT controversy are best seen as epistemic in a traditional sense, related to 

how the fields of data science, educational data mining and learning analytics interact with each 

other to develop knowledge through research, publications and conferences. 
● Some aspects of the DKT controversy could be described as semiotic, as the meaning of a specific 

predictive paradigm was negotiated across a number of studies, in relation to (and in tension with) 

aspects of human cognition and  learning. 
● Yet other aspects of the DKT controversy are distinctly sociocultural, as the overriding concern 

for predictive power in the deep knowledge tracing debate is consistent with the values, the dis- 

courses and the economic interests of the data science and AI community/industry where the 

authors of these ‘educational’ studies originated. 
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● Above all, the DKT debate exposed the problems and uncertainties surrounding the functional 

complexity of recurrent neural networks and the applicability of automated representation dis- 

covery to the educational domain. 

 

As AI continues to develop different predictive paradigms (including variations of the deep 

learning techniques described in this paper), the challenge facing education research over the  2020s 

will be to interrogate their assumptions and unresolved tensions in a critical way, avoiding   a 

wholesale, unproductive closure. These are no wholly bad or incorrect developments to be bring- 

ing to bear on education. For example, while there is value in critiquing ASSISTments’ original 

knowledge tracing model as limited and constrained, it is also worth acknowledging that it is   based 

on a sociologically ‘real’ form of knowledge about cognition and learning. By real we   mean it is 

the result of meaningful patterns and ‘scientific generalizations, created through socially agreed 

choices about what was to count as sound observation and what as unsound’ (Collins 2018, 112). 

Ultimately, this is where our own analysis departs from extreme forms of ‘relational ontology’ in 

STS and turns an eye toward critical realism (Archer 2010). While we fully accept that all entities 

(including theories of cognition and learning) result from a process of becoming and are not simply 

endowed with ‘substances’, once they stabilise in accordance with politics as well as criteria of 

empirical credibility, they should be ascribed a distinctive, more robust status in the multifaceted 

social debate over truth and knowledge. 

This latter point is particularly pertinent when interrogating the process of knowledge discovery in 

deep learning. In particular, it can be mobilised to support a critical argument against automated data 

representation in education, i.e., the fact that theories of learning cannot, after all, be ‘discovered’ by 

algorithms. Once we accept that the input/output dynamic of proven computational models of cogni- 

tion can have a stable basis (i.e., they are not just plausible, but ‘real’ in a sociological way, i.e., as stable 

forms of enculturation and socially shaped knowledge), the problem becomes about the constrained 

nature of an algorithmic framing, rather than the framing per se. It becomes, in other words, a matter 

of ‘heterogeneous engineering’: a debate on how we can ‘redraw the boundaries of abstraction to 

include people and social systems as well, such as local incentives and reward structures, institutional 

environments, decision making cultures and regulatory systems’ (Selbst et al. 2018, 9). 

In the case of ‘regular’ knowledge tracing, this process of boundary redrawing is possible – but this 

will require a productive dialogue between the fields of educational assessment, computer science 

and critical educational research. Such dialogue might help fortify the field of education research 

against adopting a problematic inductivist position where the prospect of something along the   lines 

of ‘hallucinated school algebra’ can be contemplated as an educational possibility (at least in theory). 

Indeed, this is a possible end-point that ‘deep’ knowledge tracing entertains through its reliance on 

bottom-up pattern recognition and representation discovery. Having followed closely the DKT 

debate, we can safely conclude that the achievability of such ‘discoveries’ in the education domain 

remains highly contestable (if not something that deserves to be rejected outright). There- fore, we 

must remain vigilant against politically and commercially motivated attempts to downplay these 

contentious aspects and trade upon the mysterious and other-worldly connotations of AI- based 

speculation. 

In conclusion, this article provides an account of how AIED was ‘assembled’ through a minor 

empirical debate about the use of deep learning with educational datasets. It also provides some 

methodological suggestions as to how social scientists can go about studying and critiquing similar 

episodes of unsettled knowledge-making. 

While we do not claim that our relational framework covers all possible lines of enquiry, we 

believe it represents a starting-point for further research by highlighting three important units of 

analysis: (i) the AI methods themselves, (ii) the digital platforms that produce the educational data- 

sets used to train algorithms, and (iii) the ‘social life’ of computation in education as a site of epis- 

temic, ideological and economic contestation. The DKT debate therefore provided us with an 
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opening through which the sociotechnical nature of predictive modelling was manifest in a form that 

could be meaningfully investigated. 

As is the case with critical research on data-driven education in general, the primary focus of this 

paper lies in: (i) questioning the attributes of scientific objectivity and neutrality ascribed to these 

technological systems, and then (ii) exploring ways in which sociality and diversity can be reinjected 

in them. In this sense, one of the main themes highlighted by our analysis is the value of combining a 

precise examination of algorithms with a plural and experimental use of digital-ethnographic 

methods. Another concluding suggestion relates to the importance for critical education research   to 

engage in an interdisciplinary dialogue with cognitive science and data science. Such a dialogue 

must build on the acknowledgement that the models of cognition and learning encoded in digital 

learning environments are meaningful analytic entities that cannot be glossed over in the pursuit   of 

social science theorising. 

As a final observation, we wish to remind the reader that we have examined a particular instance 

of AIED in the form of the use of computational methods to categorise and predict performance in 

structured learning environments. This specific version of AIED is a reflection of the so-called ‘per- 

sonalised learning’ trend in education, which has been abundantly critiqued as an individualistic dis- 

course that overemphasises market-inspired logics and is shaped by the interests of technology 

companies through metrics, automation and the pervasive collection of data. While not disagreeing 

with these existing critiques, the relational analysis developed in this paper suggests that the way in 

which these phenomena actually ‘come together’ is a nuanced process open, in theory, to alternate 

social shapings. As such, the continued application of AI methods to education is not something to 

be rejected outright, but something that is well worth engaging with on its own terms and contesting. 

In this sense, AI in education needs to be talked about more often in controversial and circumspect 

terms, rather than accepted as a computational fait  accompli. 
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